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Prediction of missense variant effect

Applications

* Disease gene discovery

* Clinical sequencing // ~11,000 nsSNVs per individual, including rare
* Evolutionary biology

* Protein design

Missense effect 1s diverse; experiment 1s not feasible. What experiment?
Invivo:

e Clinical impact // rare, context-dependent, inheritance mode

e Model organisms // applicability?

In vitro:

e Functional assay // applicability?

In silico: Damaging | Tolerated, Benign
e Data sources and features

e Prediction methods

e Evaluation
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Data sources

Clinicalmmpact . . ...................... pathogenic
e ClinVar, HGMD

Biochemical assays. .. ................... functional
e Papers, Protein Mutant Database

Deep mutational scans. . .................. functional
e Papers, MAVEdb
Populationdata. . ....................... deleterious

e dbSNP, EXAC/gnomAD, other species

Phylogeneticdata. . ..................... deleterious
e NCBI nr, UniPto UCSC MultiZ
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Prediction of missense variant effect

Features

1. Substitution
e Conservative / radical (BLOSUM, Grantham score)
e Volume, hydrophobicity change

2. Site
e Conservation
e Location: core / surface (Relative Surface Area)
e Contacts: protein, ligand, DNA/RNA
e Secondary structure, disorder
e B-factor

3. Protein
e Number of interactions
e Number of PubMed references



Missense variants in human disease
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Prediction of missense variant effect

Multiple Sequence Alignment: evolutionary record

Rodent-Primate

Placental Mammal

Tetrapod
Vertebrate

Chordate
Deuterostome

Bilaterian

134 240 294
— A——
o H. Sapiens (HUMAN) = =-=======- \' I
c'i P.troglodytes (CHIMP)  —=-—==—-= E v] |z
2z~ M. musculus(MOUSE) @  -------- \' I
5~ B.taurus (BOVINE) @ —====--- S \' I
C. familiaris (DOG) @ ======-= S v I
O. anatinus (PLATYPUS) = -------- T T |I
G.gallus (CHICKEN) ? M |I
X. tropicalis (FROG) = —-=====-- T I I
T. rubripes (PUFFERFISH) @ = —-=====-= T L I
D. rerio (ZEBRAFISH) ———————- T [v]|I
C. intestinalis (SEA SQUIRT) -------- T |V I
S. pupuratus (SEAURCHIN) = —===ee-- S v I
—@ C. elegans (NEMATODE WORM)  -------- N |V] |V
% C. briggsae (NEMATODE WORM) -------- N |V] |V
—0 C. briggsae (NEMATODE WORM) ---===-- N \'4 \'4
4? D. melanogaster (FRUITFLY) E \'4 R
A. gambia (MOSQUITO) T R F
S. cerevisiae Met12 (BUDDING YEAST) E E v
A. gossypii (YEAST) = =—======-- D E \'4
A. nidulans (FUNGUS) = ---==--- S E L
|_® N.crassa (FUNGUS) = -——=——-- S E v
S. pombe (FISSION YEAST) =  -—-—-=—--- D E I

Marini (2010) PLOS Genet
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Prediction of missense variant effect

score_delta scorel delta_volume

r T 3 r T 1 r T =
324 0.67 457 113 117 147 167 o 167

acc_normed b_fact <pg_transition

Bl4
L L - £213
e ] | R ey . N
1] D.78 L§§ 1.8 1.66 5.17 ——

Examples of predictive features used by PolyPhen-2

score delta:  PSIC(AA1)-PSIC(AA2)

scorel: PSIC(AA1)

delta_volume: change in side chain volume

cpg_transition: CpG context (0:no, 1: removes CpG, 2:creates)
acc_normed*: normalized accessible surface area // if 3D structure available

b fact™: average temperature factor Adzhubei (2010 Nat Methods
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Input Analysis Prediction Interpretation
Sequence

Annotation
ACT SITE 86, 110, 203 I

Prediction confidence

3D visualization

PolyPhen-2 prediction pipeline

Training set (HumbDiv): 3,155 disease mutations, 6,321 human-ortholog subst
Performance: FPR=10%, TPR=77%; FPR=20%, TPR=92%

Adzhubei (2010) Nat Methods
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100
Fraction of damaging variant predicted by PolyPhen-2
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N B
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10 P
0
Pathogenic Pathogenic? Benign <0.0001 0.0001..0.0010.001..0.01 0.01..0.1 >0.1
ClinVar: disease mutations EXAC: population variants by AAF
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* Experiment: in vitro activity of TP53 compared with predictions by
PolyPhen and other tools, threshold: 50% of WT activity

