
Prediction of missense variant effect
Applications
• Disease gene discovery
• Clinical sequencing // ~11,000 nsSNVs per individual, including rare
• Evolutionary biology
• Protein design

 
Missense effect is diverse; experiment is not feasible. What experiment?
In vivo:  
  Clinical impact  // rare, context-dependent, inheritance mode
  Model organisms // applicability?
In vitro:
  Functional assay // applicability?

In silico: Damaging | Tolerated, Benign
  Data sources and features
  Prediction methods
  Evaluation
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Data sources

Clinical impact . . . . . . . . . . . . . . . . . . . . . . . .  pathogenic
 ClinVar, HGMD

Biochemical assays. . . . . . . . . . . . . . . . . . . . . .functional
 Papers, Protein Mutant Database

Deep mutational scans. . . . . . . . . . . . . . . . . . . .functional
 Papers, MAVEdb

Population data. . . . . . . . . . . . . . . . . . . . . . . . . deleterious
 dbSNP, ExAC/gnomAD, other species

Phylogenetic data. . . . . . . . . . . . . . . . . . . . . . . deleterious
 NCBI nr, UniPto UCSC MultiZ

Prediction of missense variant effect
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Features

1. Substitution
 Conservative / radical (BLOSUM, Grantham score)
 Volume, hydrophobicity change

2. Site
 Conservation
 Location: core / surface (Relative Surface Area)
 Contacts: protein, ligand, DNA/RNA
 Secondary structure, disorder
 B-factor

3. Protein
 Number of interactions
 Number of PubMed references

Prediction of missense variant effect
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Missense variants in human disease

Peterson (2013) J Mol Biol

Exercise: list top 10 most frequent 
disease-causing missense variants
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Marini (2010) PLOS Genet

Multiple Sequence Alignment: evolutionary record

Prediction of missense variant effect
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Protein
Multiple

Sequence 
Alignment

PSIC (Position Specific 
Independent Counts) 
profile scores matrix

Sunyaev (1999) Protein Eng

Prediction of missense variant effect
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Adzhubei (2010) Nat Methods

Examples of predictive features used by PolyPhen-2
score_delta: PSIC(AA1)-PSIC(AA2)
score1: PSIC(AA1)
delta_volume: change in side chain volume
cpg_transition:  CpG context (0:no, 1: removes CpG, 2:creates) 
acc_normed*: normalized accessible surface area // if 3D structure available
b_fact*: average temperature factor

Disease
Benign

Prediction of missense variant effect
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Adzhubei (2010) Nat Methods

PolyPhen-2 prediction pipeline

Training set (HumDiv):  3,155 disease mutations, 6,321 human-ortholog subst
Performance:  FPR=10%, TPR=77%;   FPR=20%, TPR=92%

Prediction of missense variant effect
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ClinVar: disease mutations ExAC: population variants by AAF

Fraction of damaging variant predicted by PolyPhen-2

Prediction of missense variant effect
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Miosge (2015) PNAS
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• Experiment: in vitro activity of TP53 compared with predictions by 
PolyPhen and other tools, threshold: 50% of WT activity

• Low false negative prediction rate, but
• 42% of mutations predicted by PolyPhen2 to be damaging had little 

measurable consequence for TP53-promoted transcription
•  The predictions do not effectively differentiate between mutations that 

are immediately clinically relevant (ablate or markedly reduce 
function), and those that are nearly neutral (decrease the function of the 
corresponding protein by 10%)

What do we predict?

Prediction of missense variant effect
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Damaging does not mean pathogenic
Variant prioritization tools such as SIFT (Sorts Intolerant From Tolerant) and PolyPhen2 

(Polymorphism Phenotyping v2) use the terms damaging and tolerated to describe whether a 
variant is predicted to affect protein function or be functionally neutral, respectively. We 
emphasize that the term damaging should never be logically equated with causal for a disease 
phenotype, because a variant that damages a gene is not necessary damaging to an individual’s 
health.  

