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Wolbachia bacteria are endosymbiotic partners of many

animal species, in which they behave as either parasites

(in arthropod hosts) or mutualists (in nematode hosts).

What biochemistry and biology underpin these diverse

lifestyles? The recent complete sequencing of genomes

from Wolbachia that infect the arthropod Drosophila

melanogaster and the nematode Brugia malayi,

together with the partial genome sequencing of three

Wolbachia strains found in drosophilids, enables this

question to begin to be addressed. Parasitic arthropod

Wolbachia are characterized by the presence of phages

that carry ankyrin-repeat proteins; these proteins might

be exported to the host cell to manipulate reproduction.

In nematode Wolbachia, which lack these phages,

several biochemical pathways can deliver essential

metabolites to the nematode hosts. Nematode Wolba-

chia might also have a role in modulating the mamma-

lian host immune system but the sequenced Wolbachia

genomes lack the genes to synthesize lipopolysacchar-

ide, raising questions about the nature of the inducing

molecule. The Wolbachia surface protein might carry out

this function.

Why do filarial nematodes have Wolbachia

endosymbionts?

Wolbachia are Alphaproteobacteria – members of the
Anaplasmataceae that are related to rickettsial pathogens
and that live intracellularly within arthropod and
nematode hosts [1,2]. Arthropod Wolbachia are found in
most orders of hexapods (insects), in crustaceans (woo-
dlice) and in chelicerates (spiders). They cause several
reproductive manipulations, including the induction of
cytoplasmic incompatibility, the induction of parthenogen-
esis, and feminization or even killing of genetic males.
Because arthropod Wolbachia are usually transmitted
vertically from mother to daughter, all of these manipula-
tions promote the fitness of infected females. Thus,
antibiotic treatment of infected insects results in ‘cure’,
with (usually) no adverse effects on the arthropod host.
Arthropod Wolbachia are, therefore, parasites [1,2].

Nematode Wolbachia have a more restricted host
distribution than that of their arthropod counterparts
[3], being found only in vector-transmitted Onchocercidae
such as Onchocerca volvulus, Brugia malayi and Wucher-
eria bancrofti – causative agents of human filariases [4].
The relationship between nematode Wolbachia and their
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hosts, although one of intracellular symbiosis, has
features of mutualism [1]. Treatment of infected nema-
todes with antibacterial agents not only harms the
Wolbachia but also adversely affects the host, resulting
in delayed moulting, reduced growth rates, failure of
embryogenesis (i.e. effective sterilization) and death [5–7].
In trials using infected human populations, tetracycline is
a powerful adjunct to more-established pharmacological
interventions [8,9].

Wolbachia are classified by their place in molecular
phylogenies, which define six different ‘supergroups’ of
Wolbachia [10] (Figure 1). Nematode Wolbachia belong to
supergroups C (i.e. from O. volvulus, Dirofilaria immitis
and relatives of both genera), D (i.e. from B. malayi,
W. bancrofti and relatives of both genera) [4,11] and F
(from Mansonella ozzardi) [12]. The majority of arthropod
Wolbachia belongs to supergroups A and B. Supergroups
E, F and G have been described from only a restricted set
of crustacean, chelicerate, hexapod and nematode hosts.

Why do filarial nematodes carry Wolbachia? Are these
bacteria parasites of parasites, affecting nematode biology
in ways that are still not understood, or do they have an
essential role in the parasitic lifestyle of nematodes? One
way to answer these and other questions is to compare the
genomes of Wolbachia to identify pathways and products
that might have roles in the interface between bacterial
and eukaryotic cells. In filarial nematode Wolbachia, for
which there is evidence that Wolbachia-derived products
affect the immune system of the hosts of the nematodes
[13,14], genome sequencing might also identify Wolbachia
genes that help the nematodes to survive.

From the Wolbachia Genome Consortium (held in 1999)
[15] came a plan to sequence representative genomes that
covered the diversity of Wolbachia. The first Wolbachia
genome – from wMel, a supergroup A endosymbiont of
Drosophila melanogaster that causes cytoplasmic incom-
patibility (Figure 1) – was published in late 2004 [16].
More recently, additional Wolbachia genome sequences
have been published: two additional Drosophila host
species, targets of nuclear genome sequencing, have
yielded incomplete but informative clade A Wolbachia
genomes [17] (Table 1), and a five-year effort has produced
the complete genome sequence of wBm, a supergroup D
Wolbachia from B. malayi [18]. Informatively, genome
sequences are also now available for related pathogens:
Rickettsia (several species) [19–21], Anaplasma margin-
ale [22] and Ehrlichia ruminantium [23] (Table 1). What
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Figure 1. Wolbachia genomes currently being sequenced. There are six supergroups of Wolbachia (A–F), which are defined by phylogenetic analysis of 16S rRNA, Wolbachia

