MUTATIONS IN INDIVIDUALS AND POPULATIONS

Lecture plan

- Timeline of large scale genome projects
- Early estimates of nucleotide diversity in humans
- The excess of rare variants in humans. Explosive human population growth
- 1000 genomes: variation in an individual
- ExAC and gnomAD: variants in populations
- Genes intolerant to LoF variation
- Structural variation in populations
- ClinVar: open database of disease variants

Large-scale projects: timeline

- 2001 * Human genome
- **2003** * Encyclopedia of DNA Elements (ENCODE)
- **2004** * Resequencing studies
 - * Human genome... again!
- 2005 * HapMap: 11 populations
- 2006 * UK Biobank: 500,000 volunteers
- 2007 * Individual genomes: Craig Venter, James Watson
- **2009** * Genome Reference Consortium Human Build 37
- **2012** * 1000 genomes: 2,504 from 26 populations
 - * NHLBI Exome Sequencing Project: 6,500, heart, lung and blood phenotypes
- **2013** * Genome Reference Consortium Human Build 38 * NCBI ClinVar, ClinGen
- **2016** * ExAC, gnomAD: 60,706 exomes from 6 broad populations and 14 common disease cohorts; >125,000 exomes, >71,000 genomes

Reference genome and genotype calling

Reference ... ACGCTGCATCCAGCGATGGCATGTTACACGATCC...

CGCTGCGTCCAGTG CTGCATCCAGTGATGGCATG CTGCGTCCAGTGATG CATCCAGTGATGGCATGTTAC

Query

Reference genome and genotype calling

Reference ...ACGCTGCATCCAGCGATGGCATGTTACACGATCC...

CGCTGC**G**TCCAG**T**G Query CTGCATCCAG**T**GATGGCATG CTGC**G**TCCAG**T**GATG CATCCAG**T**GATGGCATGTTAC

Maternal ...ACGCTGCATCCAG**T**GATGGCATGTTACACGATCC... Paternal ...ACGCTGC**G**TCCAG**T**GATGGCATGTTACACGATCC... 0/1 1/1 A/G T/T

Reference genome and genotype calling

Reference ...ACGCTGCATCCAGCGATGGCATGTTACACGATCC...

CGCTGCGTCCAGTG Query CTGCATCCAGTGATGGCATG CTGCGTCCAGTGATG CATCCAGTGATGGCATGTTAC

Maternal ...ACGCTGCATCCAG**T**GATGGCATGTTACACGATCC... Paternal ...ACGCTGC**G**TCCAG**T**GATGGCATGTTACACGATCC... 0/1 1/1 A/G T/T

Reference ...ACGCTGCATCCAGCGAT.GCATGTTACACGATCC... C/G

Large-scale projects: timeline

- 2001 * Human genome
- **2003** * Encyclopedia of DNA Elements (ENCODE)
- **2004** * Resequencing studies
 - * Human genome... again!
- 2005 * HapMap: 11 populations
- 2006 * UK Biobank: 500,000 volunteers
- 2007 * Individual genomes: Craig Venter, James Watson
- **2009** * Genome Reference Consortium Human Build 37
- **2012** * 1000 genomes: 2,504 from 26 populations
 - * NHLBI Exome Sequencing Project: 6,500, heart, lung and blood phenotypes
- **2013** * Genome Reference Consortium Human Build 38 * NCBI ClinVar, ClinGen
- **2016** * ExAC, gnomAD: 60,706 exomes from 6 broad populations and 14 common disease cohorts; >125,000 exomes, >71,000 genomes

Nucleotide diversity π = Average mismatches Π / Length *L*

$$E(\pi) \equiv \theta_s, \ \theta_s = 4N_e\mu_s$$

 $N_{\rm e}$: effective population size, $\mu_{\rm s}$: mutation rate per site per generation,

