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Bridging proteomics and systems biology: What are the
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The comprehensive study of proteomes has become an important part of attempts to uncover the
systemic properties of biological systems. Proteomics provides data of a quality which increas-
ingly fulfills strict requirements of systems biology for quantitative and qualitative information.
Notably, proteomics can generate rich datasets that describe dynamic changes of proteomes. On
the other hand, large-scale modeling requires the development of mathematic tools that are
adequate for the processing of largely uncertain biological data. In this review, recent develop-
ments that pave the way for the integration of proteomics into systems biology are discussed.
These developments include the standardization of data acquisition and presentation, the
increased comprehensiveness of proteomics studies in description of functional status, localiza-
tion and dynamics of proteins, and advanced modeling approaches.
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1 Proteomics and systems biology

1.1 Proteomics and modeling of biological processes

The dynamic complexity of biological processes has been less
well understood, when compared to many physical and
chemical processes. Apparently, sending a man to the Moon
is less complicated than the full understanding of how bruis-
es heal. This situation is about to change: the sequencing of a
number of genomes, large-scale explorations of tran-
scriptomes, proteomes and metabolomes, and a huge vol-
ume of directed studies inspire hope that we will be able to

describe a living creature in the strict language of mathe-
matics. Most importantly, there is a hope that we will be able
to design better treatments and predict outcomes for human
diseases. The development of modeling tools fuels these
expectations, with the dawn of systems biology. Study of the
systemic properties of biological systems, as systems biology
can be defined, has already provided successful examples,
e.g., insights into the physiology of the heart, diabetes,
asthma and cancer (reviewed in [1, 2]).

Building and analysis of models of biological processes
comprises a number of modeling tools, and addresses bio-
logical complexity on the levels from biochemical reactions
and cell physiology to behavior and evolution [3, 4]. Here and
through-out this review the term “model” refers to descrip-
tion of biological processes in mathematical terms, without
discrimination of mathematical tools. Consequently, model-
ing is defined as “the application of methods to analyze
complex, real-world problems to make predictions about
what might happen with various actions” (see Computa-
tional Science Glossary, wofford.info/ecs/glossary/
terms.htm; Table 1). Modeling tools cover a broad range of
mathematical methods, from systems of differential equa-
tions to statistical correlation tools [3, 4]. Some of the tools
require detailed knowledge about components, e.g., to build a
systems of differential equations for modeling of a signaling
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Table 1. Glossary of terms

Protein species Proteins with a particular set of PTMs. For instance, phosphorylated and non-phosphorylated
proteins will define two separate, though relative species.

Connection Indicates a physical or functional interaction between two protein species. Here it is used as an
equivalent to edges and strings.

Dependencies Definition of the influence of one protein species on another.

Variables Components of a system, e.g., protein species.

Model of a biological
process and modeling

A model can be defined as a description of biological processes in mathematical terms. Modeling
can be defined as the application of methods to analyze complex problems to make predictions
about what might happen with various actions (wofford.info/ecs/glossary/terms.htm). Models
can be described using various tools, e.g., simple graph representation of dependencies,
systems of differential equations, Bayesian and Boolean networks, statistical correlation tools,
etc. Input data provide information with different degree of details about protein species, e.g.,
about concentration, localization, functional status, dependencies and dynamics. High level of
details is required for high-definition modeling, which is often based on use of differential
equations. Less detailed datasets can be used for low-definition modeling which requires
description of relation between protein species, and does not require information about
absolute quantity and functional status of proteins.

Markup languages XML
and SBML

eXtensible Markup Language (XML) is a general markup language to structure data. Systems
Biology Markup Language (SBML) is a computer-readable format for representing models of
biochemical reaction networks (http://sbml.org). SBML allows recording of information about
biological processes in a format which can be used in modeling of these processes. SBML also
allows exchange of biological data between various modeling software.

Polypeptide growth
factors TNFa, EGF, PDGF,
FGF, TGFb, BMP and their
signaling

Polypeptide growth factors are potent regulators of cell proliferation, migration, differentiation
and death. They are secreted molecules, and bind to their specific transmembrane receptors on
the cell surface. This binding activates receptor-associated kinases, which phosphorylate
specific substrates. Phosphorylated substrates initiate cellular responses to the growth factors
by binding to other proteins or changing their enzymatic activities.

pathway, knowledge of concentration of components and
kinetic parameters of reactions in this pathway is required.
Data with less precise information can be analyzed by other
tools, e.g., to build a model based on a Bayesian network, it is
sufficient to know relations between studied components of
a model. However, common for all modeling tools is the
requirement of information about quantity and identity of
components of a model, and knowledge of dependencies and
dynamics of relation between these components (Figs. 1, 2).
As proteins are key molecules of any living organism, they
are essential components in modeling of biological pro-
cesses. In-depth studies of selected proteins provide valuable
information about features of these proteins, but such stud-
ies seldom explore proteins in numbers that would be sig-
nificant for modeling. Therefore, a comprehensive and
simultaneous analysis of hundreds of proteins is required for
generation of datasets suitable for modeling.

Proteomics is a large-scale technology which provides a
global overview of proteomes (reviewed in [5, 6]). Informa-
tion about protein expression, rates of synthesis and degra-
dation, PTMs, enzymatic activities, structure, localization
and interacting partners can be generated by modern prote-
omics techniques, although with various degree of precise-
ness. The comprehensiveness and increasing confidence in
proteomics data make them suitable for large-scale modeling
[1, 5, 6–8]. Tools for acquisition of biological data in a format

that can be used for modeling have been under development.
Systems Biology Workbench represents one of such initia-
tives, with XML-based Systems Biology Markup Language
(SBML) being an important step in development of common
standards for description of biological datasets, e.g., prote-
omics, genomics, metabolomics and in-depth studies [9].

