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ABSTRACT

The DUST module has been used within BLAST for many years to mask low-complexity
sequences. In this paper, we present a new implementation of the DUST module that uses
the same function to assign a complexity score to a sequence, but uses a different rule by
which high-scoring sequences are masked. The new rule masks every nucleotide masked
by the old rule and occasionally masks more. The new masking rule corrects two related
deficiencies with the old rule. First, the new rule is symmetric with respect to reversing the
sequence. Second, the new rule is not context sensitive; the decision to mask a subsequence
does not depend on what sequences flank it. The new implementation is at least four times
faster than the old on the human genome. We show that both the percentage of additional
bases masked and the effect on MegaBLAST outputs are very small.
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1. INTRODUCTION

Naturally occurring nucleotide sequences often exhibit intervals with highly biased distribution of
nucleotides (“low-complexity” intervals). Such intervals make DNA database search engines, such as

BLAST (Altschul et al., 1997), produce large number of high-scoring but biologically insignificant results.
Making an interval of either the query sequence or a matching database sequence unavailable for starting
a BLAST match is called (soft) masking the interval.

The DUST module (R. Tatusov and D.J. Lipman, unpublished data) included in BLAST is used to
mask low-complexity regions of nucleotide queries. DUST is a heuristic algorithm that employs a scoring
function based on counting nucleotide triplet frequencies in 64-base windows, which is similar to the
scoring function used in the SIMPLE utility (Hancock and Armstrong, 1994). In this paper, we present a
new implementation of the DUST module that corrects some deficiencies in all previous versions. We will
refer to the new implementation of the DUST module by SDUST and to the original implementation of
the DUST module by DUST.

In DUST, there were two situations in which a characteristic of the input sequence gives rise to anomalous
masking. First, DUST is not symmetric with respect to reversing the input sequence and hence is not

National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human
Services, Bethesda, Maryland.
∗Under contract to MSD Inc., Fairfax, VA.

1028



DUST FOR MASKING LOW-COMPLEXITY DNA SEQUENCES 1029

symmetric with respect to reverse complement. Thus, DUST’s choice of which DNA intervals to mask can
depend on which of two complementary DNA strands is presented as the digitized input. For example,
consider the following sequence of 89 nucleotides, which is the subsequence in positions [198630,198718]
of Genbank (Benson et al., 2004) entry AC009229.5:

ACCTGCACATTGTGCACATGTACCCTAAAACTTAAAGTATAATAATAATAAAATT
AAAAAAAAATGCTACAGTATGACCCCACTCCTGG

and its reverse complement

CCAGGAGTGGGGTCATACTGTAGCATTTTTTTTTAATTTTATTATTATTATACTT
TAAGTTTTAGGGTACATGTGCACAATGTGCAGGT.

DUST masks positions 56–64 in the forward sequence and positions 26–64 in the reverse complement.
SDUST masks positions 26–64 in both cases. The subsequence of length 89 was selected so that the
portion masked by SDUST is centered with 25 unmasked nucleotides on either side.

The second anomaly we sought to correct is that DUST is context sensitive. Two sequences may contain
an identical low-complexity subsequence, but that subsequence may be masked in one and not in the other.
For example, consider the following sequences of length 85:

ACCTGCACATTGTGCACATGTACCCAAAAAAAAAGCGCGCGCGCGTTTTTTTACA
GTATGAAAAAAAAAAAAACCCCACTCCTGG

and

ACCTGCACATTGTGCACATGTACCCACAGTATCCTGCACATTGGCTTTTTTTACA
GTATGACAGTATGACAGTCCCCACTCCTGG.

In the first sequence, the run of Ts has two longer runs of As nearby on both sides, while in the second
sequence the runs of As are changed to some high-complexity sequences. DUST masks both runs of As
(intervals 26–34 and 61–73) but leaves the run of Ts in the first sequence unmasked. However, the run
of Ts in the second sequence (interval 46–52) is masked by DUST. SDUST masks the run of Ts in both
cases.

The DUST module is used in another recently developed NCBI tool, Windowmasker (Morgulis et al.,
2006), which is designed to search and mask repetitive and low-complexity sequences in DNA databases for
the purpose of improving BLAST DNA search results. We noticed that the running time of WindowMasker
suffered when DUST was used for filtering low-complexity sequences. This prompted us to look for ways
to improve the computational efficiency of the DUST module.

