
Pax genes in eye development and evolution
Zbynek Kozmik
Animal eyes with widely different anatomical designs have long

been thought to arise independently, multiple times during

evolution. This view was challenged about a decade ago by the

landmark discoveries that Pax6, a highly conserved

transcription factor, plays a key role in eye morphogenesis in

both flies and mammals. Since then, more evidence has

emerged in favour of the redeployment of Pax6 and some other

developmental control genes within the genetic program

underlying eye formation throughout the animal kingdom.

Recent work has indicated that other members of the Pax gene

family play a pivotal role in eye morphogenesis. The Eye gone

gene regulates eye growth in Drosophila, whereas the PaxB

gene is implicated in visual system development in jellyfish, the

most basal organism possessing eyes.
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Introduction
The evolution of eyes remains a controversial topic. The

obvious morphological diversity in addition to the differ-

ent embryological origins of various types of eyes makes it

hard to accept the view that there exists some common

underlying genetic mechanism [1]. Moreover, two non-

homologous signaling cascades for phototransduction can

be found in bilateria (see Glossary). Both of these cas-

cades use seven-transmembrane receptors as part of their

photopigments. However, c-opsins, which are used in

ciliary photoreceptors, and r-opsins, which are used in

rhabdomeric photoreceptors, can be clearly categorized

according to certain molecular characters. The down-

stream effector molecules are distinct for each cascade,

as well. Rhabdomeric photoreceptors employ the phos-

pholipase C cascade, whereas ciliary receptors use a

phosphodiesterase system [2��,3]. The two photorecep-

tive systems coexist throughout the animal taxa; however,

the rhabdomeric photoreceptors are much more common,
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especially among invertebrates. Vertebrates and jellyfish

represent relatively rare cases of utilization of ciliary

receptors [1].

Despite these variations, genetic studies have indicated

that all eyes might share a similar developmental cascade

of transcription factors, suggesting that eyes have had a

common evolutionary origin. In particular, an almost

universal use of the Pax6 gene for eye morphogenesis

in most species represents a powerful argument for a

monophyletic origin of eyes, and a central role for the

Pax6 gene in visual system development [4]. Pax6 is a

member of the Pax gene family, which encodes transcrip-

tion factors that are highly evolutionarily conserved

among Metazoans [5,6], and seem to play fundamental

roles in a wide variety of developmental processes [7,8].

The focus of this review is a small group of Pax proteins,

Pax6, Eyeless (Ey), Twin of Eyeless (Toy), Eye gone

(Eyg), Twin of Eyegone (Toe), Pax2 and PaxB, which are

implicated in visual system development in a variety of

species:. Here, I initially discuss the molecular properties

of Pax transcription factors, and then describe some new

findings regarding Pax function during eye development.

For the purpose of this review, I define an eye as an organ

of spatial vision with a minimum requirement of a single

pigment cell and two photoreceptor cells [1]. Although

most of our understanding about the genetic program

underlying eye formation derives from vertebrates and

flies, valuable new information about eye evolution has

recently been obtained by studies of cnidaria and lopho-

trochozoa (see Glossary). Finally, I propose a tentative

model to explain the universal use of Pax genes in eyes

with fundamentally different building plans.

The structure of Pax transcription factors
Pax transcription factors are defined by the presence of a

highly conserved 128 amino acid DNA binding domain,

the paired domain [9], as proposed elsewhere [5]. The

paired domain is a bipartite domain consisting of two

independent subdomains: the amino-terminal PAI domain

and the carboxy-terminal RED domain (Figure 1) [10,11].

The bipartite paired domain recognizes a bipartite binding

site of about 17 nucleotides [10,12]. The PAI domain is

generally more conserved than and seems to be dominant

over the RED domain in the intact protein, which might

explain why all Pax proteins seem to interact with similar

target sequences. Nevertheless, some differences in spe-

cificity have been noticed. Three amino acids (at positions

42, 44, and 47) within the PAI domain are responsible for

the difference in the DNA-binding specificities between

Pax2/5/8 and Pax6. The amino acids IQN at these
www.sciencedirect.com
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Glossary

Ascidians: Sea squirts; solitary or colonial marine invertebrates; free-

swimming larvae exhibiting basic chordate body plan.