surface protein and ftsZ genes [10]. Complete sequences have been determined for two Wolbachia genomes (red stars): wMel of Drosophila melanogaster in clade A [16] and

wBm of Brugia malayi in clade D [18]. Partial sequences of three Wolbachia genomes were assembled from whole-genome shotgun-sequencing projects that are underway

for two Drosophila species [17], and sequencing is underway for several other Wolbachia strains (yellow stars denote partial sequences that are available publicly; blue stars

denote strains for which information has not yet been released). These additional genomes include two from clade D Wolbachia (wOvo from Onchocerca volvulus and wDim

from Dirofilaria immitis), three from clade B and four from clade A. No clade E or F genomes are currently being sequenced, and additional Wolbachia supergroups might

exist. To the left of the tree, symbiont–host interaction biology is mapped onto a Wolbachia phylogeny based on 16S rRNA genes [4]. The root of the Wolbachia tree might lie

between clade D and the remainder of the supergroups (implying that Wolbachia have evolved from mutualistic symbiosis with nematode hosts to parasitic relationships

with arthropod hosts) or between the nematode (C and D) and arthropod supergroups. Red arrow indicates where during evolution the Wolbachia WO phage could have

invaded a pre-A and pre-B supergroup ancestor. Interestingly, acquisition of the phage correlates with evolution of the parasitic phenotype.
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information have these genome sequences provided about
the relationships of Wolbachia with their hosts and do
they suggest new routes of drug treatment for filarial
symbioses [22,24]? Because sequences are available for
both parasitic and putative mutualist Wolbachia, are
there obvious genomic features associated with parasit-
ism? As with all genome-sequencing projects, the data
answer some old questions and raise exciting new ones.
Life inside a eukaryotic cell

A common feature of intracellular symbionts such as
Wolbachia is the loss of genetic material following
adaptation to the host. Intracellular bacteria jettison
‘exotic’ metabolic capabilities and evolve a reliance on
the basic metabolic pathways of their host [25]. This is
evident in the completed Wolbachia genomes, which
encode limited metabolic capacity [16,18]. For example,
endogenous amino acid synthesis is extremely limited and
Wolbachia import host amino acids for protein synthesis
and for energy production through the tricarboxylic acid
cycle and gluconeogenesis. In Rickettsia species, an
www.sciencedirect.com
ADP–ATP exchange protein enables the bacteria to
scavenge ATP energy equivalents directly from the host
cell [21] but this system is absent from Wolbachia, which
can synthesize the full range of purine and pyrimidine
nucleotide triphosphates. Interestingly, there is only a
small number of regulatory genes in these genomes and,
thus, differential mRNA expression in response to
different host lifecycle stages or stress is likely to be
minimal. The ‘complete parts list’ of Wolbachia indicates
why these bacteria cannot survive outside their host cells,
but perhaps this information could be used to devise
culture conditions under which these essential nutrients
are supplied. Such an extracellular culture system would
be of great use in analyses of the genome and phenotype of
other Wolbachia strains.

Surprisingly, given the drive towards miniaturiza-
tion, both of the sequenced Wolbachia genomes contain
a large proportion of repeated sequences, which is
unusual in bacteria [16,18]. In the wMel genome, these
repeats are associated with a large number of insertion
elements [16]. Although the wBm genome has fewer

http://www.sciencedirect.com


Table 1. The sequenced genomes of some rickettsial intracellular pathogens and symbionts

Species Wolbachia

pipientis

Rickettsia

conorii

Rickettsia

prowazekii

Rickettsia

typhi

Ehrlichia

ruminantium

Anaplasma

marginale

Strain wMel wBm wAnaa wSima Malish 7 Madrid E Wilmington Welgevon-

den

St Maries

Host species Drosophila

melanogaster

Brugia

malayi

Drosophila

ananasse

Drosophila

simulans

Vertebrate

pathogens

with

arthropod

vectors

Vertebrate

pathogens

with

arthropod

vectors

Vertebrate

pathogens

with

arthropod

vectors

Vertebrate

pathogens

with

arthropod

vectors

Vertebrate

pathogens

with

arthropod

vectors

Genome size

(Mb)