The term pathogenic has become widely used to describe a damaging variant that is 
(potentially) disease-causing. This is straightforward for dominant Mendelian disorders for 
which pathogenic variants typically cause the disease phenotype but more complex for 
recessive disorders for which both copies of the gene must harbour variants for pathogenicity 
(see the figure). Consider a variant producing a stop codon, p.Arg510Ter, in hexosaminidase 
subunit-α (HEXA), which is a gene that is implicated in Tay–Sachs disease. Obviously, this 
variant changes the transcript in which it resides: the resulting protein is probably 
nonfunctional due to truncation and may be subject to nonsense-mediated decay. However, this 
does not mean that it will necessarily be pathogenic to the individual, as many Mendelian 
diseases such as Tay–Sachs disease, are recessive. Cystic fibrosis is another well-known 
example, for which the genomes of approximately 1 in 20 healthy Western Europeans contain a 
damaging variant in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. As 
the disease is recessive, there are no negative health consequences to carriers of damaging 
variants. For recessive diseases, two copies of the pathogenic variant must be present, or it 
must be in trans to another pathogenic variant, as a so‑called compound heterozygote (see the 
figure).

Eilbeck (2017) Nat Rev Genet90



The association of damaging variants with pathogenicity has other pitfalls as well. A 
variant elsewhere in the genome may introduce a seemingly minor and conservative amino 
acid substitution that may nonetheless damage the patient’s health, thereby causing a dominant 
Mendelian disease. For example, the semi-conservative amino acid-changing variant 
p.Arg143Gln in the gap junction protein‑β2 (GJB2) gene is implicated with non-syndromic 
hearing loss. This variant has been shown in functional studies to encode a protein with 
impaired function and curated by multiple laboratories in the ClinVar database to be 
pathogenic. 

In a study from 2010, variants implicated in cystic fibrosis and related disorders were 
assessed using three prediction tools107. This study shed light on the differences between 
predictions and causative alleles. For example, the CFTR variant p.Arg75Gln is predicted to be 
damaging because it alters a highly conserved position in the protein, but the phenotypic effect 
is mild. The converse was shown by p.Val520Phe, a deleterious mutation at a non-conserved 
position in the CFTR protein. In another example, the truncating breast cancer type 2 
susceptibility protein (BRCA2) variant p.Tyr791Phe is seemingly damaging — it causes the 
loss of the 93 C-terminal amino acids of the protein implicated in hereditary breast cancer, but 
does not cause the disease phenotype (see ClinVar database where it is curated as benign by 
multiple laboratories and an expert panel). BRCA2 provides another example of the complex 
relationship between damaging and pathogenic variants. Damaging BRCA2 alleles are 
typically classified as pathogenic, but they are not immediately disease-causing; instead, they 
increase cancer risk over a lifetime.

Eilbeck (2017) Nat Rev Genet

Damaging does not mean pathogenic
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Eilbeck (2017) Nat Rev Genet

Damaging does not mean pathogenic
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https://genomeinterpretation.org/vipdb

Prediction of missense variant effect

93



 Predictions for the whole proteome: dbNSFP, 84 mln 
missense and splicing site SNVs
 Ensemble (meta-) predictors: MetaSVM, MetaLR, ReVel, M-
CAP, etc
 Neural networks and other ML techniques: PrimateAI, 
~380,000 common missense variants from humans and primates, 
gradient boosting tree classifier
 Covariation: EVmutation accounts for epistasis by explicitly 
modeling interactions between all the pairs of residues
 Prediction of quantitative effect: Envision 21,026 variant 
effect measurements from 9 large-scale experimental 
mutagenesis datasets
 Clinical applicability: M-CAP, 9 tools, 7 conservation scores, 
298 features derived from MSA, gradient boosting tree classifier

Prediction of missense variant effect
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Prediction of missense variant effect

Ghosh (2017) Genome Biol95



Hopf (2017) Nat Biotech

Inferring context-dependent effects of 
mutations from sequences. Evolution has 
generated diverse families of proteins and 
RNAs with varied sequences that perform 
a common function. An unsupervised 
probabilistic model trained to generate the 
natural diversity in a multiple sequence 
alignment of a family can be used to 
predict the relative favorability of unseen 
mutations. Existing models describe 
functional constraints on each position i in 
a sequence σ independently, averaging 
over the effect of background positions j. 
This can lead to incorrect predictions of 
neutrality. Our approach infers a global 
probability model with pairwise 
interactions between positions i and j (J

ij
) 

as well as background biases at single 
positions (h

i
).