$$E(S) = \theta_s L \sum_{k=1}^{n-1} \frac{1}{k}$$

S: total segregating sites in a sample of n sequences

Nucleotide diversity π = Average mismatches Π / Length *L*

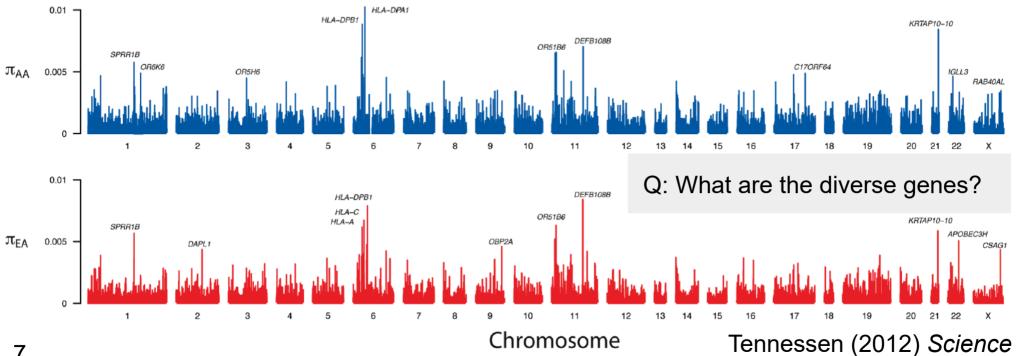
$$E(\pi) \equiv \theta_s, \ \theta_s = 4N_e\mu_s$$

 $N_{\rm e}$: effective population size, ~10,000 $\mu_{\rm s}$: mutation rate per site per generation, ~1.2×10⁻⁸ $\theta_{\rm s} = 4 \times 10^4 \times 1.2 \times 10^{-8} \approx 5 \times 10^{-4}$

$$E(S) = \theta_s L \sum_{k=1}^{n-1} \frac{1}{k}$$

S: total segregating sites in a sample of n sequences

π	1/π, bp	Reference	Comment
3×10 ⁻⁴ – 9×10 ⁻⁴	1,111– 3,333	Sunyaev (2000) Trends in Genetics	9,000 genes, EST data
7.5×10 ⁻⁴	1,333	Human genome paper (2001) Nature	Whole genome, 1.42 mln SNPs
8.0×10 ⁻⁴	1,250	Wright (2005) doi: <i>10.1038/npg.els.0005005</i>	Whole genome
4.7×10 ⁻⁴	2,128	Tennessen (2012) Science	15,585 genes, 1,088 African Americans
3.5×10 ⁻⁴	2,857	Tennessen (2012) Science	15,585 genes, 1,351 European Americans


π	1/π, bp	Reference	Comment
3×10 ⁻⁴ – 9×10 ⁻⁴	1,111– 3,333	Sunyaev (2000) Trends in Genetics	9,000 genes, EST data
7.5×10 ⁻⁴	1,333	Human genome paper (2001) Nature	Whole genome, 1.42 mln SNPs
8.0×10 ⁻⁴	1,250	Wright (2005) doi: <i>10.1038/npg.els.0005005</i>	Whole genome
4.7×10 ⁻⁴	2,128	Tennessen (2012) Science	15,585 genes, 1,088 African Americans
3.5×10 ⁻⁴	2,857	Tennessen (2012) Science	15,585 genes, 1,351 European Americans

Variation in nucleotide diversity is a sign of selection

TABLE 1. Nucleotide diversity							
	EST dataª	Cargill data⁵	Cargill data⁵		Halushka data° 'Europeans'	Halushka data 'Africans'	Halushka data All
	π ^d	θ ^e	π		θ	θ	θ
Non-degenerate sites Fourfold degenerate sites 3'UTR 5'UTR	0.0003 0.0009 0.0006 0.0005	0.0004 0.0010	0.0003 0.0011	Non-synonymous Synonymous	0.0003 0.0009	0.0004 0.0013	0.0006 0.0015 0.0008 0.0007
Non-coding	0.0000	0.0005	0.0005		0.0005	0.0007	0.0007

Sunyaev (2000) Trends in Genetics

π	1/π, bp	Reference	Comment
3×10 ⁻⁴ - 9×10 ⁻⁴	1,111– 3,333	Sunyaev (2000) Trends in Genetics	9,000 genes, EST data
7.5×10 ⁻⁴	1,333	Human genome paper (2001) Nature	Whole genome, 1.42 mln SNPs
8.0×10 ⁻⁴	1,250	Wright (2005) doi: 10.1038/npg.els.0005005	Whole genome
4.7×10 ⁻⁴	2,128	Tennessen (2012) Science	15,585 genes, 1,088 African Americans
3.5×10 ⁻⁴	2,857	Tennessen (2012) Science	15,585 genes, 1,351 European Americans