1.268 1.080 (1.441) (1.063) 1.269 1.112 1.111 1.516 1.198

Number of

protein-

coding genes

1271 806 (1837) (790) 1374 835 838 888–958b 949

Coding

proportion of

genome (%)

85 67 NEc NE 81 76 76 86 62

Number of

proteins with

match to Inter-

Pro IPR002110

ankyrin

domain

23 (C6)d 9 (34) (25) 7 3e 2 5 4

Number of

pseudogenes

94 98 NE NE 41 11 101 32 14

GC content (%) 35 34 (35) (35) 32 29 28 27 49

Refs [16] [18] [17] [17] [20] [21] [19] [23] [22]

aThe genomes of the Wolbachia endosymbionts of D. ananasse and D. simulans are incomplete [17] and, thus, the estimates of gene content are subject to error. The values

in brackets are based on the length of assembled sequence obtained. The predicted genome size of wAna is w20–30% greater than of other Wolbachia strains, and the

number of genes is similarly higher. Our analysis of this sequence indicates that the assembly contains many duplicated regions, possibly because of misassembly (indeed,

34 of the genes from wAna seem to be of insect origin) or the presence of more than one Wolbachia strain in the sequenced D. ananasse stock (C. Whitton and M. Blaxter,

unpublished). Infections of arthropods with multiple Wolbachia strains are relatively common. Initial analysis of Drosophila mojavensis whole-genome shotgun data

suggested that a third partial Wolbachia genome was present [17] but this has subsequently been shown to be because of the mislabelling of sequence reads from other

drosophilid projects [58,59].
bThe number of protein-coding genes in E. ruminantium strain Welgevonden is under debate because two independent groups have predicted 888 (GenBank accession

number CR767821) and 958 (GenBank accession number CR925678) proteins; E. ruminantium strain Gardei has a genome of 1.500 Mb and 950 predicted proteins (GenBank

accession number CR925677).
cNot estimated (NE) because the genome sequences are partial.
dAlthough only 23 ANK genes were predicted in the genome publication, 29 different wMel genes have matches to the ankyrin domain model in InterPro IPR002110.
eOne of the R. prowazekii ANK genes is a RecJ homologue that is also present in the other Rickettsia genomes. However, the RecJ of other Rickettsia species does not have a

significant match to the ankyrin domain model and, thus, the presence of the ankyrin domain model in R. prowazekii RecJ is likely to be an overprediction.
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repeats than does the wMel genome (5.4% compared
with O14% of the genome, respectively), they are
associated with breakpoints in synteny between the
two genomes. Other members of the order Rickettsiales
also have a relatively large proportion of repeats [19–
23], suggesting that it is a feature of this family of
bacteria that might be linked to the generation of
novelty by gene duplication.
What do Wolbachia do for, or to, their hosts?

Because wMel and wBm differ in their phenotypic effects,
comparison of their genomes has focused on functions
hypothesized to be directly involved in parasitism or
mutualism. Three major groups of genes have been
investigated: (i) those involved in the type IV secretion
machinery and the proteins that it might secrete; (ii) those
encoding an unexpected diversity of proteins containing
ankyrin-repeat motifs; (iii) and those present in appar-
ently mobile bacteriophages.

Bacterial type IV secretion systems are leader-
peptide-independent mechanisms for exporting effector
proteins, or ‘virulence factors’, and are implicated in the
pathogenesis of many bacterial species. Complete type
IV systems, as two operons, are present in both of the
sequenced Wolbachia genomes [16,18]. Intriguingly, one
operon is closely associated with a homologue of the
www.sciencedirect.com
Wolbachia surface protein (WSP), a molecule that might
be exported to the vacuole in which the bacterium
resides [16]. Is wspB a virulence factor of Wolbachia?
What other proteins are exported by this mechanism?
The genome sequences suggest many candidates,
including some of the ankyrin-repeat proteins.