We present SDUST, a modified version of DUST, that fixes the two disadvantages described above and
performs several times faster with the commonly used set of parameters. SDUST uses the same scoring
function as DUST to assign high scores to sequences of low complexity but differs from DUST on which
high-scoring sequences are masked. The bases masked by SDUST form a superset of those masked by
DUST. We show that the difference in number of nucleotides masked is less than 2% on all human
chromosomes and that the effect on MegaBLAST outputs is minimal, as desired.

2. DEFINITIONS AND NOTATION

Let a be a sequence of n letters from the 4-letter alphabet A = {A, C, G, T}. A triplet is a sequence of
length 3. Any sequence of length n > 2 contains as subsequences exactly n− 2 triplets.

We assign a score S(a) to any sequence a of length n > 2 in the following way. Let R denote the set
of all 64 possible triplets over the alphabet A. For t ∈ R, let ct (a) be the number of times a triplet with
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value t appears in a. We define S(a) to be 0 if it has length 3. For sequence a of length n > 3, we define

S(a) =

∑

t∈R
ct (a)(ct (a)− 1)/2

(�− 1)
, (1)

where � = n−2 is the number of triplets in a. Each triplet value t contributes 0+1+2+· · ·+ (ct (a)−1)

to the numerator of the score function.
Both DUST and SDUST require two parameters: a positive integral window size W and a positive

real-valued score threshold T . In practice, W = 64, and T = 2∗ for both DUST and SDUST. Both DUST
and SDUST mask a subset of the intervals of q with length less than W and score greater than T . The
critical concept in SDUST is the following definition that succinctly characterizes the intervals that are
masked.

Definition 2.1. We define the set P(q, W, T ) of perfect intervals to be the set of all subsequences a of
q of length at most W and score greater than T that satisfy the property that the score of any subsequence
of a is at most as high as the score of a.

SDUST masks a subsequence if and only if it is a perfect interval in q. DUST masks a subset of the
nucleotides masked by SDUST but does not have a natural algebraic or combinatorial characterization of
which intervals get masked. However, using algorithmic terminology and allowing the asymmetric use of
left and right, the set of intervals masked by DUST can be characterized as described in the next section.

3. DUST ALGORITHM

DUST looks at all subsequences of fixed length W of the input nucleotide sequence; subsequences of
length less than W are considered at the beginning and at the end of the input sequence. For each such
subsequence a, it finds the high-scoring prefix a′ with the largest score where ties are resolved in favor of
the leftmost such prefix. If the score of the selected prefix is greater than a given threshold value T then
the algorithm finds a subsequence a′′ of a′ with the maximum score (again the ties are resolved in favor
of the leftmost subsequence). The algorithm then masks the union of all such a′′ over all the windows in
the input sequence. Pseudocode is included in Supplemental Information.

Because ties are broken in a directional fashion, the algorithm is not symmetric with respect to reversing
the input sequence. The context-sensitivity problem, which was illustrated by an example in the Introduc-
tion, arises in the following general situation. Suppose there are three subsequences a1, a2, a3, occurring
in that order, such that the scores of a1 and a3 exceed the score of a2. If the subsequences are sufficiently
close together that every window containing a2 contains either a1 or a3, then there may be no window
containing a2 in which a2 is the highest scoring subsequence. Therefore, a1 and a3 form part of a flanking
context that prevents a2 from being masked.

4. OVERVIEW OF SDUST ALGORITHM

SDUST masks exactly those bases contained in P(q, W, T ) for specified values of W and T . Because
the score function S is invariant with respect to the operations of reverse and complement, it follows
that P(q, W, T ) is invariant with respect to taking reverse complements. Moreover, the property of being
perfect does not depend on the position of the interval within a larger sequence. Thus, the set of masked
intervals is not context sensitive.

Below is a high-level description of SDUST that illustrates how P(q, W, T ) can be found. The algorithm
considers a series {wk} of subsequences, known as windows, of the sequence q. Usually, wk has length

∗Both T and S(a) are multiplied by 10 in the implementation. Therefore, the default for T in the dustmasker
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exactly W and starts and ends exactly one base to the right of wk−1, but shorter windows at the beginning
of q are treated specially. We defer a precise discussion of how windows are defined at the beginning of
q to the pseudocode in Supplemental Information.