A global reference for human genetic variation

The 1000 Genomes Project Consortium*

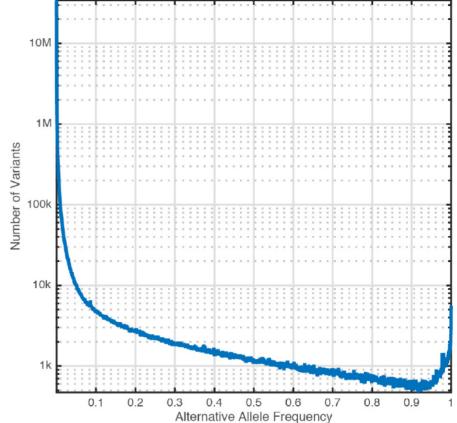
68 | NATURE | VOL 526 | 1 OCTOBER 2015

Total 2,504 samples, Genome length 2.84 Gbp.

Expected autosomal SNVs: $E(S) = \theta_s L(1 + 1/2 + ... + 1/(2 \times 2504))$ $= 4.8 \times 10^{-4} \times 2.84 \times 10^9 \times 9.09 = 12.4$ mln

A global reference for human genetic variation

The 1000 Genomes Project Consortium*


68 | NATURE | VOL 526 | 1 OCTOBER 2015

Total 2,504 samples, Genome length 2.84 Gbp.

Expected autosomal SNVs: $E(S) = \theta_s L(1 + 1/2 + ... + 1/(2 \times 2504))$ $= 4.8 \times 10^{-4} \times 2.84 \times 10^9 \times 9.09 = 12.4$ mln

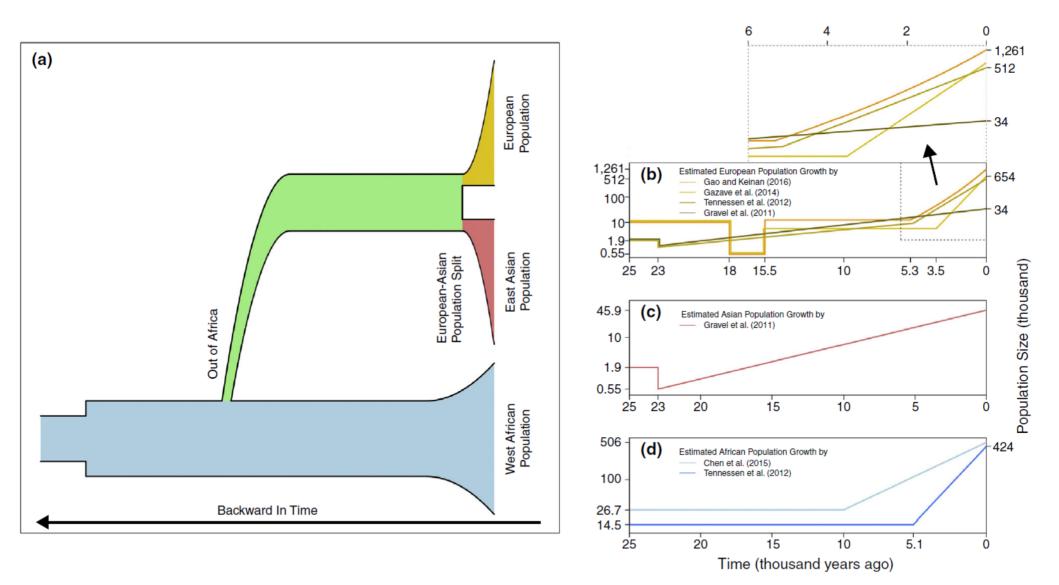
Observed:

- 64 mln with MAF <0.5%,
- 12 mln (MAF: 0.5–5%),
- 8 mln (MAF: >5%)

...Why (a) so many (b) rare variants?