Bilateria: Sometimes called ‘higher’ animals, these are a group of

animals representing the majority of phyla, with the notable exception

of sponges, ctenophores and cnidaria. The two main lineages of

Bilateria are protostomes and deuterostomes. Bilateria are

characterized by bilateral symmetry, and are also called triploblasts

because their bodies develop from three different germ layers

(endoderm, mesoderm and ectoderm).

Cnidaria: A very ancient and highly diverse group of animals

comprising jellyfish, corals and sea anemones in addition to common

laboratory Hydra. Cnidarians are diploblasts, having their bodies

constructed from only two germ layers, endoderm and ectoderm,

separated by acellular mesoglea. Cnidarians possess radial body

symmetry and they represent a natural animal outgroup to Bilateria for

comparative studies.

Intercalary evolution: A likely scenario for the evolution of a

morphogenetic pathway. Initially, a prototypic structure, such as an

eye, is formed using key regulatory genes (such as Pax6) and

structural genes (such as opsins). In the course of evolution, additional

genes are intercalated (co-opted) between the top (Pax6) and bottom

(opsins) of the developmental cascade.

Lophotrochozoa: One of the two major groups of protostomes,

including animals such as molluscs, segmented worms and

brachiopods. Sometimes, flatworms are included within this group.

Planarians: Common name for several species of free-living

flatworms characterized by very simple bilaterian body architecture.
positions specify the Pax6 class of transcription factors,

whereas amino acids QRH determine Pax2/5/8 specificity

[13]. Alternative splicing of the Pax6 gene in mice and

humans inactivates the PAI domain by virtue of an inser-

tion of exon 5a (14 amino acids), thus generating the

Pax6(5a) protein. As a result, an independent DNA bind-

ing capacity of the RED domain is fully uncovered, and the
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and binds to DNA as a monomer [10,12]. PAI and RED recognition sequenc

respectively. The Pax6 class has a strong preference for A over C in positio

Eyg is capable of independent binding to a single 7 base pair consensus [1

[14,15]. The red arrows indicate the two potential target sites of Pax6(5a) on

consensus enables two additional binding sites to be present on the lower

binds preferentially as a dimer to palindromic TAAT-like sequences (consen

wide variety of sites, either through a single DNA binding domain (PAI, RED

A conserved octapeptide motif present in Pax2/PaxB is shown as a yellow
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Pax6(5a) protein is targeted towards a tandem repeat of the

RED consensus binding site [14,15]. Drosophila Pax6
orthologues, ey and toy, do not undergo such a splicing

event and, thus, produce solely the canonical Pax6 protein.

Interestingly, two unusual Pax proteins, Eyg and Toe, are

produced by the two paralogous genes, eyg and toe. Eyg and

Toe lack the amino-terminal PAI domain, and rely only on

the RED and HD domains for their binding capacity. The

sequence specificity of Eyg has been studied and found to

be very similar to that of Pax6(5a), although a single RED

consensus site appears sufficient for Eyg binding [16].

Apparently, two alternative mechanisms have evolved

for generating both a PAIRED-HD transactivator in addi-

tion to a RED-HD transactivator: alternative splicing in

mammals and gene duplication and diversification in

Drosophila. In addition to a paired domain, some Pax

proteins (such as Pax6 or Eyg) contain a second DNA

binding domain, a homeodomain (HD). The homeodo-

main in Pax proteins is always characterized by serine at

the crucial position 50, which is known to determine

homeodomain sequence-recognition specificity. The

Pax homeodomain interacts with palindromic TAAT-like

target sequences [17], either as a homodimer or as a

heterodimer with another paired-type homeodomain. In

summary, Pax proteins might regulate an unusually broad

spectrum of target genes as a result of the interaction of

individual DNA binding domains or cooperation between

the domains [18].

