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Monte Carlo method: a figure square 

The value µ  is unknown. 

Let’s sample a random value (r.v.) ξ : 
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Clever notation: ( ),  µξ = I x y  

i.i.d. is “Identically Independently Distributed” 
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Monte Carlo method: efficiency 
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Central Limit Theorem: ɵ { }( )1
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Variance { } ( )( )2
var ξ ξ ξ= −  E E  , also notated as 2σ . 



Monte Carlo Integration  
We are evaluating ( )= ∫

D

I f x dx . D is domain of ( )f x  or its subset. 

We can sample r.v. ∈ix D : ix  are i.i.d. uniformly in D : ( ) ( )1= =   ∫i
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Advantage: 

o The multiplier 
1

2
−

∼ m  does not depend on the space dimension.  

Disadvantage: 

o a lot of samples are spent in the area where ( )f x  is small; 

o the variation value ( ){ }varD f x  that determine convergence time can be large. 
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Monte Carlo importance sampling 

 
We are evaluating ( )= ∫

D

I f x dx  

Let’s sample ∈ix D  from a “trial” distribution ( )g x  that “looks like” ( )f x  and 

( ) ( )0 0> ⇒ >f x g x . ix  i.i.d. in D as ( )g x  that “resembles” ( )f x  
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MC evaluation: �
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“More uniform” means “better”.  



Another example of importance sampling 

 

We are evaluating ( ){ } ( ) ( )
π

µ π= = ∫E h x h x x dx , where ( )π x  is a distribution, 

e.g. ( ) 1x dxπ =∫  

� sample ix  from a distribution ( ).g  so that ( ) ( )0 0π > ⇒ >x g x  

� Importance weight ( ) ( )π=i i iw x g x ; ( ){ } ( )
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� Sampling from ( )π x :  � ( )
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Rejection sampling (Von Neumann, 1951) 
 
We have a distribution ( )π x  and  
we want to sample from it.  

 

We are able to calculate ( ) ( )π= ⋅f x c x  for ∀x . Any c. 

We are able to sample ( ) ( ) ( ), :g x B Bg x f x∃ ≥ . 

Thus, we can sample ( )π x : 

� Draw a value x  from ( )g x . 

� Accept the value x  with the probability ( ) ( )f x Bg x . 
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Metropolis algorithm (1953) 
 
We want to be able to draw ( )ix  from a distribution  

( )xπ . We know how to compute the value of a function ( )f x  so that ( ) ( )f x xπ∼  at 
each point and we are able to draw x  from flat distribution. 
.  
Let’s denote the i -th step result as ( )ix .  
 

� Draw ( )iy  from flat. It is an analog of g  in importance 

sampling. 

� Transition probability ( ) ( )
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� The new value is accepted ( 1) ( )+ =i ix y  with probability  

( )( ) ( )|ϕ i iy x . Otherwise, it is rejected and ( 1) ( )+ =i ix x . 

( 1)ix +  ( )ix  
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Metropolis-Hastings algorithm (1953,1970) 
We want to be able to draw ( )ix  from a distribution  

( )xπ . We know how to compute the value of a function ( )f x  so that ( ) ( )f x xπ∼  at 

each point and we are able to draw x  from ( )|T x y  
(instrumental distribution, transition kernel).  
Let’s denote the i -th step result as ( )ix .  
 

� Draw ( )iy  from ( )( )| iT y x . ( )( )| iT y x  is flat in pure 

Metropolis. It is an analog of g  in importance sampling. 

� Transition probability 
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� The new value is accepted ( 1) ( )+ =i ix y  with probability  

( )( ) ( )|ϕ i iy x . Otherwise, it is rejected ( 1) ( )+ =i ix x . 
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Why does it work: the local balance 
Let’s show that if x  is already distributed as ( ) ( )fπ ⋅ ⋅∼ , then the MH algorithm keeps 

the distribution. 