Prediction of missense variant effect

96





Prediction of inframe indels effect
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Prediction of inframe indels effect

98
Q: what is the most “famous” disease-causing inframe indel?



Prediction of inframe indels effect
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Method Genome 
version

Coordinates Implemen
-tation

Publi-
cation

Last 
update

VEST-Indel 37, 38 Genome Web / 
Local

2016 2019

CADD 37, 38 Genome Web / 
Local

2013 2019

SIFT Indel 37, 38 Genome Web / 
Local

2013 2016

MutPred-Indel 37 ? Protein Web / 
Local

2019 -

DDIG-in 37 Genome Web 2013 2017

PROVEAN 37 Genome Web / 
Local

2012 2015

Prediction of inframe indels effect
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Method ML Best features

VEST-Indel Random 
forest

Log10 of count of publications in PubMed where gene 
name is mentioned, Exon Conservation, protein 
local regional sequence composition 

CADD SVM cDNApos, ProtPos, PolyPhenVal, SIFTVal, Relative 
position in coding sequence

SIFT Indel Decision 
tree

Repeat, DNA Conservation score, Protein disorder 
region, Fraction of all Pfam domains affected due to indel

MutPred-
Indel

Neural 
Network

PSSM*, sequence conservation indices, number of 
homologs in the human and mouse genomes, relative 
position in protein

DDIG-in SVM Disorder, ASA*, DNA Conservation, 
Neff*, Probabylity of sheet

PROVEAN Not ML PROVEAN score

* PSSM - position-specific scoring matrix, ASA - solvent accessible surface area, Neff 
- number of effective homologous sequences aligned to residues

Prediction of inframe indels effect
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Douville (2016) Hum Mutation

Prediction of inframe indels effect
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Jaganathan (2019) Cell

Essential splice variants disrupt canonical 
splice sites (GT, AG)
Cryptic splice variants: noncoding 
(intronic, synonymous) variants outside the 
canonical splice sites that disrupt the normal 
pattern of mRNA splicing 

SpliceAI: a 32-layer deep neural network 
that accurately predicts splice junctions 
from an arbitrary pre-mRNA transcript 
sequence

Training set: pre-mRNA transcripts; 
algorithm learns the context of actual 
splicing sites

SpliceAI: predicting splicing from sequence
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Jaganathan (2019) Cell

SpliceAI: predicting splicing from sequence

SpliceAI-10k predicts acceptor and donor scores at each position in the pre-
mRNA sequence of the gene with and without the mutation, as shown here for 
rs397515893, a pathogenic cryptic splice variant in the MYBPC3 intron 
associated with cardiomyopathy. The D score value for the mutation is the largest 
change in splice prediction scores within 50 nt from the variant.

NM_000256.3(MYBPC3):c.1227-13G>A

105

Input: position + flanks up to 5kbp
Output: P(acceptor), P(donor), P(neither)



Jaganathan (2019) Cell

SpliceAI: predicting splicing from sequence

The full pre-mRNA transcript for the CFTR gene scored using MaxEntScan 
(top) and SpliceAI-10k (bottom) is shown, along with predicted acceptor (red 
arrows) and donor (green arrows) sites and the actual positions of the exons 
(black boxes). For each method, we applied the threshold that made the 
number of predicted sites equal to the total number of actual sites.
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Jaganathan (2019) Cell