Pax genes and eye organogenesis
The observations that mutations in a highly conserved

transcription factor, Pax6, disrupt eye development in
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The bipartite PAIRED domain (PD) recognizes a bipartite consensus

es within the bipartite consensus are shown in blue/violet and red,

n 17 of the bipartite consensus (violet arrow) [13]. The RED domain of

6], whereas the Pax6(5a) protein prefers a ‘tetrameric’ binding site

the upper strand of DNA; the unique nature of the ‘tetrameric’

DNA strand [15]. The paired-type homeodomain (HD; green box)

sus shown in green) [17]. Pax proteins are likely to interact with a

or HD) or through cooperation of individual domains [18].

box.
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both mammals [19] and insects [20], and that Pax6 mis-

expression is able to induce ectopic eyes [21,22,23��] led

to the proposal of Pax6 being a ‘master control gene’ [4],

although the term ‘eye selector gene’ seems more appro-

priate and is generally accepted [24��]. The term ‘master

control gene’ implies that the Pax6 transcription factor is

located at the top of a gene cascade and that it initiates

eye development in almost any tissue in which it is

ectopically expressed; however, neither scenario seems

to be the case. For instance, eye development in the

mouse proceeds by a series of inductive interactions

between neuroectoderm (developing retina) and a surface

ectoderm (developing lens), in which Pax6 is an essential

early determinant in both compartments [25–27]. Never-

theless, in the absence of Pax6, presumptive retina can

develop up to the optic cup stage, albeit abnormally [25].

Moreover, within the lens placode, Pax6 expression is

under the control of the Meis1 and Meis2 transcription

factors [28], vertebrate homologues of the Drosophila
protein Homothorax [29].

In Drosophila, the ability of the two Pax6 paralogues, ey
[22] and toy [30], to induce ectopic eyes is restricted both

spatially and temporally. These limitations suggest that

ey and toy modify an existing program of sensory organ

development rather than initiate the entire eye morpho-

genesis. In accordance with this interpretation, the gene

atonal, which encodes a transcription factor of the basic

helix–loop–helix family, is required for a generic devel-

opmental program that controls formation of three adult

sensory organs in Drosophila (eye, Johnston’s and chordo-

tonal organs) [31��]. Furthermore, toy controls more than

just eye morphogenesis, because a loss-of-function muta-

tion produces flies missing an entire head [32]. The two

Drosophila Pax6 paralogues have partially redundant func-

tions [32], yet they have also functionally diverged

[30,33].

Apart from Pax6, additional Pax proteins are essential for

normal eye development in Drosophila and mice (Table 1,

Figure 2). Two Drosophila Pax6-like genes, eyg and toe,
might act in parallel to ey during eye formation [34�].
Recent results suggest distinct but coordinated roles for ey
and eyg. In the current view, ey provides eye specification
Table 1

Pax transcription factors implicated in eye development in mouse an

Pax structure Mouse protein Loss-of-function eye phenotype

PD-HD Pax6 No eyes

RED-HD Pax6(5a) Iris hypoplasia

PD Pax2 Agenesis of optic chiasma; retinal ga

project ipsilaterally; retinal coloboma

a This phenotype is temperature-sensitive [32]. ?, phenotype not determin

Current Opinion in Genetics & Development 2005, 15:430–438
whereas eyg, being genetically downstream of Notch

signalling [35��], a known regulator of eye growth

[24��], regulates proliferation. Remarkably, Pax6(5a) pro-

tein, although playing a minor role in vertebrate eye

development [36], can mimic Eyg in promoting tissue

growth [35��], which suggests at least biochemical equiv-

alency of the two proteins.

Pax2 is another member of the Pax gene family that has

unique functions during Drosophila [37] and mouse [38]

eye development (Table 1). Some similarities in nested

expression patterns of Pax6 and Pax2 in developing eye

discs of fly and vertebrate eyes have been noticed [8];

however, the genetic interaction between the two genes

has only been observed in vertebrates. Mutual repression

between Pax6 and Pax2 is responsible for the morpho-

genesis of the mouse optic primordium: Pax2 is crucial for

the generation of the optic stalk whereas Pax6 is required

for the development of the optic cup [39]. Both genes

seem to have partially redundant functions in the retinal

pigment epithelium [40�].