The excess of rare variants in humans

Coalescent-based E(S):

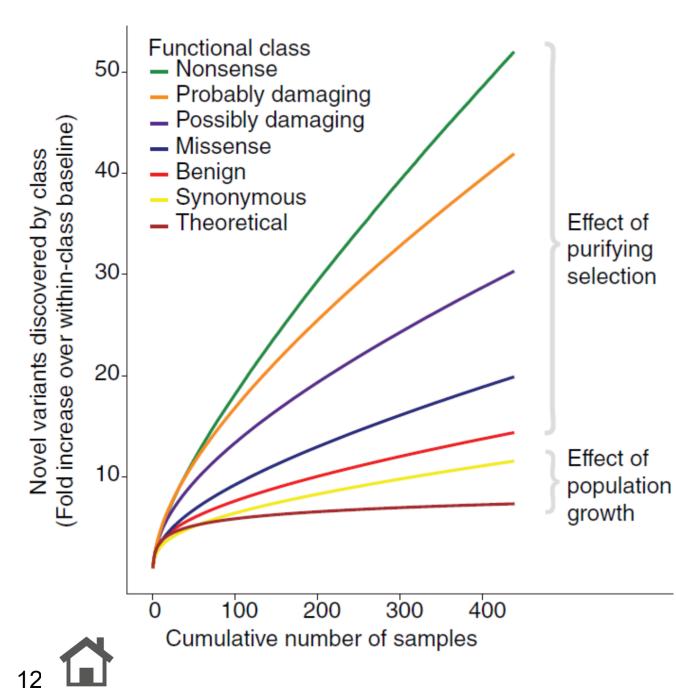

- constant population size
- variant neutrality

Earlier estimates: few samples \Rightarrow common (neutral) variants

More realistic:

- demographic models with recent human expansion
- **negative selection**: reduction of variation and an excess of rare alleles in the remaining variation

Explosive genetic evidence for explosive human population growth Current Opinion in Genetics & Development 2016, 41:130–139 Feng Gao and Alon Keinan



Explosive genetic evidence for explosive human population growth Current Opinion in Genetics & Development 2016, 41:130–139 Feng Gao and Alon Keinan

Implications

One consequence of recent explosive growth is the extreme excess of very rare variants, including those observed only in a single genome out of a large sample (singletons). In fact, explosive population growth predicts not only more rare variants, for example singletons, as the sample size increases, but also a larger proportion of such variants (e.g. [13,14]). A recent study characterized how population growth and purifying selection has shaped the fraction of variants private to an individual, hence the number of new variants that will be discovered with each newly sequenced individual [14]. Assuming 10,000 genomes from the exact same population have already been perfectly sequenced, with growth of the magnitude estimated for Europeans [12^{••}] it predicts >6,000 novel variants to be discovered as heterozygous in the 10,001st sequenced genomes, which is 18-times more than that in the absence of growth. This entails that personalized medicine or personalized genomics will have to be much more personal in recently expanded populations than expected in the absence of growth.

Discovery of novel variants

"The number of nonsense variants discovered in 300 samples is 40 times greater than the average number discovered in a single sample, whereas the number of synonymous variants is only 10 times greater (although the absolute number of nonsense variants is a relatively minor proportion of the total variation discovered); this effect is due to purifying selection. All classes of variants are discovered at rates exceeding what would he predicted under a neutral model of evolution in a population of effect size, of constant an population growth."

Kiezun (2012) Nature Genetics

Median autosomal variants per genome

	AF	AFR 661 8.2		EAS 504 7.7		EUR	
Samples Mean coverage						603 7.4	
	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons	
SNPs	4.31M	14.5k	3.55M	14.8k	3.53M	11.4k	
Indels	625k	-	546k	-	546k	-	
Large deletions	1.1k	5	940	7	939	5	
CNVs	170	1	158	1	157	1	
MEI (Alu)	1.03k	0	899	1	919	0	
MEI (L1)	138	0	130	0	123	0	
MEI (SVA)	52	0	56	0	53	0	
MEI (MT)	5	0	4	0	4	0	
Inversions	12	0	10	0	9	0	
Nonsynon	12.2k	139	10.2k	144	10.2k	116	
Synon	13.8k	78	11.2k	79	11.2k	59	
Intron	2.06M	7.33k	1.68M	7.39k	1.68M	5.68k	
UTR	37.2k	168	30.0k	169	30.0k	129	
Promoter	102k	430	81.6k	425	82.2k	336	
Insulator	70.9k	248	57.7k	252	57.7k	189	
Enhancer	354k	1.32k	289k	1.34k	288k	1.02k	
TFBSs	927	4	748	4	749	3	
Filtered LoF	182	4	153	4	149	3	
HGMD-DM	20	0	16	1	18	2	
GWAS	2.00k	0	1.99k	0	2.08k	0	
ClinVar	28	0	24	0	29	1	