* Low false negative prediction rate, but
* 42% of mutations predicted by PolyPhen2 to be damaging had little
measurable consequence for TP53-promoted transcription

The predictions do not effectively differentiate between mutations that
are 1mmediately clinically relevant (ablate or markedly reduce
function), and those that are nearly neutral (decrease the function of the
corresponding protein by 10%)

g9  Yhat do we predict? Miosge (2015) PNAS



fa} Damaging does not mean pathogenic

Variant prioritization tools such as SIFT (Sorts Intolerant From Tolerant) and PolyPhen2
(Polymorphism Phenotyping v2) use the terms damaging and tolerated to describe whether a
variant is predicted to affect protein function or be functionally neutral, respectively. We
emphasize that the term damaging should never be logically equated with causal for a disease
phenotype, because a variant that damages a gene 1s not necessary damaging to an individual’s
health.

The term pathogenic has become widely used to describe a damaging variant that is
(potentially) disease-causing. This is straightforward for dominant Mendelian disorders for
which pathogenic variants typically cause the disease phenotype but more complex for
recessive disorders for which both copies of the gene must harbour variants for pathogenicity
(see the figure). Consider a variant producing a stop codon, p.Arg510Ter, in hexosaminidase
subunit-a (HEXA), which 1s a gene that is implicated in Tay—Sachs disease. Obviously, this
variant changes the transcript in which it resides: the resulting protein is probably
nonfunctional due to truncation and may be subject to nonsense-mediated decay. However, this
does not mean that it will necessarily be pathogenic to the individual, as many Mendelian
diseases such as Tay—Sachs disease, are recessive. Cystic fibrosis is another well-known
example, for which the genomes of approximately 1 in 20 healthy Western Europeans contain a
damaging variant in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. As
the disease 1s recessive, there are no negative health consequences to carriers of damaging
variants. For recessive diseases, two copies of the pathogenic variant must be present, or it
must be in trans to another pathogenic variant, as a so-called compound heterozygote (see the
figure).

Eilbeck (2017) Nat Rev Genet
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The association of damaging variants with pathogenicity has other pitfalls as well. A
variant elsewhere in the genome may introduce a seemingly minor and conservative amino
acid substitution that may nonetheless damage the patient’s health, thereby causing a dominant
Mendelian disease. For example, the semi-conservative amino acid-changing variant
p.Argl43Gln in the gap junction protein-f2 (GJB2) gene is implicated with non-syndromic
hearing loss. This variant has been shown in functional studies to encode a protein with
impaired function and curated by multiple laboratories in the ClinVar database to be
pathogenic.

In a study from 2010, variants implicated in cystic fibrosis and related disorders were
assessed using three prediction tools'®’. This study shed light on the differences between
predictions and causative alleles. For example, the CFTR variant p.Arg75GIn is predicted to be
damaging because it alters a highly conserved position in the protein, but the phenotypic effect
is mild. The converse was shown by p.Val520Phe, a deleterious mutation at a non-conserved
position in the CFTR protein. In another example, the truncating breast cancer type 2
susceptibility protein (BRCA2) variant p.Tyr791Phe is seemingly damaging — it causes the
loss of the 93 C-terminal amino acids of the protein implicated in hereditary breast cancer, but
does not cause the disease phenotype (see ClinVar database where it is curated as benign by
multiple laboratories and an expert panel). BRCA2 provides another example of the complex
relationship between damaging and pathogenic variants. Damaging BRCA2 alleles are
typically classified as pathogenic, but they are not immediately disease-causing; instead, they
increase cancer risk over a lifetime.

Eilbeck (2017) Nat Rev Genet
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| —
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Homozygous
recessive
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Unaffected
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Compound
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-

Affected

Unaffected

Eilbeck (2017) Nat Rev Genet
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Prediction of missense variant effect

e Predictions for the whole proteome: dbNSFP, 84 min
missense and splicing site SNV's

e Ensemble (meta-) predictors: MetaSVM, MetalLR, ReVel, M-
CAP, etc

e Neural networks and other ML techniques: PrimateAl,
~380,000 common missense variants from humans and primates,
gradient boosting tree classifier

e Covariation: EVmutation accounts for epistasis by explicitly
modeling interactions between all the pairs of residues

e Prediction of quantitative effect: Envision 21,026 variant
effect measurements from 9 large-scale experimental
mutagenesis datasets

e Clinical applicability: M-CAP, 9 tools, 7 conservation scores,
298 features derived from MSA, gradient boosting tree classifier
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Ghosh (2017) Genome Biol

with ClinVar review status of two stars or above.