 

 

Local balance condition for two points x  and y  : ( ) ( )flux x y flux y x→ = →  

Let’s check it:  

( ) ( ) ( )( ) | |flux x y f x T y x y xϕ→ = ⋅ ⋅ ; ( ) ( ) ( )( ) | |flux y x f y T x y x yϕ→ = ⋅ ⋅  
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Why does it work: the local balance stability 
Let’s suppose a deviation from the ( )f x  distribution: ( ) ( )realf x f x= + ∆ .  

What happen with the fluxes? 
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The change in flux compensate the deviation. The balance is stable.  

( )f x  distribution is a stable distribution for the MH Markov chain.    

 

The stable local balance is enough  (BTW, it is not a necessary condition).  



Markov chains, Maximization, Simulated 
Annealing 

ix  created as described above is a Markov chain (MC) with transition kernel 

( ) ( )( 1) ( ) ( 1) ( )| |ϕ + +⋅i i i ix x T x x . The fact that the chain has a stationary distribution and the 

convergence of the chain to the distribution can be proved by the MC theory methods. 

 

Minimization. ( )C x  is a cost (a fine). ( ) ( ) minexp
− 

= − 
 

C x C
f x

t
. 

We can characterize the transition kernel with a temperature. Then we can decrease the 

temperature step-by-step (simulated annealing). MCMC and SA are very effective for 

optimization since gradient methods use to be locked is a local maximum while pure 

MC is extremely ineffective. 



MCMC prior and Bayesian paradigm 
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MCMC and its variations are often used for the best model search . 

Let’s can formulate some requirements for the algorithm and thus for the transition 

kernel: 

o We want it not to depend on the current data. 

o We want to minimize the rejection rate. 

 

So, an effective transition kernel is so that the prior ( )P M  is its stationary distribution. 



Terminology: names of relative algorithms 

 

o MCMC, Metropolis, Metropolis-Hastings, hybrid Metropolis, configurational bias 

Monte-Carlo, exchange Monte-Carlo, multigrid Monte-Carlo (MGMC), slice 

sampling, RJMCMC (samples the dimensionality of the space), Multiple-Try 

Metropolis, Hybrid Monte-Carlo….. 

 

o Simulated annealing, Monte-Carlo annealing, statistical cooling, umbrella 

sampling, probabilistic hill climbing, probabilistic exchange algorithm, parallel 

tempering, stochastic relaxation…. 

 

o Gibbs algorithm, successive over-relaxation… 



Gibbs Sampler (Geman and Geman, 1984) 

 Now, x  is a k -dimensional variable ( )1 2, .... kx x x .  

Let’s denote ( )1 2 1 1, .., , ,.. ,1− − += ≤ ≤m m m kx x x x x x m k  

On each step of the Markov Chain we choose the “current coordinate” im  . 

Then, we calculate the distribution ( )( )| −i i

i
m mf x x  and draw the next value ( )

i

i
my  from the 

distribution. 

All other coords are the same as on the previous step, ( ) ( )
− −=

i i

i i
m my x . 

For such a transition kernel, 
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o We have no rejects, so the procedure is very effective.  

o The “temperature” decreases rather fast . 



Inverse transform sampling (well-known) 

We want to sample from the density ( )xπ . We know how to calculate the inverse 

function for the cumulative distribution. 
 

� Generate a random number from the [ ]0,1  uniform distribution; call this iu . 

� Compute the value ix  such that ( )  
ix

ix dx uπ
−∞

=∫  

� ix  is the random number that is drawn from the distribution described by ( )π x . 
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Slice sampling (Neal, 2003) 

Sampling of x  from ( )f x  is equivalent to sampling of ( ),x y  pairs from they area. 

So, we introduce an auxiliary variable y and iterate as follows:  

� for a sample tx  we choose ty  uniformly from the interval ( )0, tf x    

� given ty  we choose 1+ix  uniformly at random from ( ){ }: tx f x y>  

the sample of x distributed as ( )f x is obtained by ignoring the y values. 

 

                           ix  

1iy +  
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