Recent progress in proteomics has provided techniques
for detection and identification of proteins in (semi)-
quantitative ways; these techniques have been discussed [5,
6]. Selected signaling pathways have also been reviewed,
including studies of PTMs and protein activities, interactions
and localization [10–12]. However, an analysis of proteomics
data integration in modeling efforts requires an overview of
proteomics technologies from the prospective of their suit-
ability to deliver information that can be used for modeling.
There is also a need to evaluate how modeling tools can adapt
to specifics of proteomics data. An informative modeling has
minimal requirements on the input data, as mentioned
above, and proteomics has its limitations in description of
proteomes. The question arises concerning how proteomics
fulfills modeling requirements. Here five proteomics-related
issues of importance for the integration of proteomics and
systems biology are discussed: (1) presentation of data,
(2) quantification of proteins, (3) the functional status of
proteins (activity and interactions), (4) localization, and
(5) the dynamics of proteomes (Fig. 2).
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Figure 1. Steps of biological modeling using proteomics data. In this figure, experimental models include any
biologically relevant processes in living systems, and are represented by cultured cells as an example. Proteomics
includes the variety of technologies to study proteins expression, functional activities, PTMs, protein-protein
interactions, localization and dynamics. Proteomics is exemplified by 2-DE. Proteomics datasets have to be
acquired and represented in formats that are compatible with modeling tools. It is represented by listing infor-
mation which is required for presentation of biological data. Proteomics datasets which are translated into mod-
eling-compatible formats can be then used for modeling. Here, modeling is represented by a relation network
between TGFb, its receptors (TbR-I, TbR-II, TbR-III) and receptor substrates (Smad2 and Smad3), and a graph which
illustrates changes in protein concentrations. The arrows between the main steps are double-headed, as modeling
tools influence requirements for data deposition and representation. Data deposition and representation also
affect design of proteomics experiments, and proteomics technologies may affects selection of a biological model.

1.2 Presentation of data

What is the best format for collecting information about
proteins? This information has to provide a unique identifier
for a protein, e.g., a unique name or tag, and to describe the
features of a protein, e.g., molecular mass, PTMs, and its
functional status. It has also to describe technical details of
how the information was generated, and to be in a format
which is compatible with modeling tools. Development of
XML-supporting formats for the representation of proteom-
ics data is an important step towards addressing these
requirements. PEDRo, PSI-MI, mzXML, AGML and similar
initiatives have laid the groundwork for the systematic
recording of proteomics experiments, and have been de-
scribed elsewhere [13–16]. Repository databases that are
based on these formats allow documentation of protein
identities and technical details of experiments. XML-sup-
ported standardization and exchangeability of proteomics
data is the basis for an open proteomics database in which

proteomics experiments can be freely accessible for multiple
applications. Unified representation in XML format also
simplifies the importation of proteomics data into modeling
tools. XML-based SBML is the basis for representation of
biological models, and it allows exchange of data between
different models in a well-defined format (Fig. 2). The uni-
fied representation requires adoption of a nomenclature for
protein species and their presentation in functional states,
e.g., PTMs status and interactions with other proteins. The
Gene Ontology project provides nomenclature [17], which
can be the basis for nomenclature of protein species, as Gene
Ontology-adopted protein names can be core-names for the
description of modified proteins and proteins in complexes,
e.g., protein species.

Repository databases provide the framework for the
description of static features of proteins, while tools for the
systematic description of protein dynamics are less devel-
oped. The last requires connecting protein species with
defined PTMs in defined complexes and in a defined loca-
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Figure 2. Proteomics data in a
context of requirements of
modeling tools. Examples of the
type of information about stud-
ied components required for a
modeling are shown in the left
part of the figure, as require-
ments to data to be used in
modeling. Types of information
about proteins that can be gen-
erated by a proteomics experi-
ment are shown in the right part
of the figure, as presentation,
quantification, functional status,
localization and dynamics. In
the center, a skeleton of the
SBML scheme for acquisition
and presentation of biological
data is shown in a format com-
patible with modeling tools [9].

tion, through a time interval. This task can be solved in a fra-
mework of modeling formats, similar to formats supporting
SBML. These formats incorporate description of the func-
tional, spatial and quantitative features of proteins (see
www.sbml.org, for examples) [9]. It is important to note that
the SBML and related efforts allow the building up and
expansion of an existing model upon generation of new data.
Thus, presentation of proteins, as the first issue in integration
of proteomics and systems biology, is being addressed by the
creation of repository databases. However, definition of pro-
tein species in these databases, especially proteins with PTMs,
is still a challenge which has to be solved in the nearest future.

1.3 Quantification of proteins

Quantitative presentation of protein species is essential for
informative modeling. 2-DE and LC-protein/peptide MS-
based techniques are the most common approaches to
unbiased evaluation of protein expression. These techniques
have limited coverage of proteomes, which is estimated to be
10–20% of a total number of proteins in cells [5, 6]. Higher
coverage of open reading frame (ORF)-defined proteins has
been claimed with use of peptide/MS-based proteomics, as
compared to 2-DE [5]. However, combined 2-D gels gener-
ated with various narrow pH range gels provide much higher
coverage, as compared to a single 2-D gel. In addition, 2-D
gels provide information about modifications of proteins,
e.g., proteolytic cleavage, phosphorylated forms, etc. [6].

Protein enrichment techniques may increase coverage of
selected protein groups, but they decrease the comprehen-
siveness of proteome analysis. As an example, antibodies,
IMAC and lectins allow enrichment for phosphorylated or
glycosylated proteins [18, 19]. Chemical modification of
phosphorylated or glycosylated amino acid residues is
another way to enrich proteins with these PTMs, and have

been described in recent publications [20–22]. However, with
such enrichment techniques, non-modified proteins will be
lost for analysis.

Protein chips have been developed to enrich and meas-
ure expression of selected proteins [19]. Various protein-cap-
turing agents have been described, e.g., antibodies, aptamers,
and proteins or their domains [19]. Protein chips are useful
for monitoring selected proteins, but novel non-annotated
proteins would not be detected. Protein chips are known as
expression, interaction and structural arrays [18, 19]. Chips
are important for the interrogation of any models which an-
alyze protein expression, protein-protein interactions and
protein modifications. Protein chips allow fast and reliable
analysis of a relatively large number of components, which is
crucial for such a model under interrogation.