The 1000 Genomes Project Consortium (2015) Nature

Median autosomal variants per genome

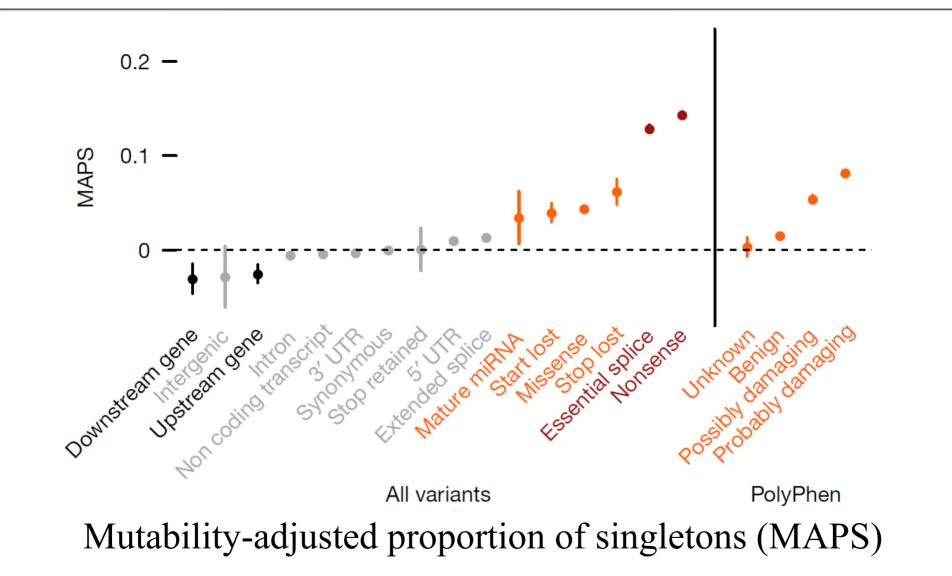
Super- Synonymous population (het; hom alt) code		Missense (het; hom alt)				
code		Total	SIFT Del	PP Del		
EUR	6961;4317	7220; 4452	116; 55	116; 38		
AFR	9296; 4673	9347; 4820	163; 56	156; 31		
AMR	7257; 4314	7449; 4479	121;56	121; 38		
SAS	7180; 4397	7366; 4550	123; 56	121; 39		
EAS	6502; 4759	6802; 4908	105;66	113;45		
Frameshift (het; hom al	Stop gain t) (het; hom alt)	Start lost (het; hom alt)	Splice donor (het; hom alt)	Splice acceptor (het; hom alt)		
		(het;	donor (het;	acceptor (het;		
(het; hom al	t) (het; hom alt)	(het; hom alt)	donor (het; hom alt)	acceptor (het; hom alt)		
(het; hom al 151; 146	t) (het; hom alt) 93; 35	(het; hom alt) 61; 52	donor (het; hom alt) 184; 99	acceptor (het; hom alt) 114; 72		
(het; hom al 151; 146 196; 150	t) (het; hom alt) 93; 35 123; 32	(het; hom alt) 61; 52 78; 51	donor (het; hom alt) 184; 99 231; 116	acceptor (het; hom alt) 114; 72 150; 80		

AFR. individuals of African descent; AMR, individuals of admixed descent from the Americas; EAS, individuals of East-Asian descent; EUR. individuals of European descent; **PP Del**, PolyPhen2 predicted the missense variant deleterious; be SAS. to of South-Asian individuals descent; SIFT Del, SIFT predicted the missense variant to be deleterious.

*We measured the average number of heterozygous (het) and homozygous alternate (hom alt) genotype counts among the 2,504 individuals sequenced by **The 1000 Genomes Project**. All genetic variants affecting genes were annotated with the Variant Effect Predictor