Prediction of missense variant effect

Existing approaches Our approach (EVmutation)

Independent model Epistatic model

Model constraints on sequences
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Inferring context-dependent effects of
mutations from sequences. Evolution has
generated diverse families of proteins and
RNAs with varied sequences that perform
a common function. An unsupervised
probabilistic model trained to generate the
natural diversity in a multiple sequence
alignment of a family can be used to
predict the relative favorability of unseen
mutations. Existing models describe
functional constraints on each position i in
a sequence o 1independently, averaging
over the effect of background positions ;.
This can lead to incorrect predictions of
neutrality. Our approach infers a global
probability = model  with  pairwise
interactions between positions i and j (J,)

as well as background biases at single
positions (4.).

Hopf (2017) Nat Biotech






MS2 COAT PROTEIN

Query:
PDB ID: 2BU1

Chain ID: A

EC number:

Subject:

1FRS
Chain ID: A

EC humber:

2BU1.A 61 KVEVPKVAT QTVGGVE L PVAAWRSYLNMELTIPIFATNSDCELIVKAMQGLLKDGNPIPS 120

1FR5.A 61 mvapmyaT----GvEgpvaawRSv NMELTIPVFATNDDCALIVKALQGTFKTGNPIAT 116
97 ' '
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Prediction of inframe indels effect

Insertions,

duplications
ClinVar, 21 Oct 2019 (hg38)
Pathogenic, Likely pathogenic 303
Benign, Likely benign 306
Other 1,291
GnomAD 2.1.1 (hg38)
AF_POPMAX<1% 30,489
AF_POPMAX>1% 742
T[Jnl{nown 7,389
Individual exome (GiaB) 228

Deletions

1,193
483
3,066

79,023
1,517
10,640

275

Q: what is the most “famous” disease-causing inframe indel?
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Prediction of inframe indels effect

Gene

KCNH2
Potassium Voltage-Gated Channel
Subfamily H Member 2

PHOX2B
Paired Like Homeobox 2B

CACNAIA
Calcium Voltage-Gated Channel
Subunit Alphal A

FOXCl1
Forkhead Box C1

ClinVar

Pathogenic (4)
Unknown (8)

Benign (7)
Pathogenic (4)
Unknown (2)

Benign (5)
Pathogenic (2)

Benign (5)
Pathogenic (3)
Unknown (4)

gnomAD

Rare (11)

Common (2)
Rare/Unknown (14)

Common (4)
Rare/Unknown (42)

Common (2)
Rare/Unknown (49)




Prediction of inframe indels effect

Method Genome | Coordinates |Implemen | Publi- | Last
version -tation cation update

VEST-Indel 37, 38 Genome Web / 2016 2019
Local

CADD 37, 38 Genome Web / 2013 2019
Local

SIFT Indel 37, 38 Genome Web / 2013 2016
Local

MutPred-Indel |37 ? Protein Web / 2019 -
Local

DDIG-1n 37 Genome Web 2013 2017

PROVEAN 37 Genome Web / 2012 2015
Local

100



Prediction of inframe indels effect

Method ML Best features
VEST-Indel | Random | LoglO of count of publications in PubMed where gene
forest name 1s mentioned, Exon Conservation, protein
local regional sequence composition
CADD SVM cDNApos, ProtPos, PolyPhenVal, SIFTVal, Relative
position in coding sequence
SIFT Indel Decision | Repeat, DNA Conservation score, Protein disorder
tree region, Fraction of all Pfam domains affected due to indel
MutPred- Neural | PSSM*, sequence conservation indices, number of
Indel Network | homologs in the human and mouse genomes, relative
position in protein
DDIG-in SVM Disorder, ASA*, DNA Conservation,
Neff*, Probabylity of sheet
PROVEAN | Not ML | PROVEAN score

* PSSM - position-specific scoring matrix, ASA - solvent accessible surface area, Neff
101 - number of effective homologous sequences aligned to residues




Prediction of inframe indels effect

Meta-Predictors that Combine Classifications of Multiple
Methods

In these Boolean expressions, each method is represented by a
variable X;, which is set to TRUE when the method classifies an
example as pathogenic and FALSE when the method classifies an ex-
ample as benign. For combinations of two methods, candidate meta-
predictors were (X, and X,) and (X, or X,). For combinations
of three methods, candidate meta-predictors (X, and X, and X;),
(X, or X, or X;),(X, or X,or X;), (X, and X,) or X3), ((X, or
X;)and X3), ((X; and X;)or X,),((X, or X3)and X,), ((X, and
X3)or X;), (X5 or X5)and X,). For combinations of four meth-
ods, there are 64 possible combinations (Supp. Table S4). We used
a brute-force approach and limited the number of methods in the
meta-predictor to a maximum of four to avoid a combinatorial ex-
plosion. All possible four-way combinations of the five methods
were explored.