2-D gel-based proteomics allow quantification by stain-
ing of protein spots. Fluorescent probes, CBB or silver stain-
ing are the techniques used most often; they give acceptable
evaluation of a relative expression of proteins (reviewed in
[6]). Staining allows generally good, although variable, line-
arity and sensitivity of protein detection. Modified labeling of
proteins with DIGE allows evaluation of relative levels of
proteins in samples that are mixed after labeling with differ-
ent fluorescent dyes, and run in one gel. Thus, DIGE
requires running of fewer gels, as compared to techniques
with a single type of staining. Staining is an efficient way to
visualize proteins, but it provides assessment of a relative,
and not an absolute protein concentration.

The relative expression of proteins can be estimated by
comparison of selected peptides using isotope-coded affinity
tag (ICAT) and stable isotope labeling with amino acids in cell
culture (SILAC and ICPL) techniques [23–26]. The combined
fractional diagonal chromatography (COFRADIC) approach
can also be used for evaluation of protein expression [27].
However, peptide/MS-based proteomics approximates iden-
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tification of few peptides to identification of a full-length pro-
tein. This introduces uncertainty for protein identification,
and inability to evaluate levels of protein species with a
defined spectrum of PTMs. The same peptide may originate
from proteins which are modified on a site that may be
important for its biological activity, as well as from proteins
which are non-modified at this site and are inactive. Moreover,
peptide/MS-based proteomics is not suitable for the evalua-
tion of absolute quantities of proteins, although it gives a good
estimation of the levels of modification at a selected amino
acid residue [5, 6, 23, 28, 29]. Thus, peptide/MS-based prote-
omics can be an acceptable method of evaluating the relative
expression of proteins under the condition that the expression
levels of full-length proteins are confirmed.

An interesting possibility was proposed to estimate the
absolute quantity of proteins by metabolic labeling of cells
with 35S-labeled amino acids to saturation [30, 31]. The
quantity of proteins would be calculated from the absolute
radioactivity incorporated in the proteins, and corrected to
the level of specific radioactivity of a probe and a number of
cysteine and methionine residues in a protein. This tech-
nique also allows the evaluation of synthesis and turnover
rates of cellular proteins [30, 31].

Thus, quantification of relative levels of protein expres-
sion, including relative levels of PTMs, can be achieved in a
number of ways (Fig. 3). If quantification data are to be used
for modeling, it is important that relative expression levels
can be compared not only between various paired samples,
but also normalized to levels of reference “housekeeping”
proteins within the same sample. Further measurements of
the absolute concentration of “housekeeping” proteins allow
calculation of absolute quantities of the proteins of interest,
which is the most suitable for a high-definition modeling,
e.g., for modeling which requires relatively detailed informa-
tion about proteins and their dynamics. High-definition
models are often based on use of systems of differential
equations, and require knowledge of protein concentration
and kinetic parameters [4]. In many proteomics studies only

relative expression levels of proteins can be measured. These
less-detailed data, e.g., relative levels of protein expression,
may also be informative for description of dependencies be-
tween proteins using low-definition modeling, e.g., modeling
which requires description of relation between proteins, and
does not require detailed information about quantity or
functional status of proteins [4]. An evaluation of relative
levels of protein expression is well developed in modern
proteomics, and it allows building of low-definition models.
However, an acquisition of absolute concentrations of pro-
teins for high-definition models requires further develop-
ments of proteomics techniques.

1.4 Functional status of proteins

The functional status of proteins is the most difficult pa-
rameter to evaluate and describe in a comprehensive way.
The functional potential of a protein is defined by its PTMs
and by interacting molecules. Functional status describes
features of a protein that will define how this protein will
affect a modeled system. Approximately 200 reversible and
non-reversible covalent PTMs create an astonishing varia-
bility of protein species [3, 10, 32]. Comprehensive simulta-
neous analysis of all PTMs in a proteome is still unrealistic
due to technical limitations. However, methods of studying
phosphorylation, glycosylation, acetylation, ubiquitination,
sumoylation and methylation have been developed. As these
PTMs are involved in crucial regulatory processes in cells,
there is strong interest in their study. As an example, phos-
phorylation on serine, threonine and tyrosine residues are
essential for regulation of cell proliferation, differentiation,
migration and apoptosis [11, 12, 32–34]. Initiation of signal-
ing downstream of polypeptide growth factors such as EGF,
TGFb, PDGF, TNFa and FGF, is dependent on activation of
receptor tyrosine or serine/threonine kinases. Activated
kinases then phosphorylate a number of substrates that reg-
ulate cellular function [10–12, 33, 34]. PTMs also trigger
protein-protein interactions, e.g., interactions mediated by

Figure 3. Quantification of proteins with various
proteomics techniques. Comprehensiveness
(coverage) and absolute or relative values of
protein quantification (type of values) are indi-
cated for the most commonly used proteomics
separation and detection techniques.
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phosphorylated tyrosine in one protein and Src-homology 2
(SH2) or phosphotyrosine binding (PTB) domains in
another protein initiate a cascade of signaling events [11, 12,
32].

Modified proteins are often enriched by the use of cap-
turing agents that recognize selected PTMs. Phosphopro-
teins can be enriched by immunoprecipitation with specific
antibodies and by IMAC [5, 6, 24, 25, 28, 35]. Phosphoryla-
tion has also been studied by metabolic labeling of proteins
with radioactive [32P]phosphate, followed by 2-DE [36, 37].
Phosphorylations on serine, threonine and tyrosine residues
have been studied using b-elimination-directed cleavage at
the site of modification, by fluorescent dyes, and by chemical
modification of phosphorylated residues [20–22, 38]. MS-

based proteomics has proven to be an efficient tool for iden-
tifying modified peptides; phosphorylated peptides may be
enriched with specific antibodies or by IMAC [5, 6, 23–25,
28]. Glycosylated proteins have been successfully enriched
with lectins [39]. The b-elimination followed by Michael
addition of DTT (BEMAD) technique allows identification of
O-glycosylation sites in purified proteins [22]. Ubiquitination
is an important triggering mechanism for protein degrada-
tion, and more than a thousand proteins have been identified
using pull-down of His-tagged ubiquitin in Saccharomyces
cerevisiae [40]. The analysis of SUMO-2-interacting proteins
identified eight novel targets of sumoylation [41]. Thus, tools
to study phosphorylation, glycosylation, ubiquitination and
sumoylation have been developed (Fig. 4).