The ankyrin-repeat domain is a motif of w33 amino
acids that is found in many eukaryotic proteins, often in
tandem arrays, in which it mediates protein–protein
interactions [26]. There are O110 different ankyrin-
repeat-containing (ANK) proteins in D. melanogaster
[27] – including cell-cycle regulators that are active in
the early zygote, such as PLUTONIUM [28,29]. ANK
proteins have been found in bacteria, in which they are
implicated in host–pathogen interactions [30], but
usually only a small number is found per genome
(Table 1). The wMel genome contains a surprisingly
large number (23) of ANK genes, some of which are
secreted [16] (Table 1). The Wolbachia of Drosophila
ananasse (wAna) has 34 putative ANK proteins but this
number could be large because of unassembled dupli-
cations (Table 1). wBm has only nine ANK genes but
several of them seem to be pseudogenes [18], and of those
that seem to be functional only two are orthologues of
wMel ANK proteins. Wolbachia ANK genes might be
involved in regulating the host cell cycle or in interacting
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with the host cytoskeleton, possibly through mechanisms
related to plutonium function [29,31].

Eight of the wMel ANK genes are located within
integrated prophage segments. These Wolbachia-specific
(WO) bacteriophages were discovered in the flour moth
Ephestia kuehniella and have been identified in many
arthropod Wolbachia strains [32,33]. There is evidence
that WO phages can move both within a bacterial genome
and between bacteria in multiply infected hosts. Because
bacteriophages can drive the evolution of bacterial
genomes by transducing genes of exotic function across
species barriers, they are often a source of innovation in
terms of introducing genes, in novel combinations, into
novel genomic environments. As would be expected from
their sequestered habitat, the Wolbachia genomes contain
few, if any, gene segments that have the signature of
lateral gene transfer from other bacteria [16]. Thus, WO
phages might have an important role in generating
diversity within arthropod Wolbachia [34,35]. Closely
related Wolbachia strains can induce different phenotypes
in their arthropod hosts, whereas distantly related strains
can induce the same phenotype; are these differences
mediated by genes that are transduced by WO phages
[34,35]? It is striking that the wBm genome does not
contain WO prophages or any obvious remnants thereof
[18]. The small number of ANK genes in wBm is linked to
this lack of WO-phage-encoded members. More filarial
Wolbachia strains must be analysed to determine whether
prophages are absent from supergroups C and D, and
whether the association between parasitism and WO
phages holds up. ANK and other genes in the WO phage
are now prime targets for functional genomic analysis of
putative ‘genes for parasitism’. Excitingly, genetic
analysis of the cytoplasmic incompatibility induced by
Wolbachia parasites of the malaria-transmitting mosquito
Culex quinquefasciatus suggests a core role for highly
variable WO-phage-associated ANK genes in the incom-
patibility reaction [36]. Are ANK genes and WO phages
involved in all of the phenotypes induced by parasitic
Wolbachia?
Metabolic mutualism?

Does the wBm genome assist the identification of
candidate metabolic pathways that could account for its
mutualism with B. malayi [18]? Tetracycline treatment
has multiple effects on nematodes that could be used to
identify the physiological processes in which wBm has a
major role (Table 2). wBm has complete sets of riboflavin
and haem biosynthesis genes [18] and, based on data from
the ongoing B. malayi nuclear genome project [37], it is
Table 2. wBm metabolic pathways that might supply essential pro

wBm metabolic pathway Physiological importance

Riboflavin and flavin adenine

dinucleotide biosynthesis

Essential coenzymes; biosynthesis gen

B. malayi

Haem biosynthesis Prosthetic group of cytochromes that c

biosynthesis of steroid hormones

Nucleotide biosynthesis Might supplement host nucleotide poo

Glutathione biosynthesis An essential metabolite for protection a

stress; might supplement host defence

www.sciencedirect.com
thought that B. malayi cannot synthesize riboflavins or
haem endogenously. Haem is essential for cytochrome
functions: for example, the modification of hormones such
as ecdysteroids. Although there is a lack of compelling
evidence of the role of ecdysteroids in Caenorhabditis
elegans physiology, ecdysteroids are involved in moulting
and reproduction in filarial nematodes [38–40]. However,
some nematodes – including C. elegans – also lack the
ability to synthesize haem [41], yet do not seem to be
dependent on an endosymbiont as a source of this
metabolite. Filarial nematodes also have access to other
sources of haem. The Wolbachia-positive rodent filarial
parasite Litomosoides sigmodontis takes up host red blood
cells (and, thus, the encapsulated haem) into its gut
during growth [42]. The existence of filarial nematodes
lacking Wolbachia [1,4,43–45] also indicates that there is
not an exclusive role for Wolbachia in the provision of vital
nutrients, although these bacteria might supplement
other sources in a restrictive environment. The wMel
genome also encodes these pathways; do arthropod
Wolbachia also have a mutualist characteristic?