Method Sensitivity Specificity Balanced Accuracy
(VEST-indel AND PROVEAN) OR (CADD AND DDIG-in) 0.930 0.974 0.952
(VEST-indel OR CADD) AND PROVEAN 0.947 0.955 0.951
(VEST-indel OR CADD) AND (PROVEAN OR DDIG-in) 0.947 0.949 0.948
VEST-indel OR (CADD AND PROVEAN AND DDIG-in 0.930 0.955 0.942
VEST-indel OR (CADD AND DDIG-in) 0.930 0.949 0.939
VEST-indel OR (DDIG-in AND CADD) 0.930 0.949 0.939
VEST-indel OR (CADD AND PROVEAN) 0.947 0.929 0.938
(VEST-indel OR DDIG-in) AND PROVEAN 0.930 0.942 0.936

102 Douville (2016) Hum Mutation
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MEP
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XFP
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XF
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XFP
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XFP
XF
XF
XF
XFP
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XF

Prediction of inframe indels effect
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SpliceAl: predicting splicing from sequence

Essential splice variants disrupt canonical

splice sites (GT, AG)

Cryptic splice variants: noncoding
(intronic, synonymous) variants outside the
canonical splice sites that disrupt the normal

pattern of mRNA splicing

SpliceAlI: a 32-layer deep neural network
that accurately predicts splice junctions
from an arbitrary pre-mRNA transcript

sequence

Training set: pre-mRNA transcripts;
algorithm learns the context of actual

splicing sites

104

INPUT:
pre-mRNA
nucleotide
sequence

OUTPUT:
Predicted
score

dilated
convolution
¥

dilated
convolution

%)_

0.85

Y

O £ P
6

R
)
Fos

Jaganathan (2019) Cell
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SpliceAl: predicting splicing from sequence

A Splicing prediction
MYBPC3
deep neural . —_—
\ network Wildtype
A —>|dee‘J neurall o o -
network
chr11:47364709 G>A Mutant
NM _000256.3(MYBPC3).c.1227-13G>A Acceptor 0.92
S 107 I —— I —
N
Interpreted Interpretation Number of
condition submissions Acceptor 0.94
Hypertrophic Pathogenic 2 score .- —
cardiomyopathy A I |
Input: position + flanks up to Skbp Acosptor gain - Acospor loss

Output: P(acceptor), P(donor), P(neither)

SpliceAI-10k predicts acceptor and donor scores at each position in the pre-
mRNA sequence of the gene with and without the mutation, as shown here for
rs397515893, a pathogenic cryptic splice variant in the MYBPC3 intron
associated with cardiomyopathy. The D score value for the mutation 1s the largest

change 1n splice prediction scores within 50 nt from the variant.
Jaganathan (2019) Cell



SpliceAl: predicting splicing from sequence

B : .
chr7:117,120,017-117,308,719 188,703 nt B Splice acceptor M Splice donor
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SpliceAl-10k score

The full pre-mRNA transcript for the CFTR gene scored using MaxEntScan
(top) and SpliceAl-10k (bottom) 1s shown, along with predicted acceptor (red
arrows) and donor (green arrows) sites and the actual positions of the exons
(black boxes). For each method, we applied the threshold that made the
number of predicted sites equal to the total number of actual sites.
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SpliceAl: predicting splicing from sequence
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o
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T

Cryptic splice de novos per person >

1.51X (P=0.000416) B

I

DDD
n=4293 n=3953 n=2073

| DDD

1.3% (P=0.0203)
[ |

M Protein-altering

Nonsense and

frameshift
ASD Essential splice

m Cryptic splice
DDD: 8.9%
ASD: 11.5%

ASD controls

(A) Predicted cryptic splice de novo mutations per person for patients from the
Deciphering Developmental Disorders cohort (DDD), individuals with autism
spectrum disorders (ASDs) from the Simons Simplex Collection and the Autism
Sequencing Consortium, as well as healthy controls.