SpliceAI: predicting splicing from sequence

(A) Predicted cryptic splice de novo mutations per person for patients from the 
Deciphering Developmental Disorders cohort (DDD), individuals with autism 
spectrum disorders (ASDs) from the Simons Simplex Collection and the Autism 
Sequencing Consortium, as well as healthy controls. 
(B) Estimated proportion of pathogenic de novo mutations by functional 
category for the DDD and ASD cohorts, based on comparison to controls.
Cryptic splicing may yield up to 10% of pathogenic variants in 
neurodevelopmental disorders
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Promoter: region (100-1000 bp) at the 5' end of genes where transcription 
factors and RNA polymerase bind to initiate transcription.
   Proximal promoters typically contain a CpG island
   Methylation of CpG islands silences genes

Enhancer: region (50-1500 bp) that binds transcription factors and interact 
with promoters to stimulate transcription of distant genes (<1Mbp)
   ~105 in the human genome (Penacchio 2013 Nat Rev Genet)
   Tissue-, time- or cell-specific
   Highly variable location (e.g., intron of an other distant gene)

Transcription factor binding motif/site:  short genomic sequence that is 
known to bind to a particular transcription factor
   1000-2000 TFs in the human genome
   400-800 TFBS models (HOCOMOCO v.11)

Regulatory elements in the human genome
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Lee (2018) Hum Genet

Cis-regulatory elements: promoters (100–1000bp) initiate the transcription of a target gene and are 
located immediately upstream of transcription start sites. 
Distal DNA regulatory elements: Enhancers (50–1500bp), silencers, and insulators are DNA regulatory 
sequences, where transcription factors can bind and regulate expression rates of target genes. A 
complex of transcription factor and co-activators, mediated by enhancers, induce a conformational 
change of the chromatin structure, allowing the rapid production of specific genes depending on tissue/
cell-type and development-specific contexts. This lies in contrast to co-repressors, which serve to 
reduce gene expression by attaching to silencers. Insulators (300–2000bp) establish boundaries of 
gene expression by mediating loop formation and nucleosome modifications and thus prevent unneeded 
interactions of both enhancers and silencers with promoters

Regulatory elements in the human genome
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~1,000 bp~1 Mbp Gene~1,000 bp~1 Mbp Gene~1,000 bp~1 Mbp Gene

Regulatory elements in the human genome
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Examples of non-coding functional variants

Boyle (2012) Genome Res111



(a) Atypical chemokine receptor 1 ACKR1 (DARC): mutations disrupt 
GATA1 binding site ⟹ no expression in erythrocytes ⟹ no point of 
entry for the malarial parasite Plasmodium vivax

(b) Lactase LCT: mutations in MCM6 intron elevate LCT transcription, 
allowing digestion of lactose

(c) Prodynorphin PDYN: precursor of neuropeptide dynorphin, implicated 
in SCZ, BP, temporal lobe epilepsy. Human-branch specific mutations 
(5+1) regulate constitutive and induced expression, respectively

Wray (2007) Nat Rev Genet 

Examples of non-coding functional variants
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Patel (2018) High-Throughput

Examples of non-coding functional variants

(A) Mutations within promoter (e.g., TERT) and enhancer regions (TAL1) can create transcription 
factor (TF) binding motifs in a gain-of-function manner allowing the binding of transcriptional 
activators  (B) Alternatively, mutations within regulatory regions can create the loss of transcription 
factor binding sites, leading to transcriptional repression (C) miRNA binding within the 3’ UTR control 
gene expression, by inhibiting translation or marking transcripts for degradation. Mutations that disrupt 
these binding sites can lead to over-expression (NFKBIE and NOTCH1 genes in cancer) (D) Mutations 
within the 5’ UTR can alter the secondary and tertiary structures, as well as trans-acting RNA binding 
protein sites. These alterations can affect translation efficiency and mRNA stability (BRCA1 and 
CDKN2A genes)113



Examples of non-coding functional variants

Zhang (2015) Hum Mol Genet

The NOS1AP gene on human chromosome 1q has been long known to be 
associated with variability of QT interval and cardiac repolarization, whereas the 
underlying mechanism was unclear. A recent study utilized high-coverage 
resequencing and regional association for fine mapping in the GWAS locus for QT 
interval variation, which identified 210 common non-coding risk variants. Further 
enhancer/suppressor analysis of 12 selected variants located in cardiac phenotype 
associated DNaseI hypersensitivity sites assisted in the identification of an upstream 
enhancer variant (rs7539120) associated with QT interval. This variant can affect 
cardiac function by increasing NOS1AP transcript expression in cardiomyocyte-
intercalated discs and increase risk of cardiac arrhythmias. 