Figure 4. Functional status of proteins is defined by PTMs and interactions with
other molecules. PTMs can be reversible or not, and covalent or non-covalent, as
indicated. A number of PTMs are indicated, e.g., phosphorylation, glycosylation,
acetylation, methylation, nitrosylation, ubiquitination, sumoylation, and proteo-
lytic cleavage. Non-covalent modifications are often by high affinity binding of
ions, e.g., Ca21, Mg21, etc. Interactions with other molecules can be direct or in-
direct. Indirect interactions can be deduced from descriptions of components of
purified physical complexes, or from description of functional complexes. Com-
prehensive evaluation of activities of proteins can be achieved by activity-based
proteome profiling (ABPP). On the right side examples of presentations of protein
species as modified proteins are shown, as components of complexes, and as
species with defined functional activities. [PrtA], non-modified protein A; [PrtA-
p], phosphorylated protein A; [PrtA-ac], acetylated protein A; [PrtA-p-meth-ac],
phosphorylated, methylated and acetylated protein A; [PrtA-p-meth-ac-Ca21],
phosphorylated, methylated and acetylated protein A in complex with Ca21 ion;
[PrtA-p-meth-ac].[PrtB], phosphorylated, methylated and acetylated protein A di-
rectly interacting with protein B; [PrtA-p-meth-ac].[PrtB]_[PrtC], phosphorylated,
methylated and acetylated protein A directly interacting with protein B, and
forming complex, but not interacting directly, with protein C; dX/dt=f([PrtA-p])dt,
the definition of a functional activity of phosphorylated protein A.
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Acetylation and methylation are two PTMs important for
intracellular signaling [10, 32, 42, 43]. No comprehensive
studies of acetylation and methylation have been reported,
but the availability of specific antibodies to enrich acetylated
or methylated proteins opens up a possibility of such re-
search [42, 43]. Most commonly, acetylation and methylation
have been studied in selected proteins, and aimed at identi-
fication of sites of modifications. Although it is of a limited
value for modeling, just description of PTM sites in a single
protein contributes to the building of a network of functional
relations between proteins.

Multiplexed use of fluorescence probes recognizing specif-
ic PTMs is an interesting approach to the comprehensive anal-
ysis of protein phosphorylation, glycosylation and expression
[44]. It is especially attractive, as this technique allows analysis
of two different PTMs in the same gel using probes that detect
various PTMs. Many proteins have various PTMs simulta-
neously, with one PTM affecting another modification. As an
example, palmitoylation of Ras protein enhances an efficiency
of Ras phosphorylation upon activation of tyrosine kinase
receptors [45]. As another example, phosphorylation of Smad3
on the C-terminal serine residues has been shown to promote
ubiquitination of Smad3 [46]. Such examples suggest that
combinations of PTMs are important for definition of func-
tional activities of proteins, and these combinations have to be
considered in modeling. Therefore, the development of tech-
niques for simultaneous studying various PTMs is of great
importance, and has to be intensified.

Proteins execute their functions in transient or stable
complexes with other molecules, and descriptions of such
complexes indicate functional features of proteins [3, 47, 48].
Purification of protein complexes, followed by an identifica-
tion of their components, has been performed on a large
scale in a number of studies. Thousands of interactions have
been described when a large number of proteins were used
as baits [49, 50], and in studies with selected signaling-related
bait proteins [51–55]. For example, 131 proteins were identi-
fied in the TNFa-dependent signaling by a protein-protein
interaction screen with 32 baits; many of these proteins
indicated novel functions of TNFa [51]. Novel regulatory
mechanisms in bone morphogenetic proteins and TGFb
signaling have been suggested by the 33 and 26 proteins
found in complexes with BMPR-II and Smad3, respectively
[54, 55]. These and other studies have contributed to the
definition of connections between protein species, which are
essential for design of model architecture.

Two-hybrid and phage display techniques also contribute
to building protein-protein interaction networks [56–60]. The
two-hybrid screen in D. melanogaster identified 4780 interac-
tions involving 4679 proteins [57]. The yeast two-hybrid
(Y2H) screen with C. elegans proteins detected 5500 interac-
tions [58], and a number of novel interactions have been dis-
covered in TGFb signaling by yeast two-hybrid assays [59].
Studies of proteins binding to a particular peptide motive
have contributed to the characterization of functional rela-
tions between proteins [60].

Comparison of datasets obtained with various techniques
has shown that these datasets complement each other, and
none of the techniques has provided full coverage of protein-
protein interactions. As an example, Y2H assays would
identify mostly binary interactions, while pull-down assays
would describe predominantly protein complexes [47, 48,
61]. Localization of interactions is also of importance, since,
for detection by Y2H technique, proteins have to be translo-
cated to the nucleus [47, 48]. In pull-down assays, intracel-
lular localization of the bait and interacting proteins may
affect which interactions will be detected. For instance, to
identify interacting partners of a nuclear protein, the bait-
protein has to be localized in the nucleus. Protein-protein
interactions also have various affinities, and can be stable or
transient [47, 48, 61]. Some techniques allow detection of
transient interactions, e.g., Y2H, while other will detect only
stable complexes. The last can be exemplified by the tandem-
affinity purification, which detects only complexes which are
sufficiently stable to be preserved after two sequential pre-
cipitation procedures [49]. Thus, considerations of binary
interactions versus protein complex detection, localization of
proteins, and differences in affinities of interactions strongly
require combination of protein-protein interaction data
obtained by different techniques. Such combined databases
would allow validation of interactions across various datasets
obtained in various cells, tissues and species.