(B) Estimated proportion of pathogenic de novo mutations by functional
category for the DDD and ASD cohorts, based on comparison to controls.
Cryptic splicing may yield up to 10% of pathogenic variants in

neurodevelopmental disorders

Jaganathan (2019) Cell
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Regulatory elements in the human genome

Promoter: region (100-1000 bp) at the 5' end of genes where transcription
factors and RNA polymerase bind to initiate transcription.

e Proximal promoters typically contain a CpG island
e Methylation of CpG i1slands silences genes

Enhancer: region (50-1500 bp) that binds transcription factors and interact
with promoters to stimulate transcription of distant genes (<1Mbp)

e ~10° in the human genome (Penacchio 2013 Nat Rev Genet)
e Tissue-, time- or cell-specific
e Highly variable location (e.g., intron of an other distant gene)

Transcription factor binding motif/site: short genomic sequence that 1s
known to bind to a particular transcription factor

e 1000-2000 TFs in the human genome
e 400-800 TFBS models (HOCOMOCO v.11)



Regulatory elements in the human genome

Histone modification
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4\ DNA methylation
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TF Gene coding exons
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—) —
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Promoter Promoter

non-coding RNA

Insulator

Cis-regulatory elements: promoters (100—-1000bp) initiate the transcription of a target gene and are
located immediately upstream of transcription start sites.

Distal DNA regulatory elements: Enhancers (50—1500bp), silencers, and insulators are DNA regulatory
sequences, where transcription factors can bind and regulate expression rates of target genes. A
complex of transcription factor and co-activators, mediated by enhancers, induce a conformational
change of the chromatin structure, allowing the rapid production of specific genes depending on tissue/
cell-type and development-specific contexts. This lies in contrast to co-repressors, which serve to
reduce gene expression by attaching to silencers. Insulators (300—2000bp) establish boundaries of
gene expression by mediating loop formation and nucleosome modifications and thus prevent unneeded
interactions of both enhancers and silencers with promoters

109 Lee (2018) Hum Genet



Regulatory elements in the human genome

UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly
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Examples of non-coding functional variants

A B
500 bases| 1 hg1d reg261424

TRIM21 G=>C
Bl | o244

GM12E87TA NFKB C
e — .:"F"hq_—'_ . A . 2 - -
] 5 3 7 g q & [a] 11

GM12881 NFKB

GM 12582 NFKB

EM12E7E EBF

Hela-53 CBPE GIG Ref. Homozygous

Henlz2 HNEL
[ T . el .

GM12878 DMase CIG Heterozygous

EM12581 DMNase

CIC Alt. Homozygous
2 r . _

Figure 1. A SNV (s9261424) overlapping many regulatory features. () This SMV falls within peak
regions for many ChiP-seq factors as well as DMase-seq peaks from multiple cell lines. (B) The same SNV
overlaps a motif match to the MFEB maotif and has been shown to alter binding. The signal tracks

represent ChiP-seq peaks of NFEB at the SNV site for three individuals: homozygous to reference allele
(G), heterozygous, and homaozygous to alternate allele (C) (Kasowski et al. 20710).

EM 12582 DMNase

111 Boyle (2012) Genome Res



Examples of non-coding functional variants

a C

DARC FDYN
| W ET\/ o
2 kb
X e
MCMé LCT
— 1 —F  — =

— T
e

(a) Atypical chemokine receptor 1 ACKRI (DARC): mutations disrupt
GATAI binding site = no expression in erythrocytes = no point of
entry for the malarial parasite Plasmodium vivax

(b) Lactase LCT: mutations in MCM6 intron elevate LCT transcription,
allowing digestion of lactose

(¢) Prodynorphin PDYN: precursor of neuropeptide dynorphin, implicated
in SCZ, BP, temporal lobe epilepsy. Human-branch specific mutations
(5+1) regulate constitutive and induced expression, respectively

112 Wray (2007) Nat Rev Genet



Examples of non-coding functional variants

A C
Gain of Function Binding of miRNA in 3'prime Loss of miRNA binding sites
£
N s R
TCHGGCCG ' . ‘
2 Rk ! 3 Gene expression mhlbrtlor% 5 3
@ A A Wild Type
@ 1 : FTTET ] Disruption of miRNA binding
T %:1 % C cG /—-“'--:_#;,_J_D_J leading to gene expression
0
1 2 3 456 7