Similar evidence for functional enhancer SNPs has also been observed at many 
other loci, including the intronic enhancer SNPs at the MEIS1 gene associated with 
restless legs syndrome and at the BCL11A gene associated with fetal hemoglobin 
levels, the intergenic enhancer SNP upstream to the MYB gene that is a critical 
regulator of erythroid development and fetal hemoglobin levels, and the recessive 
mutations in a distal enhancer located 25 kb downstream of PTF1A that is associated 
with isolated pancreatic agenesis.
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Examples of non-coding functional variants

Zhang (2015) Hum Mol Genet

A recent study on the schizophrenia-associated locus at 1p21.3 identified a rare 
enhancer SNP (chr1:98515539A>T, hg19) with increased risk. The chromatin 
conformation capture assay showed that this risk allele has no obvious influence on 
the neighboring genes such as DPYD, but can reduce the expression of non-coding 
genes MIR137/MIR2682.

In some instances, such functional variants are located in either the 5′ or 3′ 
untranslated region (UTR) of the disease-associated genes. A recent study identified 
the association of rs11603334 (a SNP located in the 5′ UTR of ARAP1) with fasting 
proinsulin and type 2 diabetes. The allele-specific expression assay in human 
pancreatic islet samples showed that the risk allele of rs11603334 can upregulate 
gene expression of ARAP1 by 2-fold, which is also supported by the observation of 
decreased binding of pancreatic beta cell transcriptional regulators PAX6 and PAX4 
to the rs11603334 risk allele and its corresponding increased promoter activity.

In the case of hypertriglyceridemia-associated APOA5, the 3′ UTR SNP 
rs2266788 was predicted to create a potential miRNA binding site for liver-
expressed miR-485-5p. Luciferase reporter assays in both HEK293T cells with a 
miR485-5p precursor and in HuH-7 cells with endogenously expressed miR-485-5p 
suggested that the mutant allele of rs2266788 is involved in the miR-485-5p-
mediated downregulation of APOA5.
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Prediction of non-coding variant effect

Kircher (2014) Nat Genet

CADD: Combined Annotation–Dependent Depletion integrates diverse 
genome annotations and scores any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event

«Deleterious variants—that is, variants that reduce organismal fitness—are 
depleted by natural selection in fixed but not simulated variation»

Observed variants (15 mln SNVs, 0.63 mln insertions and 1.1 mln 
deletions):
– human-chimp differences; SNPs with MAF>5% excluded
– SNPs with DAF (derived allele frequency) > 95% (<5% of total)
Simulated variants (44 mln SNVs, 2.1 mln insertions and 3.1 mln deletions): 
– a  fully  empirical  model  of  sequence  evolution  with  a  separate  rate  for 
 CpG  dinucleotides  and  local  adjustment  of  mutation rates

Features: VEP annotation, SIFT, PolyPhen-2, conservation scores, ENCODE 
methylation and histone modification annotation in various cell/tissue types, 
TF binding sites, etc.
Output: C-scores that measure deleteriousness for 8.6×109 variants  
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Prediction of non-coding variant effect

Kircher (2014) Nat Genet

CADD: Combined Annotation–Dependent Depletion 

ClinVar pathogenic vs population variants with matched annotation
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Prediction of non-coding variant effect

Telenti (2018) Hum Mol Genet118



Prediction of non-coding variant effect

Huang (2017) Nat Genet

LINSIGHT integrates functional genomic data together with conservation 
scores and other features to provide a high-powered, high-resolution measure of 
potential function. 119