An important issue for building of protein-protein inter-
action networks is often poor quality of data. As an example,
in some two-hybrid screens, the level of false-negative and
false-positive interactions can be up to 50% [3, 48, 56–61].
Confirmation of an interaction by different techniques, and
identification of the same interaction in separate projects are
expected to alleviate the problem of recording of false data.
[3, 48, 56–61].

Proteomes of every cell type are unique. This suggests an
importance of selection of a model system for studying pro-
tein-protein interactions. As an example, protein-protein
interactions identified in yeast may not be observed in
mammalian cells, and vice versa. This reflects cooperative
nature of protein-protein interactions, when strength of an
interaction is dependent on proteins PTMs, exposure of pro-
tein surfaces upon synthesis and folding of proteins, and
milieu of the interaction, e.g., local intracellular pH, osmo-
larity and ionic strength [47, 48, 61]. As conditions for inter-
actions, folding and PTMs pattern of the same protein may
differ in various cells, acquisition of protein-protein interac-
tion data has to consider the model used, e.g., species
(mammalian, yeast, worm, fly or frog cells) and histological
origin (epithelial, mesenchymal or other).

Protein complexes may interact with each other. Knowl-
edge of complexes that functionally interact via the exchange
of identified proteins may lead to the understanding of the
functional importance of these proteins. It would define the
hubs and connections in functional networks. Gagneur et al.
[62] presented an example of modular decomposition for a
set of data which described complexes formed in TNFa sig-
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naling. Identification of series of interactions within one
complex or module, and parallel connections of a protein to
different complexes in protein-protein interaction networks
defined the dynamics of complexes, and unveiled proteins
important for the architecture of distribution and the multi-
plication of signaling [62]. This approach proves that model-
ing tools can be applied to protein-protein interaction net-
works to describe their dynamics.

An analysis of intracellular organelles is another way to
approach protein-protein interactions. A number of protein
complexes have been described in mitochondria (complex I,
V, mitochondrial ribosomal complex), in chloroplast (photo-
systems I and II antenna proteins, chloroplast ribosomal
complexes), in Golgi substructures (peripheral and integral
membranes), in lipid rafts (as parts of the plasma membrane
where signaling activity is concentrated), in the nucleus
(RNA polymerase complexes, PolII; nucleolus, nuclear-pore
complexes, PolII pre-initiation complex), and in the structure
called midbody, which is a spindle midzone structure con-
taining proteins indispensable for cytokinesis, asymmetric
cells division and chromosome segregation [63–69]. The
definition of protein composition of organelles does not
indicate whether interactions between proteins are direct.
This uncertainty of the protein-protein connections in orga-
nelles is a problem for the modeling of networks of protein
interactions. On the other hand, the composition of orga-
nelles provides valuable information about functional com-
plexes and their regulation, and therefore contributes to the
definition of functional clusters in models.

Direct assessment of protein activities has been ap-
proached by activity-based proteome profiling (ABPP), which
is based on the selection of proteins with a particular activity
[18, 70]. As an example, an exploration of active serine pro-
teases in a comprehensive way was performed by using
chemical probes which interacted with and labeled only
active enzymes [70]. The detection of substrates of proteases
and kinases, and comprehensive analysis of ATP-binding
proteins have been reported [71, 72]. Modification of the ATP-
binding pocket in kinases in such a way that it can recognize
only modified ATP, and has significantly decreased affinity
to natural non-modified ATP, allows monitoring of sub-
strates of the selected kinase in intact cells [73]. The last
technique has not yet been used for a large-scale proteomics-
based search, but the possibility of simultaneously monitor-
ing all substrates of a kinase in an intact cell is of thrilling
interest for modeling. Performed over a time interval, this
technique may provide a tool for evaluation of kinetic pa-
rameters of substrate phosphorylation.

The available proteomics tools for studying PTMs, pro-
tein-protein interactions and the evaluation of protein activi-
ties are capable of generating large volumes of data (Fig. 4).
The comprehensiveness and preciseness of these datasets
vary, but in many cases they fulfill minimal requirements for
being suitable for modeling, e.g., requirement for description
of a number of components and relation between them,
which is sufficient for building a model. Notably, proteomics

datasets describe protein species in sufficient numbers, and
explore dependencies between these protein species in the
network. Further standardization of data generation, as well
as insights into the dynamics of the functional status of pro-
teins will significantly increase the value of proteomics data.
This is the main challenge for proteomics today, and it
requires further technical developments of a real-time mode
proteomics.

1.5 Localization of proteins

Modeling of intracellular reactions with the assumption of
cells as uniform chemical reactors is often incorrect. To avoid
this mistake, descriptions of protein localization inside of
cells have to be provided. Protein localization has to be
described in intracellular compartments, e.g., the nucleus or
cytoplasm, and also in organelles, as specialization of cellular
organelles defines the functional roles of proteins. The most
informative would be data about protein localization in an
intact cell, although it is challenging technically.

Various microscopy-based techniques have been
employed to monitor green fluorescent protein (GFP)- or
yellow fluorescence protein (YFP)-tagged proteins in yeast
and human cells [74–76]. The most comprehensive work
has been performed with yeast proteins, with definition of
22 categories for subcellular localizations of 75% of yeast
proteins [74], and the description of the subcellular locali-
zation of 6100 proteins [77]. Co-localization of selected pro-
teins can also be monitored in an intact cell by fluorescence
resonance energy transfer technique (FRET) [78]. Co-locali-
zation of signaling proteins has been known as an impor-
tant condition for efficient signaling [3, 79]. Stochastic
models of protein-protein interaction have shown that co-
localization is a feature of functional complexes of proteins,
which do not necessarily form physical complexes [80]. For
proteomics studies, it indicates a requirement for the
description of protein localization even within a single
intracellular compartment, e.g., cytoplasm or the nucleus.
Thus, a comprehensive definition of protein localization can
be achieved by a combination of microscopy-based tech-
niques which describe localization of proteins, with prote-
omics studies which describe functional features of proteins
(Fig. 5).