These postulated dependencies between wBm and
B. malayi indicate the movement of metabolites
between the two organisms. It remains unclear how
this traffic can cross both the host vacuolar membrane
and the bacterial cell walls. Further investigation of
such transfers must be initiated because they could be
excellent drug targets.
Immunological enigmas

The presence of a bacterial symbiont within a metazoan
parasite challenges simple models of how an intact
immune system should respond. Filarial disease is
characterized by specific immunosuppression and
extreme longevity of adult nematodes in otherwise
immunocompetent hosts [46]. Do Wolbachia products
have a role in the induction and maintenance of this
state? An early part of the mouse immune response to
Wolbachia-infected filarial nematodes is characterized by
an innate response involving Toll-like receptor (TLR)-4 – a
mode of response that indicates a bacterial component of
induction [13,14,47]. The inducing component has proper-
ties similar to those of lipopolysaccharide (LPS), in that it
is blocked by specific LPS inhibitors [12]. Other Anaplas-
mataceae do not express LPS [48], and the relevant
biosynthetic machinery is absent from the genomes of
Wolbachia, Anaplasma and Ehrlichia [19–23]. None of the
analysed genomes encodes the pathways for synthesizing
lipid A, the murein sacculus synthetic machinery of these
bacteria is incomplete and genes involved in maintenance
ducts to the host Brugia malayi

Possible tetracycline-induced phenotypes

es are lacking from Failure to grow to maturity [6]

atalyses the Delayed or abortive moulting,

delayed reproductive maturation [6]

l Disruption of oogenesis and

embryogenesis [6]

gainst oxidative

s

Failure to grow to maturity [6]
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of the outer membrane are absent. The composition of the
cell wall of these bacteria remains unknown, despite the
availability of their genome sequences. It is predicted that
the wBm peptidoglycan is not extensively crosslinked
through amino sugars but it might have novel peptidic
composition [16].

A major response to Wolbachia products, notably the
WSP, can be detected in infected humans and in animal
models; this response is biased towards Wolbachia in the
context of the nematode third-stage infective larvae [49,50].
The much lower relative concentration of Wolbachia in
third-stage larvae compared with that in adult nematodes
[51,52] suggests that there is a stage-specific expression of,
or heightened exposure to, bacterial antigens. WSP is
recognized in a TLR-2-dependent and TLR-4-dependent
manner and induces a T helper (Th)1-type response,
suggesting that it is an important bacterial stimulant of
this specific arm of the immune system [50].

Other Alphaproteobacteria also have unusual cell
walls, and these species also activate mammalian immune
systems in novel ways. Natural killer (NK) cells are
activated by glycolipids bound to the cell-surface molecule
CD1d. In infections with several LPS-negative Sphingo-
monas species and Ehrlichia muris, CD1d on, for example,
dendritic cells presents glycosphingolipids to NK cells,
thus activating the NK cells in an antigen-specific manner
[53–56]. In the model systems tested, this activation was
independent of TLR signalling. We suggest that, given the
relationships of these bacteria, Wolbachia induces an
immune response, through glycolipid antigens other than
LPS, that has a role in nematode survival. The bacterial
pathways of glycosphingolipid biosynthesis have not yet
been elucidated [57], although analogues have been studied
in yeast and mammals (in which their involvement in
inherited disease and the nervous system has spurred much
work). It is believed that the pathways are at least similar to
those in animal cells but the genomes of Alphaproteobac-
teria do not encode clear orthologues of the glycosyl
transferases involved (M. Blaxter, unpublished). Are these
pathways potential new drug targets that will both
disable the bacteria and, simultaneously, incapacitate the
immune-evasion strategies of the nematodes?
Concluding remarks

The discovery of Wolbachia in nematodes is one of the
most exciting recent developments in filarial research,
and the Wolbachia genome sequences, in conjunction with
the forthcoming completion of the nuclear genome
sequence of B. malayi, will spur additional discoveries.
The predictions made from the Wolbachia genome
sequences must now be tested. Do the ANK genes interact
with host-cell products? Are WO phages mediators of
parasitic behaviour [36]? Which metabolites are trans-
ported and how is this achieved? Which components of the
bacteria interact with the early innate immune system of
the mammalian host and how does this affect nematode
survival? Most important is the use of this information to
devise effective and lasting intervention strategies for
filarial disease [24], in which drugs eliminate Wolbachia
and nematodes from communities while avoiding, as much
www.sciencedirect.com
as possible, the risk of selecting for genetic resistance or
for Wolbachia-cured but healthy nematodes.
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