8 @ Degradation of transcript
rcllccccea
Reduction in translational machinery

Mutant D Tertiary structure : ! :
Secondary structure B accessibility + ribosomal scanning
B
Loss of Function /D
; AICTC‘H A 5 ——
5 TF mot Wild Type translation
< G 5'UTR efficiency
£18 T
G C T C
0 < A
2 3 4 6 7 8

1
Mererra —ﬁl

Mutant

(A) Mutations within promoter (e.g., TERT) and enhancer regions (7ALI) can create transcription
factor (TF) binding motifs in a gain-of-function manner allowing the binding of transcriptional
activators (B) Alternatively, mutations within regulatory regions can create the loss of transcription
factor binding sites, leading to transcriptional repression (C) miRNA binding within the 3> UTR control
gene expression, by inhibiting translation or marking transcripts for degradation. Mutations that disrupt
these binding sites can lead to over-expression (NFKBIE and NOTCH1 genes in cancer) (D) Mutations
within the 5 UTR can alter the secondary and tertiary structures, as well as trans-acting RNA binding
protein sites. These alterations can affect translation efficiency and mRNA stability (BRCAI and

1{3PKN24 genes) Patel (2018) High-Throughput



Examples of non-coding functional variants

The NOSIAP gene on human chromosome 1q has been long known to be
associated with variability of QT interval and cardiac repolarization, whereas the
underlying mechanism was unclear. A recent study utilized high-coverage
resequencing and regional association for fine mapping in the GWAS locus for QT
interval variation, which identified 210 common non-coding risk variants. Further
enhancer/suppressor analysis of 12 selected variants located in cardiac phenotype
associated DNasel hypersensitivity sites assisted in the identification of an upstream
enhancer variant (rs7539120) associated with QT interval. This variant can affect
cardiac function by increasing NOSIAP transcript expression in cardiomyocyte-
intercalated discs and increase risk of cardiac arrhythmias.

Similar evidence for functional enhancer SNPs has also been observed at many
other loci, including the intronic enhancer SNPs at the MEISI gene associated with
restless legs syndrome and at the BCL//A gene associated with fetal hemoglobin
levels, the intergenic enhancer SNP upstream to the MYB gene that 1s a critical
regulator of erythroid development and fetal hemoglobin levels, and the recessive
mutations in a distal enhancer located 25 kb downstream of PTF1A that 1s associated
with isolated pancreatic agenesis.

114 m Zhang (2015) Hum Mol Genet



Examples of non-coding functional variants

A recent study on the schizophrenia-associated locus at 1p21.3 identified a rare
enhancer SNP (chrl:98515539A>T, hgl9) with increased risk. The chromatin
conformation capture assay showed that this risk allele has no obvious influence on
the neighboring genes such as DPYD, but can reduce the expression of non-coding
genes MIR137/MIR2682.

In some instances, such functional variants are located in either the 5" or 3’
untranslated region (UTR) of the disease-associated genes. A recent study identified
the association of rs11603334 (a SNP located in the 5" UTR of ARAPI) with fasting
proinsulin and type 2 diabetes. The allele-specific expression assay in human
pancreatic islet samples showed that the risk allele of rs11603334 can upregulate
gene expression of ARAPI by 2-fold, which 1s also supported by the observation of
decreased binding of pancreatic beta cell transcriptional regulators PAX6 and PAX4
to the rs11603334 risk allele and its corresponding increased promoter activity.

In the case of hypertriglyceridemia-associated APOAS5, the 3" UTR SNP
1s2266788 was predicted to create a potential miRNA binding site for liver-
expressed miR-485-5p. Luciferase reporter assays in both HEK293T cells with a
miR485-5p precursor and in HuH-7 cells with endogenously expressed miR-485-5p
suggested that the mutant allele of rs2266788 is involved in the miR-485-5p-
mediated downregulation of APOAS.

115 m Zhang (2015) Hum Mol Genet



Prediction of non-coding variant effect

CADD: Combined Annotation—Dependent Depletion integrates diverse
genome annotations and scores any possible human single-nucleotide variant
(SNV) or small insertion-deletion (indel) event

«Deleterious variants—that is, variants that reduce organismal fitness—are
depleted by natural selection in fixed but not simulated variation»

Observed variants (15 mln SNVs, 0.63 mln insertions and 1.1 min
deletions):

— human-chimp differences; SNPs with MAF>5% excluded

— SNPs with DAF (derived allele frequency) > 95% (<5% of total)

Simulated variants (44 mln SNVs, 2.1 mln insertions and 3.1 mln deletions):
—a fully empirical model of sequence evolution with a separate rate for
CpG dinucleotides and local adjustment of mutation rates

Features: VEP annotation, SIFT, PolyPhen-2, conservation scores, ENCODE
methylation and histone modification annotation in various cell/tissue types,
TF binding sites, etc.