Studies of the protein content of organelles, as a way to
unveil protein-protein interactions, have been discussed
above (see Section 1.3). Organelle-specific localization of
proteins is also required for the modeling of functional rela-
tions between protein species. Resources which predict the
organelle-specific localization of proteins have been de-
scribed, e.g., MitoProt, ChloroP, PredictNLS, SignalP,
iPSORT, TagetT (reviewed in [63]). The drawback of many
reported proteomics studies of organelles is that they do not
consider organelle-specific proteins which are not incorpo-
rated into organelles, as only an organelle-bound part of the
total pool of selected protein was studied. This diminishes
the value of such a study for modeling purposes.
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Figure 5. Description of protein localization. Intracellular locali-
zation of proteins can be evaluated by microscopy, protein-pro-
tein interaction techniques, e.g., FRET, and the identification of
proteins in various organelles and cellular structures, e.g., the
cytoplasm, nucleus, plasma membrane, mitochondria, etc. Iden-
tities of studied proteins can be provided by 2-DE/MS, LC-MS/
MS, and by use of protein expression libraries.

Important sources for validation of the localization of
selected proteins are databases of life-science publications,
e.g., PubMed. These databases may provide information
about the intracellular distribution of protein species, which
is complementary to high-throughput approaches using
proteomics. Currently, significant human resources are
dedicated to evaluating the quality of published data:
researchers have to read every paper before deciding
whether reported data are relevant to the aim of a study [81].
This is obviously inefficient, and it urges for the develop-
ment of search engines capable of the unsupervised extrac-
tion of information about protein localization and func-
tions. Such search engines may significantly simplify selec-
tion of papers which will be further evaluated by
researchers.

In modeling, the localization of proteins defines com-
partments for the calculation of functional dependencies. It
is important that the distribution of proteins in various
compartments is measured, not only in a single given com-
partment. The dynamics of protein distribution between
various compartments and organelles allow for the definition
of constants for the diffusion and active and passive trans-
port of protein species. Description of protein localization
would require use of a non-destructive technique, e.g., mi-
croscopy, combined with destructive 2-DE, LC-MS/MS and
other high-throughput proteomics and protein expression
techniques (Fig. 5). It is essential that the representation of
data generated by the various approaches will be in the same
modeling-compatible format.

1.6 Dynamics of proteomes

The time scale of biological processes involving proteins vary
from milliseconds to days. Knowledge of a time scale of
studied processes is essential for modeling. It defines an
interval of time and frequency of data collection, which are
required for capturing features of a modeled process. The
shortest time scale is characteristic for chemical reactions
with proteins; PTMs and protein-protein interactions occur
in milliseconds to seconds [82–84]. An accumulation of
modified proteins may take a longer time, although accu-
mulation rates are dependent on parameters of fast reactions
with single proteins. This suggests that the time frame of fast
reactions with single protein molecules is the first factor,
which defines the dynamics of proteome changes.

Regulatory processes include multiple reactions between
hundreds of individual proteins. The time frames of such
processes may vary from milliseconds to hours. Examples of
processes with a short lag period are electro-physiological
reactions: it takes milliseconds to generate an active potential
in neurons [82]. The intracellular signaling process initiated
by growth factors may take from minutes to hours [3, 79].
The longer time period, as compared to single-protein mod-
ifications, is the result of re-arrangements of interactions
between proteins, and movements of proteins [28, 83–90].
Signaling processes consist of sequential and time-parallel
changes of various protein species. Every step in such a sig-
naling process requires time for transformation of protein
species, e.g., by PTMs, and for rearrangements of the protein-
protein interactions [91]. The architecture of connections be-
tween protein species was found to be crucial for the forma-
tion of thresholds, oscillations and bi-stabilities [2, 90, 91].
Thus, a number of steps with various time dependencies in
regulatory cascades is the second factor that influences the
dynamics of regulatory processes.

Protein movements constitute the third factor that
defines the dynamic features of proteomes. Substrates and
components of complexes have to reach intracellular sites
where reactions of modifications and complex formation
take place, and they have to be transported to sites of further
signal propagation. Estimated diffusion coefficients for most
of biologically active proteins are 0.1–1.0 mm2/s [75]. It
means that a protein may be homogenously distributed
within a cell in less than 10 min [75]. However, cells are not
homogenous chemical reactors. Compartmentalization of
cells creates structural barriers for free protein diffusion, and
the activities of transport systems affect the duration of sig-
naling processes by introducing time delays, from seconds
up to hours [75, 76, 91–94]. Many diffusion and transport
coefficients have been measured in directed studies with a
limited number of proteins. The lack of comprehensive
large-scale studies of protein transport systems has been
hampering an efficient employment of distribution coeffi-
cients in modeling efforts, and is urging development of
high-throughput approaches. Thus, the kinetic of reactions
with single protein molecules, the number of reactions and
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connections between protein species, and the movements of
proteins constitute three factors which define dynamic
properties of proteomes (Fig. 6).

Most of the proteomics experiments with time frames
longer than 24 h explore the long-term transformations of
cells [95, 96]. These effects may be related to cells of a select-
ed type, e.g., exploring the differentiation of cells, or to cells
in a context of multicellular organisms, e.g., the study of cells
in a developing body. This includes the profiling of various
tissues and different cell lines that originate from the same
tissue [95, 96]. Thus, longer time frames in proteomics
studies are associated with the larger complexity of the stud-
ied system (Fig. 6). The same paradigm is valid for modeling:
large systems with multiple time-delaying connections
require analysis over longer time periods, as compared to
simple systems with a small number of variables [2, 8, 83,
97–99].

Proteomes are complex systems with thousands of con-
nected protein species. Thus, for the most complete datasets,
researchers would have to collect data about single molecules
with a time interval of a few milliseconds over a period of
days. This is obviously not a feasible task, as techniques for
studying single molecules are not suitable for large-scale
projects, and proteomics is still too laborious to be able to
analyze hundreds of experimental time points in a single
project [5, 6]. The modeling-based definition of protein com-
plexes and functional modules [100, 101] has provided a so-
lution to such enormous tasks by dividing them into feasible
parts, and then integrating generated datasets. For example,
separate studies of protein complexes, organelles, and sig-

Figure 6. Time scale for various regulatory processes involving
proteins is from milliseconds to days. Transformations of single
protein molecules, e.g., PTMs, represent fastest processes, sig-
naling cascades may take from seconds to hours, and changes of
cellular phenotypes, e.g., differentiation, represent processes
which may take days.

naling pathways can be integrated in one model. Current
modeling tools allow for doing that, under the condition of
unified data acquisition and representation.