Prediction of non-coding variant effect

Huang (2017) Nat Genet

(a) Distributions of LINSIGHT scores for various genomic regions. Intergenic 
regions, intronic regions, UTRs, and 1-kb promoters: GENCODE 19; TFBSs: 
ChIP-seq peaks (Ensembl Regulatory Build); conserved TFBSs: UCSC Genome 
Browser. (b) LINSIGHT is the only method to highlight a variant from HGMD 
(CR065653) that is associated with upregulation of the TERT gene. 
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Meta-analyzed association between ultra-rare and rare damaging missense variants in 
PTV-intolerant genes and 5 diseases. The strength of the association increases as 
function of the number of algorithms and is particularly strong among ultra-
rare variants Ganna (2018) Am J Hum Genet

Variant effect and association with phenotypes
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All classes of de novo non-synonymous variants show a higher mutation rate in 
Tourette disorder probands (orange) versus SSC siblings (controls, blue). LGD: 
likely gene disrupting variants: insertion of premature stop codon, frameshift, or 
canonical splice-site variant; FS: frameshift indels; Damaging: variants predicted by 
PolyPhen2; Mis3: LGD or damaging; Nonsyn: missense or nonsenseWillsey (2017) Neuron

Variant effect and association with phenotypes
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Summary
  Human genome sequence is still being updated. We may soon 

switch from a single reference sequence to multiple ones
  Protein-coding genes represent only a minor fraction of all human 

genes and a tiny fraction of the genome
  Roughly one half of human genome are repetitive sequences
  Human gene structure and processing is quite diverse and 

complicated 
  There are multiple sequence regions that assist in gene splicing: 

exonic and intronic splicing enhancers and silencers. A significant 
fraction of human disease mutations are believed to be splicing-
related

  Epigenetics provide heritable phenotype changes that do not 
involve alterations in the DNA sequence: DNA methylation at CpG 
nucleotides, covalen modification of histone proteins. Noncoding 
RNAs are considered as part of epigenetic machinery.
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Summary
Approximately 100 genes on various chromosomes are subject to 

chromosomal imprinting
  Variant annotation is a proccedure that determines variant 

consequence for a gene/protein based on its location relative to 
the gene sequence. It is governed and complicated by transcript 
structure complexity.

  Variant effect prediction determines potential functional impact 
of a particular variant based on its features. 

  There are numerous prediction algorithms for major types of 
variants. Their performance and domain of applicability is a 
debated question, however, phenotype-associated variants are 
typically enriched with functional predictions.
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Further reading
 Strachan, Read – Human Molecular Genetics, Chapter 13

 Rivas, M.A., Pirinen, M., Conrad, D.F., Lek, M., et al. (2015). Effect of 
predicted protein-truncating genetic variants on the human 
transcriptome. Science 348, 666–669.

 Saleheen, D., Natarajan, P., et al. (2017). Human knockouts and 
phenotypic analysis in a cohort with a high rate of consanguinity. Nature 
544, 235–239

 Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., et al. 
(2019). Predicting Splicing from Primary Sequence with Deep 
Learning. Cell 176, 535-548.e24.

 Niroula, A., and Vihinen, M. (2016). Variation Interpretation Predictors: 
Principles, Types, Performance, and Choice. Human Mutation 37, 579–
597.
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Further reading
 Li, J., Zhao, T., Zhang, Y., Zhang, K., Shi, L., Chen, Y., Wang, X., and 

Sun, Z. (2018). Performance evaluation of pathogenicity-computation 
methods for missense variants. Nucleic Acids Res 46, 7793–7804.

 DePristo, M.A., Weinreich, D.M., and Hartl, D.L. (2005). Missense 
meanderings in sequence space: a biophysical view of protein evolution. Nat. 
Rev. Genet 6, 678–687.

 Park, E., Pan, Z., Zhang, Z., Lin, L., and Xing, Y. (2018). The Expanding 
Landscape of Alternative Splicing Variation in Human Populations. Am. J. Hum. 
Genet. 102, 11–26.

 Lee, P., Lee, C., Li, X., Wee, B., Dwivedi, T., and Daly, M. (2018). Principles 
and methods of in-silico prioritization of non-coding regulatory variants. Hum 
Genet 137, 15–30.

 Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant 
prioritization and Mendelian disease. Nature Reviews Genetics 18, 599.
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