For each window wk , we compute a collection Pk of perfect intervals within wk . The full set of perfect
intervals is then the union of the perfect intervals in each window. In symbols,

P(q, W, T ) =
m⋃

k=1

Pk

where m is the number of windows considered. In practice, we need the collection of perfect intervals for
only a single window in memory at any one time. As the iteration progresses from window wk−1 to wk ,
we mask any bases contained in any of the perfect intervals in Pk−1 \ Pk .

The algorithm maintains the following data structures that are modified in place as the iteration pro-
gresses.

• A structure that represents the right and left endpoints and the contents of the current window wk; and
• A data structure that represents the collection Pk of all perfect intervals found so far within the current

window.

For the first iteration, we add all perfect intervals in w1 to P1. For subsequent iterations, we perform
the following procedure to compute the set Pk and mask bases in q.

1. Keep intervals from the previous window: Initialize Pk to be all intervals in Pk−1 that are subsequences
of wk . Mask the bases covered by any interval in Pk−1 that is not a subsequence of wk .

2. Check suffixes of the current window: For each suffix of wk with score higher than T , add the suffix to
Pk if the suffix does not contain either a higher-scoring interval already in Pk or a shorter, higher-scoring
suffix of wk .

3. Check termination condition: If wk is the final window in Q, mask any bases covered by any interval
in Pk .

5. ALGORITHMIC OPTIMIZATION

Step 2 of SDUST is the most computationally expensive. In this section, we describe an efficient
implementation of Step 2.

The following two propositions present conditions that allow us to remove some or all window suffixes
from consideration in Step 2. For the first proposition, we seek a threshold value M , independent of the
length of the sequence a, so that if ct (a) ≤ M for all triplets t , then S(a) ≤ T . Proposition 1 shows that
M = 2T .

Proposition 1. For any sequence a of length at least 3, if

max
t∈R
{ct (a)} ≤ 2T , (2)

then S(a) ≤ T .

Proof. Let �+ 2 be the length of a. We seek to eliminate the variable � from the inequality

S(a) =

∑

t∈R
ct (a)(ct (a)− 1)/2

(�− 1)
≤ T , (3)
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to obtain a bound that is independent of the length of the interval a. We do so by substituting the identity
� =∑

t∈R ct (a) into (3) and simplifying to obtain the inequality
∑

t∈R f (ct (a)) ≥ T , where

f (c) = (2T + 1)c − c2

2
.

The factorization (2T + 1)c − c2 − 2T = (c − 1)(2T − c) implies that f (c) ≥ T whenever 1 ≤ c ≤ 2T .
Suppose that ct (a) ≤ 2T for all triplets t . Then for any triplet t , either ct (a) = 0 and f (ct (a)) = 0, or

ct (a) > 0 and f (ct (a)) ≥ T . Since ct (a) > 0 for the leftmost triplet in a, it follows that
∑

t∈R f (ct (a)) ≥
T . Therefore, S(a) ≤ T whenever maxt∈R{ct (a)} ≤ 2T .

The bound in Proposition 1 is tight. If a consists of �2T + 1� identical triplets, then S(a) = �2T + 1�/
2 > T .

If u is a subsequence of a, then ct (u) ≤ ct (a) for every t , and so u satisfies (2) whenever a does. In other
words, if a satisfies (2), then no subsequence of a has score that exceeds T . Therefore, for every window
wk , we compute the value L(wk), the number of triplets in the largest suffix of wk that satisfies (2). We
then only need consider suffixes of wk longer than L(wk)+ 2 when performing Step 2.

Proposition 1 allows us to ignore those suffixes of the current window that do not have enough occur-
rences of any triplet. In contrast, the following proposition shows that if L(wk) is sufficiently long and
S(wk) sufficiently small, then we may skip Step 2 entirely. In practice, many windows satisfy the next
inequality.

Proposition 2. Let w be a window with � triplets so that w has length �+ 2. If

S(w) ≤ L(w)T

�− 1
, (4)

then no suffix of w has a score that exceeds T .