An important issue in study of proteome dynamics is a
definition of time intervals and a number of points for data
collection. In most cases, the definition of frequency and
time-intervals for data collection are based on an empirical
knowledge of studied systems, e.g., a knowledge posterior to
modeling [28, 79, 83–89]. Notably, it is based on knowledge of
how long a time it takes to observe changes of interest, and
on knowledge of the dynamics of changes, e.g., features of
cell division, cell death, differentiation, etc. Balanced with a
workload, it defines a number of points for data collection.
Such definition is prone to false conclusions, as it is based on
subjective assumptions instead of calculated predictions.
Solving the problem of optimization of data collection inter-
vals would significantly improve the design of experiments.
An example of such an approach has been reported by
Wolkenhauser and colleagues [102], who applied a multiple-
shooting method to a system of ordinary differential equa-
tions describing a simple dynamic model. This concept of
time-point selection has proven to enhance confidence in
experimental data at least fivefold. A possibility of calculating
the frequency and number of sampling points would
strongly enhance the efficiency of proteomics studies, as it
will warrant collection of data at time points significant for
modeling, and will capture all the crucial dynamic features of
a proteome. The concept for the optimization of sampling
time has been developed for simple dynamic systems, and its
application to much more complex systems, e.g., proteomes,
is the next challenge.

1.7 From signaling pathways to a network signaling

via proteomics and systems biology

Recent progress in cell biology indicates that the concept of
signaling pathways is to be substituted by a concept of net-
work signaling. The first feature of the network signaling
concept coins multiplicity and inter-dependence of various
outputs in response to one input, while the signaling path-
way concept indicates linear distribution of a signal from one
input to various output with limited or even unconsidered
dependencies (Fig. 7A, B). The second specific feature of
network signaling, as compared to signaling pathways, is the
consideration of a single variable input together with a
number of non-variable inputs, which modulate the variable
one and can change the values of their effects depending on
the dynamics of the studied input (Fig. 7B). The signaling
pathways concept generally disregards the values of non-
variable inputs, and it mentions them only in cases of non-
interpretable results (Fig. 7A). In cell biology, such difficult-
to-interpret results are often presented as being influenced
by a cell-type-specific background.

As an example, studies of TGFb signaling resulted in a
relative linear pathway, which contains ligand, cell surface
receptors, intracellular Smad-dependent and Smad-inde-
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Figure 7. Network signaling concept, as an
alternative to signaling pathways concept.
(A) Representation of signaling pathways, as
pathways which are dependent exclusively on a
variable input value (L). Output effect for such a
model depends on the intensities of input-initi-
ated pathways (A1-3 and B1-3). (B) Network sig-
naling model is represented by interconnected
pathways, which are dependent on variable
input (L), as well as on non-variable input (N)
values. The output effect in such a model is de-
pendent on both variable and non-variable
inputs, as there are extensive dependencies be-
tween protein species. L, N, R, A(1-3), B(1-3), X(1-
3), and Y(1-3) represent components of models,
e.g., protein species. (C) TGFb signaling is
shown as a network of protein species. Variable
input is represented by TGFb, and non-variable
input is represented by serum. TbR-I/TbR-II,
Smad2/3, Smad7, Erk, E2F6, E2F2/4, Rad51, PKC,
PKC inhibitor, SREBP and caspase-3 are proteins
regulated by TGFb. Direct effects of the serum on
Erk, PKC and SREBP are indicated. Note a num-
ber of feedforward and feedback loops in the
network. Proteins shown represent only a part of
proteins known to be regulated by TGFb. Stimu-
latory effects are indicated by arrows, and inhib-
itory effects are shown by T-lines (A–C).

pendent pathways, leading to regulation of gene expression
[12, 34]. However, a number of publications have shown that
this simplified concept is incorrect, especially in the context
of biological processes [12, 34, 54, 55, 88]. A number of signal
amplification and redistribution points with a variable archi-
tecture of connections have been reported: e.g., receptors,
Smad proteins, Erk and PKC kinases (Fig. 7C). The de-
scribed connections between some of the proteins involved
in TGFb signaling form a number of feedback and feed-for-
ward loops, as shown in Fig. 7C. In addition, an inability to
explain results obtained in studies of in vivo systems, which
were not manipulated by overexpression or down-regulation
of selected components (reviewed in [34]), is a strong indica-
tion that the concept of TGFb signaling pathway has to be
revised. TGFb has been described as a potent inhibitor of cell
proliferation. However, cell culture conditions (non-variable
inputs) may change the efficiency of inhibition of cell prolif-
eration from 90% of inhibition in the presence of 3% of

serum in culture medium, to the maximum 50%, in the
presence of 10% serum in medium (our unpublished obser-
vation, Mv1Lu cells; Fig. 7C). Thus, for the prediction of
results many more factors have to be considered than con-
centration of the ligand and the presence of specific recep-
tors. Attempts to understand signaling networks by studying
their fragments are doomed to failure. An informative
approach requires a systematic study of a significant number
of variables which represent a signaling network, and not
only a pathway. Traditional biological experiments can sel-
dom generate information in quantities suitable for model-
ing, while high-throughput techniques, e.g., transcriptomics
and proteomics, have the capacity to produce sufficiently rich
datasets. However, the quality and format of such data still
have to be adapted to the requirements of systems biology,
e.g., requirement of information about proteins quantities,
functional status, localization and dynamics of proteome
changes, as is discussed in this review.
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Figure 8. Application of modeling tools to datasets with various degree of defi-
nition. Proteomics produces data of various degrees of definition of protein spe-
cies, e.g., various levels of details about absolute or relative concentrations of
proteins, their activities, localization and dynamics of changes of these proteins.
Each set of such data can be most efficiently analyzed by modeling tools designed
to process data with various definitions of details in the description of proteomes,
as indicated. As examples, differential equations, Boolean and Bayesian net-
works, and statistical correlation tools are indicated. They are shown in relation to
the required level of details about datasets to be efficiently analyzed with those
tools.