Output: C-scores that measure deleteriousness for 8.6x10° variants
116 Kircher (2014) Nat Genet



Prediction of non-coding variant effect
CADD: Combined Annotation—Dependent Depletion =

Stop loss
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Prediction of non-coding variant effect

Score

Data sources

Approach

Eigen

FunSeqg2

LINSIGHT

CADD

FATHMM

ReMM

Orion

CDTS

Uses data from the ENCODE and Roadmap
Epigenomics projects

Inter- and Intra-species conservation

Loss- and gain-of-function events for transcription
factor binding

Enhancer—gene linkage

Conservation scores (phastCons, phylopP),
predicted binding sites (TFBS, RNA), regional
annotations (ChIP-seq, RNA-seq)

Ensembl variant effect predictor

Protein-level scores: Grantham, SIFT, PalyPhen
DNase hypersensitivity, TFBS, transcript
information

GC content, CpG content, histone methylation
46-way sequence conservation

ChIP-seq, TFBS, DNase-seq

FAIRE, footprints, GC content

Predict potential of non-coding variant to cause a
Mendelian disease if mutated

26 features: PhastCons, PhyloP, CpG, GC, regula-
tion annotations

Predict potential of non-coding variant to cause a
Mendelian disease if mutated

Independent from annotation and features
Identify constrained non-coding regions in the
human genome and deleteriousness of variants
Independent from annotation and features. Uses
k-mers

Weighted linear combination of individual
annotations

Unsupervised learning method

Weighted scoring system

Graphical model

Selection parameter fitting using general-
ized linear model based on 48 genomic
features

Support vector machine

Hidden Markov models

Random forest classifier

Expected and observed site-frequency
spectrum of a given stretch of sequence

Expected and observed site-frequency
spectrum of a given heptamer

118

Telenti (2018) Hum Mol Genet



119

Prediction of non-coding variant effect

Table 2 Summary of genomic features used for LINSIGHT scores

Class

Genomic feature?

Spatial resolution

Conservation

Binding site

Regional annotation

phyloP score

phastCons element

SiPhy element

CEGA element

Conserved TFBS

rVISTA TFBS

SwissRegulon TFBS

Predicted TFBS within ChIP-seq peak
Conserved miRNA binding site
Splicing site predicted by SPIDEX
ChlP-seq peak of transcription factor
DNase-| hypersensitive site

UCSC FAIRE peak

RMNA-seq signal

Histone modification peak
FANTOMS5 enhancer

Predicted distal regulatory module
Distance to nearest TSS

High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low

aEach ‘genomic feature’ listed here may actually correspond to multiple features in the
model. For example, four features are derived from phyloP scores: two from the mammalian
phyloP scores and two from the vertebrate phyloP scores. See Supplementary Table 3

for complete details.

LINSIGHT integrates functional genomic data together with conservation
scores and other features to provide a high-powered, high-resolution measure of

potential function.

Huang (2017) Nat Genet
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Prediction of non-coding variant effect

0.80 ‘llﬂ*\ﬁ
382;4.;$l |

Intergenic Intronic 3’ UTR 5 UTR Promoter TFBS Conserved Splice

Fitness
consequence

TFBS site
b 200 bp | I
HGMD variant (CR065653)
v
LINSIGHT
fitCons
phastCons I A s
phyloP
GERP++
DNase IIHIMWIWIW

cluster

(a) Distributions of LINSIGHT scores for various genomic regions. Intergenic
regions, intronic regions, UTRs, and 1-kb promoters: GENCODE 19; TFBSs:
ChIP-seq peaks (Ensembl Regulatory Build); conserved TFBSs: UCSC Genome
Browser. (b) LINSIGHT 1is the only method to highlight a variant from HGMD
(CR065653) that 1s associated with upregulation of the TERT gene.