Proof. For 1 ≤ j ≤ �, let uj denote the suffix of w of length j + 2. From the definition of uj , it
follows that ct (uj ) ≤ ct (w) for all triplet values t . Therefore, for any 1 ≤ j ≤ �,

∑

t∈R

ct (uj )(ct (uj )− 1)

2
≤

∑

t∈R

ct (w)(ct (w)− 1)

2
= S(w)(�− 1).

Suppose then that (4) holds. For L(w) < j ≤ �, it follows that

∑

t∈R

ct (uj )(ct (uj )− 1)

2
≤ T L(w) ≤ T (j − 1),

and therefore that S(uj ) ≤ T . If, on the other hand, 1 ≤ j ≤ L(w), then the suffix uj satisfies (2), and so
the bound S(uj ) ≤ T also holds.

To take advantage of the optimization suggested by Propositions 1 and 2, we use a method for computing
the values of L(wk) and S(wk) that is more efficient than scanning all of wk . Moreover, we compute the
score of suffixes of length greater than L(wk)+ 2 without scanning the entire suffix.

For the current window, the optimized SDUST algorithm maintains the following information:

• The number of triplets L(wk) in the longest window suffix vk satisfying condition (2) of Proposition 1;
• The triplet counts ct (wk) and ct (vk) for every triplet t ; and
• The running counts r(wk) and r(vk), where

r(a) =
∑

t∈R

ct (a)(ct (a)− 1)

2
.
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Each of these quantities may be efficiently calculated using the corresponding values from the window
wk−1. The loops required to do so are presented in detail in the pseudocode provided in Supplemental
Information. However, all updating algorithms are based on the principle that if the sequence a is derived
from the sequence b by adding or removing a single base from either end of b, then ct (a) differs from
ct (b) at precisely one value of t . Similarly r(a) can be computed from r(b) by adding single value of
ct (a) or by subtracting a single value of ct (b) from r(b).

The operations involved in shifting from wk−1 to wk and in searching for the longest window suffix vk

that satisfies (2) are all written in terms of operations that add or remove a single base from a subsequence.
The triplet counts ct (wk) and ct (vk) are maintained as arrays and are computed by updating in place the
arrays that represent ct (wk−1) and ct (vk−1).

Step 2 may thus be implemented as follows:

• Compute the values of ct (wk), r(wk), L(wk), vk , ct (vk), and r(vk).• Use L(wk) and r(wk) = (�−1)S(wk) to check condition (4). If the condition is satisfied, stop processing
the current window wk .
• If condition (4) is not satisfied, use r(vk) to efficiently compute the scores of suffixes of length greater

than L(wk)+ 2. Consider each suffix of wk of length greater than L(wk) in turn, working from shortest
to longest. If a suffix has score greater than T and does not cover a higher-scoring interval already in
Pk , add the suffix to Pk .

The loop to test suffixes of length greater than L(wk) + 2 for inclusion in Pk has been implemented so
that the entire loop traverses Pk only once. Detailed pseudocode derived from the C++ implementation
is given in Supplemental Information.

6. PERFORMANCE EVALUATION

Several tests were performed to compare SDUST with DUST. The human (Homo sapiens) genome build
34 and the fruitfly (Drosophila melanogaster) genome were used to perform the tests. The tests address
three questions:

1. How many more nucleotides are masked by SDUST than are masked by DUST?
2. How much faster is the SDUST implementation?
3. What fraction of high-quality MegaBLAST (Zhang et al., 1998) matches disappear due to the extra

masking?

The results of the tests are summarized in Table 1. The second column of the table shows the increase
in the percentage of bases masked by SDUST compared to the number of bases masked by DUST. In all
tests, the increase was less than 2%.

Columns 3–5 of Table 1 show the running times of the DUST, SDUST, and percentage of decrease in
the running time when SDUST was used. The runs were performed on a Dual Pentium-4 Xeon 3.2-Ghz
CPU Linux computer with 512 Kb of L2 cache per CPU and 4 Gb of RAM. Each test was performed
three times, and the number in the table is the average over three runs. In all our tests, the SDUST is at
least four times faster than DUST.