In Drosophila, the sparkling (spa) function of Pax2 is

expressed in the differentiating cone cells and primary

pigment cells of late larval and pupal eye discs, whereas

its shaven (sv) function is expressed in the developing eye

bristles [41]. Of particular interest here is its eye-specific

spa function [42], because the sv function is deployed for

proper development of all bristles in the fly [43]. It has

been suggested that cone cells, in a similar fashion to glial

cells, might be considered as neuronal support cells of

photoreceptor cells, a hypothesis additionally supported

by the fact that Pax2 is also expressed in glial cells of the

developing peripheral nervous system of Drosophila [37].

Accordingly, expression of Pax2 in Drosophila cone cells

and glial cells of developing vertebrate eye might origi-

nate from the function of an ancestral Pax2 gene in

photosensory organ of an animal that lived before the

separation of protostomes and deuterostomes [37].

Pax genes and the evolution of the eye:
the Paxcentric view
The origin of Pax genes predates the origin of eyes and

the nervous system. The Pax gene closest to the ancestral
d Drosophila.

Drosophila protein Loss-of-function eye phenotype

Ey No eyes

Toy No heada

Eyg No eyes

Toe ?

nglion cells Pax2 Abnormal cone and pigment

cell development

ed. For references, see text.

www.sciencedirect.com



Pax genes in eye development and evolution Kozmik 433

Figure 2
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Compound eye

Pit eye

Eye with lens

Pax proteins with known or suggested function in eye development in different animal groups. The widespread use of Pax6 for eye

organogenesis among bilaterians represents a compelling argument for monophyletic origins of eyes [4]. However, if we define an eye as an

organ with spatial vision with a minimum requirement of a single pigment cell and two photoreceptors [1], then we know of cases where such an

eye develops in the absence of Pax6. For instance, development of the Hesse organ (eyecup) in the chordate amphioxus (Branchiostoma) is

Pax6-independent [61]. Likewise, planarian eye regeneration does not require Pax6 function and depends on genes of the Six/sine oculis

family [49]. Finally, the Pax6 gene in the polychaete Platynereis is only expressed in the larval but not in the developing adult eye, which again

suggests that organogenesis of an adult eye is Pax6-independent [58]. Cubozoan jellyfish, the most basal animals with sophisticated eyes

can form their eyes in the absence of a true Pax6 gene [47��]. It is noteworthy that a similar set of Pax transcription factors with almost identical

biochemical properties (Pax6, Pax6(5a)/Eyg and Pax2) is used for the development of the compound eye in Drosophila as well as for the

morphogenesis of a camera-type eye in vertebrates.
Pax gene, a PaxB-like gene belonging to the Pax2/5/8
subfamily, was identified in the sponge, which has neither

eyes nor a nervous system (Figure 3) [44]. Cnidaria are the

most basal animals that posses either simple or complex

(lens-containing) eyes in addition to Pax genes

[45,46,47��,48�]. Pax genes clearly have an ancient and

fundamental role in visual system development. The

question than remains: ‘What is so special about Pax?’.

In the following sections, I argue that the biochemical

nature of Pax transactivators might have been the reason

for selecting them initially to generate a prototypical eye

structure as a photoreceptor/pigment cell combination.

As described above, Pax transcription factors represent

regulatory proteins with an unusually broad spectrum of

target sequences as a result of the interaction of inde-

pendent DNA binding domains or the cooperation
www.sciencedirect.com
between the domains. Thus, they are capable of coordi-

nated regulation of a large number of genes organized

into networks or developmental programs. Separate, yet

interdependent biological program(s) can be regulated by

the paired domain and homeodomain, respectively. I

propose (Figure 3) that two independent DNA binding

domains within a single Pax transcription factor have

been co-opted for two essential features of the proto-

eye: production of a dark pigment (the ‘pigmentation’

program; paired domain-driven) and production of a

photopigment (the ‘opsin’ program; HD-driven). Given

that the two programs were driven by two independent

DNA binding domains within a single transcription fac-

tor, they became inseparable. There is, indeed, evidence

for such an evolutionary scenario (i.e. in favour of a role

for Pax genes in the regulation of opsin as well as in

pigment cell fate).
Current Opinion in Genetics & Development 2005, 15:430–438
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Figure 3
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Pax gene evolution and ‘the Paxcentric (PD-HD) model’, suggesting specific roles for paired domain and homeodomain during eye evolution.