Huang (2017) Nat Genet



Variant effect and association with phenotypes
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%?5 '_}p.ﬁ
1 A
Bipolar disorder | '_?
(1201/5233) '_‘D.BQ 1“E_)rﬂi
| 042 HQ_DDBE
0011 Mutation Type ,0.015
pote At least 1 damaging 018
Schizophrenia | At least 3 damaging
(62881 0939) 0,092 . ‘P_‘I
Tl A Atleast 7 damaging
-5
»—o—1|'1 x10 ¢ PTV +atleast 7 damaging 000048
'_P_0016 HD_D1 9
00086 LO.DS:Z
ADHD | =
(4263/5233) a 0.0064 ‘P 097
-0 -5
4x10 th =10
'_|3.3>= 107 HU.UU‘W
-
) '_|B.3 x 10 HO.DD39
Autism | s .
(4805/5233) ) B.8x10" IMS'E =107
16x 107 1.3% 107"
= -
0.0016 _?.053
O.DDSQ 10094
Intellectual disability | . '_Q
(394/2494) L 4.3x107 . ID.9|2
1.6x107"° 25107
10 15 20 25 10 15 20 25

Odds Ratio for one additional variant

Meta-analyzed association between ultra-rare and rare damaging missense variants in
PTV-intolerant genes and 5 diseases. The strength of the association increases as

function of the number of algorithms and is particularly strong among ultra-

121 rare variants Ganna (2018) Am J Hum Genet



Variant effect and association with phenotypes

A De novo variant rate in TIC Genetics Cohort vs SSC Siblings - all coding variants
2.5
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All classes of de novo non-synonymous variants show a higher mutation rate in
Tourette disorder probands (orange) versus SSC siblings (controls, blue). LGD:

likely gene disrupting variants:

insertion of premature stop codon, frameshift, or

canonical splice-site variant; FS: frameshift indels; Damaging: variants predicted by

122 PolyPhen2; Mis3: LGD or damaging; Nonsyn: missense or NONSENsgyjijisey (2017)
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Summary

e Human genome sequence is still being updated. We may soon
switch from a single reference sequence to multiple ones

e Protein-coding genes represent only a minor fraction of all human
genes and a tiny fraction of the genome

e Roughly one half of human genome are repetitive sequences

e Human gene structure and processing 1s quite diverse and
complicated

e There are multiple sequence regions that assist in gene splicing;:
exonic and intronic splicing enhancers and silencers. A significant
fraction of human disease mutations are believed to be splicing-
related

e Epigenetics provide heritable phenotype changes that do not
involve alterations in the DNA sequence: DNA methylation at CpG
nucleotides, covalen modification of histone proteins. Noncoding
RNAs are considered as part of epigenetic machinery.
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Summary

e Approximately 100 genes on various chromosomes are subject to
chromosomal imprinting

e Variant annotation 1s a proccedure that determines variant
consequence for a gene/protein based on its location relative to
the gene sequence. It 1s governed and complicated by transcript
structure complexity.

e Variant effect prediction determines potential functional impact
of a particular variant based on its features.

e There are numerous prediction algorithms for major types of
variants. Their performance and domain of applicability 1s a
debated question, however, phenotype-associated variants are
typically enriched with functional predictions.
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Further reading

e Strachan, Read — Human Molecular Genetics, Chapter 13

e Rivas, M.A., Pirinen, M., Conrad, D.F., Lek, M., et al. (2015). Effect of
predicted protein-truncating genetic variants on the human
transcriptome. Science 348, 666—669.

e Saleheen, D., Natarajan, P., et al. (2017). Human knockouts and

phenotypic analysis in a cohort with a high rate of consanguinity. Nature
544, 235-239

e Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., et al.
(2019). Predicting Splicing from Primary Sequence with Deep
Learning. Cell 176, 535-548.e24.

e Niroula, A., and Vihinen, M. (2016). Variation Interpretation Predictors:
Principles, Types, Performance, and Choice. Human Mutation 377, 579—
597.
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Further reading

e L1, J., Zhao, T., Zhang, Y., Zhang, K., Shi, L., Chen, Y., Wang, X., and
Sun, Z. (2018). Performance evaluation of pathogenicity-computation
methods for missense variants. Nucleic Acids Res 46, 7793—7804.

e DePristo, M.A., Weinreich, D.M., and Hartl, D.L. (2005). Missense
meanderings 1n sequence space: a biophysical view of protein evolution. Nat.
Rev. Genet 6, 678—6877.

e Park, E., Pan, Z., Zhang, Z., Lin, L., and Xing, Y. (2018). The Expanding
Landscape of Alternative Splicing Variation in Human Populations. Am. J. Hum.
Genet. 102, 11-26.

e Lce, P, Lee, C., Li, X., Wee, B., Dwivedi, T., and Daly, M. (2018). Principles
and methods of in-silico prioritization of non-coding regulatory variants. Hum
Genet 137, 15-30.

e Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant
prioritization and Mendelian disease. Nature Reviews Genetics 18, 599.
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