The effect of SDUST on nucleotide BLAST searches was tested by running MegaBLAST (Zhang et al.,
1998) on a set of DNA queries from the human and fruitfly genomes against the DNA genomes of the
corresponding organism. The query set for each genome contains 100 sequences that are each 200–300
kbases long. One set of MegaBLAST runs was performed with the queries masked using DUST; another
set was performed with the queries masked using SDUST. Masked bases were represented by lower case
letters in the query FASTA files.

MegaBLAST was run with the following command line options: "-UT -Fm -D3 -m8 -e 0.1". The
-UT option signals the desire to retain nucleotides present as lower-case letters in the query as lower case
rather than turning them into upper case. The -Fm option disables all internal masking (including masking
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Table 1. Several Tests to Compare SDUST and DUST

Bases masked Running time (sec) Megablast results

Database SDUST (% increase) DUST SDUST % decrease (D-S)/D

D. melanogaster 5368015 (+1.67%) 113.79 25.05 77.99% 1/26393
H. sapiens chr1 9962990 (+1.36%) 231.86 52.67 77.28% 3/48559
H. sapiens chr2 10534797 (+1.32%) 245.16 54.87 77.62% 3/52687
H. sapiens chr3 8291266 (+1.41%) 195.81 44.05 77.50% 1/44143
H. sapiens chr4 8612129 (+1.29%) 210.38 43.29 79.42% 1/46831
H. sapiens chr5 7711431 (+1.37%) 197.54 40.63 79.43% 2/43717
H. sapiens chr6 7429406 (+1.37%) 184.34 38.84 78.93% 1/37868
H. sapiens chr7 7231658 (+1.34%) 162.33 36.76 77.35% 1/33972
H. sapiens chr8 6292534 (+1.33%) 156.36 33.03 78.88% 0/30517
H. sapiens chr9 5251123 (+1.33%) 130.81 27.15 79.24% 0/26385
H. sapiens chr10 6086515 (+1.29%) 144.12 30.98 78.50% 0/25012
H. sapiens chr11 5539418 (+1.30%) 133.29 30.04 77.46% 1/29650
H. sapiens chr12 5895050 (+1.35%) 135.87 30.43 77.60% 1/28727
H. sapiens chr13 4377601 (+1.33%) 101.65 22.34 78.02% 0/22167
H. sapiens chr14 3828803 (+1.38%) 92.81 20.22 78.21% 0/19249
H. sapiens chr15 3587821 (+1.35%) 85.92 18.99 77.90% 1/15829
H. sapiens chr16 3946925 (+1.21%) 104.46 19.60 81.24% 0/14161
H. sapiens chr17 3817441 (+1.34%) 102.5 19.93 80.56% 0/13099
H. sapiens chr18 3303535 (+1.34%) 76.56 17.07 77.70% 0/16223
H. sapiens chr19 3368114 (+1.22%) 68.59 14.90 78.28% 1/9078
H. sapiens chr20 2654471 (+1.30%) 62.44 13.88 77.77% 0/11018
H. sapiens chr21 1651742 (+1.24%) 37.12 8.14 78.07% 0/6681
H. sapiens chr22 1651307 (+1.27%) 38.21 8.36 78.12% 0/4261
H. sapiens chrX 7044967 (+1.28%) 167.67 36.96 77.96% 0/47100
H. sapiens chrY 1547697 (+0.87%) 32.91 6.61 79.91% 1/6584

The second column of the table gives the number of bases masked by SDUST and the percentage increase over DUST. In the last
column, D [S] is the number of MegaBLAST matches, summed over 100 queries, reported when queries are masked with DUST
[SDUST]; the numerator is the number of matches missed due to additional nucleotides masked by SDUST.

by the DUST module) and enables “soft masking” of nucleotides in the query that are in lower case.
Soft masking means that masking is only used for initial seed selection but not for the extension of the
alignments. The -e 0.1 evalue threshold was chosen to limit the number of results. The -D3 -m8 options
affect the format of the output but not the alignments found. In addition, we considered only high quality
alignments, defined as being at least 92 bp long and having an identity percentage of at least 97%. The
same definition of high-quality alignments is used in several production applications at NCBI.