The PaxB gene in the cnidarian Tripedalia is expressed in the lens and retina and is able to activate both lens crystallin in addition to opsin

reporter genes [47��]. The data indicate that modern Pax2 and Pax6 genes in bilateria evolved from a cnidarian PaxB-like ancestor by duplication

and diversification. Pax2 lost its homeodomain (HD), and Pax6 lost the octapeptide (yellow box) and changed the DNA-binding specificity of the

paired domain (PD) by acquiring amino acids I42, Q44 and N47 (shown by violet color of PAI domain and the target sequence). The model

predicts that the PD has been captured to function in the ‘pigmentation’ pathway as well as for driving morphogenesis (‘eye design’) through

intercalary evolution, whereas the HD functioned in opsin expression. The genes under the ‘pigmentation’ program might represent components

of the melanogenic pathway (i.e. enzymes such as tyrosinase) as well as key transcriptional regulators (Mitf). ‘Morphogenesis’ genes are the

ones required for eye formation in any given animal. The role of the PD and HD was modified in the course of animal evolution by recruitment

of other transcriptional regulators. For instance, the early Pax HD function in opsin gene regulation has been modified in some bilateria by

co-option of other paired-type HD proteins (such as Otd or Crx [53��]). Alternatively, Otd/Crx might represent derivatives of the initial Pax family,

which lost their PD. Note that opsin genes are homologous across phylogeny, whereas the highly abundant lens crystallins are encoded by

structurally unrelated genes in different species. For simplicity, cooperative DNA binding activities (i.e. PD-HD, RED-HD and PAI-HD) and their

possible roles in gene expression programs are omitted.
The Pax6 gene is expressed in the pigment cells of the

prototypic planarian eye [49]. Pax2 is required for the

development of pigment cells in the Drosophila eye [37].

Moreover, Pax genes were found to specify mouse retinal
Current Opinion in Genetics & Development 2005, 15:430–438
pigment epithelium (Pax6, Pax2), neural crest-derived

melanocytes (Pax3) and ascidian (see Glossary) sensory

pigment cells (Pax6, Pax3/7) [50�]. Another argument

derives from studies of a microphthalmia-associated
www.sciencedirect.com
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transcription factor, Mitf, that has a conserved and funda-

mental function in the development of melanin produ-

cing cells [50�]. The loss of function of Mitf results in

retinal pigment epithelium becoming an additional

unpigmented neuroretina, whereas overexpression of

Mitf induces a pigmented phenotype in neuroretina. In

addition, Mitf directly regulates melanogenic enzymes.

Various Pax genes activate the Mitf gene promoter

[40�,51]. Furthermore, Pax6 directly interacts through

its paired domain with Mitf protein and, hence, is able

to modify Mitf function through protein–protein interac-

tion, thus adding another level of complexity [50�].

It was shown previously [52] that Drosophila Pax6 (ey)

directly activates expression of rhabdomeric rhodopsin
genes through homeodomain binding sites in their pro-

moters, which might reflect an ancestral role of the home-

odomain in opsin regulation. In vertebrates, Pax6 is not

expressed in ciliary photoreceptors and is, thus, no longer

used for activation of opsins promoters. Remarkably, Pax6
expression remains in vertebrate retinal ganglion cells,

which are considered to be a cell-type homologous to the

ancestral rhabdomeric photoreceptor cell [2��]. In the

course of bilaterian evolution, additional paired-type

homeodomain proteins, such as Crx in vertebrates or

Otd in Drosophila, were co-opted for opsin regulation

[53��]. In accordance with this scenario, an artificial

reporter gene containing paired-type homeodomain bind-

ing sites (P3) is active in the photoreceptors of transgenic

planarians (see Glossary) [54], being activated either by

Pax6 or by any other paired-type homeodomain activator

protein expressed in the photoreceptors.