On the other side of the proteomics-systems biology
integration bridge, systems biology offers tools which can
process results already available now. Modeling tools that can
accommodate data of various degree of definition of details
about components have been described [4, 7, 8, 97] (Fig. 8).
High-degree definition models are based on a precise
knowledge of features of datasets that are sufficiently rich to
build a system of defined dependencies between variables,
and of precisely calculated values of variables in dynamics. In
mathematical terms, such models are based on differential
equations. As the use of differential equations requires
detailed input, such modeling has been successfully applied
to functional modules, but not to cell-wide datasets. The
modeling of signaling by Smad proteins [93], EGF receptors
[83], heteromeric G proteins [89], TNF/NF-kB [103], are
examples of this approach. Common to all these models is
the requirement for information about concentrations and
kinetic parameters of all involved variables (protein species).
Lack of such information may lead to collapse of the model
or to incorrect conclusions.

To overcome the requirement of high definition, model-
ing tools based on correlative relations have been developed.
For instance, Boolean networks can be built with data about
connections and the functional status of variables of a sys-
tem. They also consider the number of inputs and outputs
for components. Boolean networks can analyze data that
describe the state of a single variable and the average state of
all other neighbors [104–106]. They do not require knowl-
edge about concentrations and the kinetic parameters of
components. Bayesian networks allow analysis of even less
well-defined data, as they describe statistical relationships
between variables from a dataset, and do not require knowl-
edge of confirmed connections between species. These sta-
tistical relationships may include pair-wise relations and
relations between arbitrary complexes. Bayesian networks

summarize dependencies between variables, and select for
the highest probable model, given the data [107]. Essentially,
Boolean and Bayesian networks are based on the statistical
values of relations, which may be exemplified by the state-
ment “if A and B are up, then C should be down”. For prote-
omics datasets, it provides an opportunity to search for pro-
teins with correlative behavior, e.g., expression, pattern of
phosphorylation, etc. (Fig. 6).

A low level of data definition may have a drawback of
selecting models that may be correct only in a limited diapa-
son of values of variables. As an example, an analysis of acti-
vation of FAK and MAPK resulted in two different models,
because one model was built on data about the initial activa-
tion of FAK and MAPK, and the other on the analysis of
steady-state activation of these two kinases [107]. Therefore,
knowledge of a studied system, e.g., biological data, defined
as posterior probability, is an important component for
selection of a correct model. It introduces real experimental
parameters, including their limiting values, and prevents a
model from collapse.

Statistical analysis of various types has also been applied
to datasets with different definition of details about compo-
nents, increasing a number of modeling approaches [3, 4,
100, 101].

Modeling of biological systems is affected by modeling of
abstract complex systems. Modeling of abstract systems
suggests the most optimal size, relations and dynamics of a
system, which are conditions for acquiring such features as
robustness and sensitivity. Such abstract mathematical
modeling defines restriction rules for the modeling of bio-
logical systems: for instance, it describes how stability of a
system will be affected by a number of affected variables, and
by a number of inputs and outputs of these variables [104,
105, 108, 109]. Moreover, it also predicts the requirement of a
certain level of noise, as random and non-specific changes in
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dependencies and values, in order to have a system evolving
[104]. Knowledge of the behavior of abstract mathematic
models contributes to the establishment of rules for biologi-
cally relevant systems, which sets critical limits for quantity
and features of variables, and improves the computing of
biological models.

There are a number of studies of complex biological
processes for which combined proteomics and large-scale
modeling have been reported. As an example, the ICAT-
based evaluation of protein expression contributed to identi-
fication of crucial interactions in metabolic networks, e.g., the
galactose-utilization pathway [98]. Correlation analysis of
proteomics data describing interferon signaling in liver cells
unveiled a number of novel components of the interferon
response [99]. Constraint-based analysis of the mitochondrial
metabolic network defined the optimal distribution of reac-
tion flux [94]. These and other studies provide proofs that the
combination of proteomics and modeling tools can generate
novel knowledge. This knowledge may be essential for the
design of efficient treatments of diseases, e.g., understanding
of the robustness and sensitivity of cancer cells may indicate
proteins which, if being targeted, may promote regression of
tumors [2].

Systems biology develops tools which make possible
combination of datasets generated by various techniques,
such as transcriptomics, proteomics and metabolomics data
[3, 4, 82, 110–113]. These techniques have developed tools for
acquisition and presentation of data in an interchangeable
format, e.g., XML-supporting MIAME, PEDRo, MAGE-ML.
Further successful solutions for the quantification, func-
tional, spatial and dynamic characterization of proteomes are
essential for the integration of proteomics into the whole-cell
modeling.

2 Concluding remarks

The integration of proteomics and large-scale modeling is
required for the description of complex biological systems.
Methods for such integration are now under development,
and propose suitable designs for proteomics experiments.
Here is one such “recipe”. First, proteomics experiments
describe a number of proteins of interest for a selected
biological process. These protein species are annotated
using dedicated software and are represented in XML for-
mat, with quantitative descriptions of PTMs and interact-
ing partners. Information about the localization of proteins
is recorded, and all data are collected in real-time dynam-
ics. This dataset will be used to build a model to unveil
dependencies between protein species. Then, the model
describing these dependencies will be interrogated in bio-
logical experiments with the modulation of expression and
activities of identified key proteins. This will validate the
architecture of the model, and will define the levels of
robustness and sensitivity of the studied biological process.
Knowledge of crucial components of a system will lead to

development of drugs that will target these components to
achieve high efficiency of treatment with negligible side
effects.

How many of such “recipes” are in a “cookbook” of biol-
ogy? An answer to this question may be already available in
the next few years, as progress in proteomics and systems
biology brings these two fields together.
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