The last column of Table 1 presents counts of the number of high-quality alignments found. The
denominator shows the total number summed over 100 queries of matches reported when alignments were
done with the queries masked with DUST. The numerator shows the number of high-quality MegaBLAST
matches reported when alignments were done with the queries masked with DUST but not reported when
alignments were done with the queries masked with SDUST. The fraction of missed matches is generally
<0.0001, which is negligible in practice.

We give some details about the few matches that disappeared. Most of the query part of the only missing
match in the case of Drosophila is masked by both DUST and SDUST, but SDUST masks an additional
run of seven “T”s, thus blocking the only possible alignment seed from being considered. Below is the
corresponding subinterval of the query sequence with GenBank accession AC009206.20 starting at position
85386 and ending at 85544. The extra bases masked by SDUST are in brackets.

AAATTAAGGG[ttttttt]GCTTAATTAAACGCAAttttttttataaaatataat
taaaaaatatttattttacttataaatcaaaaaacaaattaaaaatattaaatat
acaagaaaataaacaacaaatTCCAAGTTTACACACTTTTGAGACTGTCAA
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In the case of the human genome, all the missing MegaBLAST matches are due to different masking
by DUST and SDUST of the following sequence fragment.

ACCTGCACATTGTGCACATGTACCC[taaaacttaaagtataataataataaaa
tt]aaaaaaaaa

This sequence is the prefix of the sequence used in the Introduction to demonstrate the lack of symmetry
of DUST. When its reverse complement is used as a query, DUST masks the same bases as SDUST and
the corresponding matches are not reported by MegaBLAST.

7. DISCUSSION

The DUST module for filtering low-complexity sequences has been used in conjunction with BLAST for
many years. Blocking low-complexity, biologically uninteresting matches from appearing in BLAST output
is essential to making the output of DNA BLAST runs useful. One would like masking of low-complexity
sequences to be as fast and as predictable as possible. We presented a modified implementation for the
DUST module, called SDUST in this paper, that eliminates two sources of unpredictability in the previous
versions and runs several times faster.

The DUST module is not the only available method to identify low-complexity DNA sequences. We
mention five other methods that can be used to identify at least some low-complexity DNA sequences.

Two methods are based on local alignment. Claverie and States (1993) proposed aligning the sequence
against itself and looking for high-quality alignments in the off-diagonal regions of the dynamic program-
ming graph. Their method is implemented in the program XNU. So far as we know, XNU is widely used
for protein sequences but is not widely used for DNA sequences due to their lower information content.
One can also use RepeatMasker (Smit et al., 1996) and match the input sequence against a library of
low-complexity sequences (Jurka, 2000).

A very different method, proposed by Crochemore and Verin (1999), uses the notion of topological
entropy. The method works by counting all different subwords in 512-bases-long overlapping windows. A
sequence is considered low-complexity if the fraction of possible subwords it contains is below a predefined
threshold. So far as we know, this method has not been used in any large-scale DNA analysis of biological
interest.

Finally, one can use methods that search for tandem repeats to identify some classes of low-complexity
sequences. Two software packages that search effectively for tandem repeats are Tandem Repeats Finder
(Benson, 1999) and STAR (Delgrange and Rivals, 2004). In either case, some parameter tuning would be
needed to apply these programs to the masking problem. In this regard, we left the parameters of DUST
(window size and score threshold) at the same setting as they were previously.

SDUST is currently used at NCBI in the version of BLAST (Altschul et al., 1997) called the “new
BLAST engine,” which is currently used for nucleotide searches on NCBI’s Web pages. It is also used
in Windowmasker, our new tool for masking repetitive and low-complexity sequences (Morgulis et al.,
2006). SDUST is available in the NCBI C++ toolkit as the source code for a stand-alone program called
“dustmasker.” The source code for the entire toolkit is available at: <ftp://ftp.ncbi.nih.gov/toolbox/ncbi_
tools++/CURRENT/>.

Once the entire toolkit in installed, the code for dustmasker can be found in subdirectories include/
algo/dustmask, src/algo/dustmask, and src/app/dustmasker. File README.build in subdirectory src/app/
dustmask contains instructions for building dustmasker in a UNIX environment.