Finally, at least on the basis of genetic data in vertebrates

and flies, the Pax6 paired domain seems to be more

important than is the homeodomain for eye morphogen-

esis. Primarily, missense mutations in patients with anir-

idia and Small eye mice (both Pax6 heterozygote

conditions) occur predominantly in the paired domain.

In addition, it is the mutual interaction of Pax2 and Pax6

that generates a complex structure of the mammalian eye

[39]. Likewise, the Pax6 paired domain but not home-

odomain is essential for Drosophila eye development [55].

Thus, it appears reasonable to suggest that the paired

domain played a more prominent role in eye morphogen-

esis in the animal kingdom by re-inventing various types

of eyes through intercalary evolution (see Glossary) [4]. A

prime example of the paired domain being recruited for

modification of an eye design by intercalary evolution is

the recruitment of the paired domain for the regulation

of lens crystallins, non-homologous genes among ani-

mals, encoding proteins responsible for the refractive

property of the lens. A PaxB gene regulates crystallin

genes in jellyfish [47��], whereas Pax6 has been exten-

sively used for the same function in lenses of various

vertebrates [56] (Figure 3). It remains to be seen if any of

the regulatory relationships described above reflect an
www.sciencedirect.com
ancestral state or, rather, represent a much later co-option

of Pax6.

The fascinating feature of the proposed model is that the

morphological unity found in the eye, a photoreceptor

linked to the shading pigment, is mirrored on the mole-

cular level, by uniting two independent DNA-binding

domains in one regulatory protein.

Conclusions
The theory of Pax6 as ‘master control gene’ for eye

development [4] is complicated by the fact that genes

for several other transcription factors (sine oculis, optix, eyes
absent, dachshund, eye gone and teashirt) also induce ectopic

eyes [57]. Some of these genes, in particular sine oculis
homologues, undoubtedly have an ancient and funda-

mental role in visual organ development in different

animal groups [58]. One has to keep in mind, however,

that many of the members of the eye developmental

cascade of transcription factors, including Pax6, are also

used for the development of other tissues. This is perhaps

best documented by the eyes absent gene, which encodes a

protein phosphatase, and which functions in a complex

with transcription factors of the sine oculis/Six gene family

[57]. Eyes absent phosphatase activity is required for eye

development in Drosophila, yet the same phosphatase

activity has already been found in a plant orthologue.

Remarkably, the entire regulatory circuits can, thus, be

co-opted for development of a new cell type, tissue or

even an organ. These issues raise concerns connected

with the idea of homology as a result of common devel-

opmental pathways. It has recently been shown that

vertebrates and cnidaria share many more genes than

was previously anticipated [59�]. This means that both

animal groups use more or less the same set of genes to

generate their significantly different body plans. There-

fore, it is likely that changes in gene regulation, rather

then ‘new’ genes, are the driving force behind the dif-

ferent eye designs found among animal eyes. Regulatory

mutations can even result in the re-invention of eyes

during the course of evolution. A ‘minor’ change in the

regulatory region of a gene encoding a crucial transcrip-

tion factor, such as Pax6, can lead to its misexpression. If

misexpression happens in the ‘competent tissue’, the

original developmental program of that tissue can be

subverted to a new fate. Such an evolutionary scenario

is, in fact, nothing else than the ectopic eye experiment in

Drosophila, performed not by scientists but Nature. How-

ever, most of these experiments performed by Nature

were probably deleterious and produced, as shown ele-

gantly in the case of early ectopic expression in eye discs,

headless flies [60].

The genetic basis for fundamentally different building

plans that exist among animal eyes will remain a scientific

challenge in the years to come. It has become clear that an

approach combining anatomy, molecular and cell biology
Current Opinion in Genetics & Development 2005, 15:430–438
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in addition to paleontology needs to be used to obtain a

clearer picture.

Update
Recent work has provided another piece of evidence

supporting fundamental role of Pax genes in pigmenta-

tion programs [62�].
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