SUPPLEMENTAL INFORMATION

We present pseudocode for the DUST and SDUST algorithms. In the first subsection, we present the
SDUST algorithm; the DUST algorithm will be presented in the second subsection. In the pseudocode, the
arguments to all functions and procedures are passed by reference, so that assigning a value in the function
or procedure changes the value in the caller. Indices into arrays and sequences start at zero. The function
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new_array(length, initial_value) creates and returns a new array containing the given number of elements
each initialized to the given value. The procedure append(A, e) appends element e to the end of array A;
the array will expand, if necessary, to hold the new element.

SDUST implementation

SDUST maintains arrays of length 64 that represent the counts of the number of triplets in a specific
subsequence and integer variables that represent the running counts within the same subsequence. The
array element cw[t] represents the value denoted ct (wk) in the main text, although the array cw may not
hold the correct counts for the window wk at intermediate stages in the computation. Similarly, cv[t], rv
and rw represent the values denoted ct (v), r(v) and r(w) in the main text, respectively. The following
two procedures add_triplet_info and rem_triplet_info, update the counts and running counts of a
sequence when its length is changed by adding or removing one nucleotide from either end.

Algorithm S1. Update triplet counts when a sequence changes.

procedure add_triplet_info(r , c, t)
r ← r + c[t]
c[t] ← c[t] + 1

end procedure
procedure rem_triplet_info(r , c, t)

c[t] ← c[t] − 1
r ← r − c[t]

end procedure

The SDUST algorithm counts triplets in windows within a sequence q. Triplets are represented inter-
nally as integers in the range 0–63. The function triplet(q, i) returns an integer representing the triplet
qiqi+1qi+2. A deque (double-ended queue), represented by the variable w, is used to hold the integer values
for all triplets in the current window. The function new_deque() creates a new, empty deque. The pro-
cedure append_right(w, t) appends a value to the right end of the deque, and the function pop_left(w)
removes and returns an element from the left end. The elements of a deque may be accessed in random
order using the same syntax used to access elements of an array.

When the current window is changed, the following procedure updates the deque w, the triplet counts
cw and cv , and the running counts rw and rv . Moreover, it calculates the number of triplets L in the longest
suffix of w that satisfies condition (2), the quantity denoted L(wk) in Section 5.

Algorithm S2. Update data structures when the window is shifted.

procedure shift_window(t , w, T , W , L, rw, rv , cw, cv)
if length(w) ≥ W − 2 then

s ← pop_left(w)

rem_triplet_info(rw, cw, s)
if L > length(w) then

L← L− 1
rem_triplet_info(rv , cv , s)

end if
end if
append_right(w, t)
L← L+ 1
add_triplet_info(rw, cw, t)
add_triplet_info(rv , cv , t)
if cv[t] > 2T then

repeat
s ← w[length(w)− L]
rem_triplet_info(rv , cv , s)
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L← L− 1
until s = t

end if
end procedure

In the SDUST algorithm, the list of perfect intervals for the current window is represented by the variable
P . In the pseudocode, P is a singly linked list of structures each representing a perfect interval; in the
C++ code a doubly-linked list is used. Each structure has four fields: start, finish, score, and next. The
start and finish fields are indices into the sequence q, where both endpoints are included in the interval.
The next field is used to chain intervals into a list. The list is maintained in sorted order, where it is
sorted first by descending order of start and then by ascending order of finish. The value nil represents the
empty list. The reverse(P ) function returns a copy of P in reverse order. Where the reverse(P ) function
appears in pseudocode, the doubly-linked list is simply traversed in reverse order in the C++ code.

When the window w is shifted from one iteration of SDUST to the next, two actions must be taken.
First, all perfect intervals that no longer lie in the current window must be removed from P , and the bases
contained in those intervals must be masked. Second, the list P must be updated to include suffixes of
the current window. The save_masked_regions procedure removes the appropriate intervals from P and
records the bases to be masked. The array res (short for “results”) contains pairs (s, f ) of start and end
points representing the maximal disjoint regions to be masked. The argument wstart is the position in the
complete sequence q where the current window starts.

Algorithm S3. Save the endpoints of regions to be masked.

procedure save_masked_regions(res, P , wstart)
P ← reverse(P )

if P 	= nil and P.start < wstart then
�← length(res)
if � > 0 then

(s, f )← res[�− 1]
if P.start ≤ f + 1 then

res[�− 1] = (s, max{P.finish, f })
else

append(res, (P.start, P.finish))
end if

else
append(res, (P.start, P.finish))

end if
while P 	= nil and P.start < wstart do

P ← P.next
end while
P ← reverse(P )

end if
end procedure

The find_perfect procedure updates the current list of perfect intervals P to include suffixes of w.
On entry, P contains exactly all perfect intervals in w that are not suffixes of w. On exit, P contains all
perfect intervals in w.

Algorithm S4. Find perfect intervals that are suffixes of w.

procedure find_perfect(P , w, T , wstart, L, rv , cv)
c← copy(cv); r ← rv
perf ← P ; previous_perf ← nil
max_score← 0
for i ← length(w)− L− 1 down to 0 do

t ← w[i]
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add_triplet_info(r , c, t)
new_score← r/(length(w)− i − 1)

if new_score > T then
while perf 	= nil and perf.start ≥ i + wstart do

max_score← max{max_score, perf.S}
previous_perf ← perf
perf ← perf.next

end while
if new_score ≥ max_score then

max_score← new_score
new_perf =
struct Perfect {

start = i + wstart, finish = length(w)+ 1+ wstart,
S = new_score, next = perf

}
if previous_perf = nil then

P ← new_perf
else

previous_perf.next← new_perf
end if
previous_perf ← new_perf

end if
end if

end for
end procedure

Finally, the top-level SDUST algorithm may be defined in terms of the procedures and functions described
above. The first if test applies the inequality of Proposition 2.

Algorithm S5. Symmetrically mask low-complexity regions in a sequence q, using score threshold T and
window size W .

function sdust(q, T , W )
res← new_array(length = 0); P ← nil
rv ← 0; rw ← 0
cv = new_array(length = 64, initial_value = 0)
cw = new_array(length = 64, initial_value = 0)
w = new_deque()

L← 0
for wfinish = 2 to length(q)− 1 do

wstart← max{wfinish −W + 1, 0}
save_masked_regions(res, P , wstart)
t ← triplet(q, wfinish − 2 )
shift_window(t , w, T , W , L, rw, rv , cw, cv)
if rw > L× T then

find_perfect(P , w, T , wstart, L, rv , cv)
end if

end for
wstart← max{0, length(q)−W + 1}
while P 	= nil do

save_masked_regions(res, P , wstart)
wstart← wstart + 1

end while
return res

end function
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The original DUST implementation

The original DUST algorithm is implemented differently from the SDUST algorithm described above,
but many of the data structures are the same. We present pseudocode for the original DUST algorithm, using
the same notation we used to describe SDUST. The result returned by the DUST algorithm, represented by
the variable res, is subtly different from the return value of SDUST. SDUST returns a maximal disjoint set
of regions to be masked, but DUST return an overlapping collection of intervals. Because SDUST returns
a smaller data structure, we believe its behavior is preferable.

Algorithm S6. Find the high-scoring prefix of a subwindow whose first and last triplets are istart and
ifinish, respectively.

function best_prefix(w, istart, ifinish)
cw ← new_array(length = 64, initial_value = 0)

rw ← 0
finish← istart − 1; max_score← 0
for i ← istart to ifinish do

t ← w[i]
rw ← rw + cw[t]
cw[t] ← cw[t] + 1
if i > istart and rw/(i − istart) > max_score then

finish← i

max_score← rw/(i − istart)
end if

end for
return (finish + 2, max_score)

end function

Algorithm S7. Mask low-complexity regions in a sequence.

function dust(q, W, T )
res← new_array(length = 0)

w← new_deque()

for i ← 2 to length(q)+W − 4 do
wstart← max{i −W + 1, 0}
wfinish← min{i, length(q)− 1}
if i < length(q) then

t ← triplet(q, i − 2)
append_right(w, t)

end if
if wstart > 0 then

pop_left(w)

end if
(limit, max_score)← best_prefix(w, 0, length(w)− 1)
start← 0; finish← limit
if max_score > T then

for s ← 1 to limit − 3 do
(f, new_score) = best_prefix(w, s, limit − 2)
if new_score > max_score then

max_score← new_score
start← s; finish← f

end if
append(res, (start + wstart, finish + wstart))

end for
end if

end for
end function
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