Eilbeck (2017) Nat Rev Genet

Analysis of protein-coding genetic **EXAC** variation in 60,706 humans

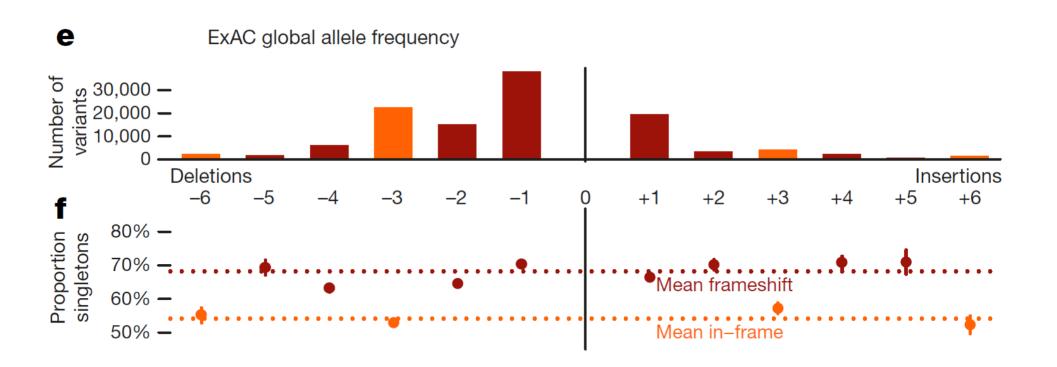

Monkol Lek^{1,2,3,4}, Konrad J. Karczewski^{1,2*}, Eric V. Minikel^{1,2,5*}, Kaitlin E. Samocha^{1,2,5,6*}, Eric Banks², Timothy Fennell², Anne H. O'Donnell-Luria^{1,2,7}, James S. Ware^{2,8,9,10,11}, Andrew I. Hill^{1,2,12}, Bervl B. Cummings^{1,2,5}, Taru Tukiainen^{1,2}, 18 AUGUST 2016 | VOL 536 | NATURE 285

60,706 exomes of unrelated adults without pediatric disease

- 7,404,909 high quality variants (1 each 8 bp)
- 99% with MAF<1%, 54% are singletons
- 7.9% are multiallelic
- 317,381 indels
- Approaching saturation: 62.8% of all possible synonymous C>T at CpG (gnomAD: ~85%)
- **Mutational recurrence**: *de novo* mutations from other datasets \Rightarrow depletion of singletons

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek^{1,2,3,4}, Konrad J. Karczewski^{1,2*}, Eric V. Minikel^{1,2,5*}, Kaitlin E. Samocha^{1,2,5,6*}, Eric Banks², Timothy Fennell², Anne H. O'Donnell-Luria^{1,2,7} James S. Ware^{2,8,9,10,11} Andrew I. Hill^{1,2,12} Bervl B. Cummings^{1,2,5} Taru Tukiainen^{1,2}, **18 AUGUST 2016 | VOL 536 | NATURE | 285**



ExAC

ExAC

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek^{1,2,3,4}, Konrad J. Karczewski^{1,2*}, Eric V. Minikel^{1,2,5*}, Kaitlin E. Samocha^{1,2,5,6*}, Eric Banks², Timothy Fennell², Anne H. O'Donnell-Luria^{1,2,7} James S. Ware^{2,8,9,10,11} Andrew I. Hill^{1,2,12} Bervl B. Cummings^{1,2,5} Taru Tukiainen^{1,2}, **18 AUGUST 2016 | VOL 536 | NATURE | 285**

Mutability-adjusted proportion of singletons (MAPS)

ExAC

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek^{1,2,3,4}, Konrad J. Karczewski^{1,2*}, Eric V. Minikel^{1,2,5*}, Kaitlin E. Samocha^{1,2,5,6*}, Eric Banks², Timothy Fennell², Anne H. O'Donnell-Luria^{1,2,7}, James S. Ware^{2,8,9,10,11}, Andrew I. Hill^{1,2,12}, Bervl B. Cummings^{1,2,5}, Taru Tukiainen^{1,2}, **18 AUGUST 2016 | VOL 536 | NATURE | 285**

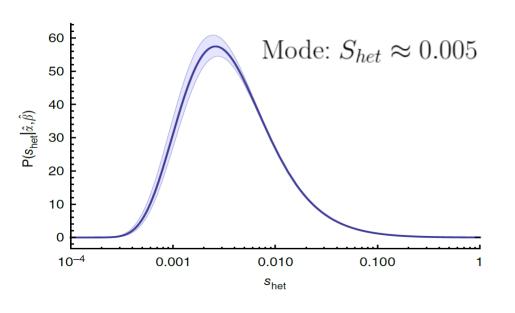
Individual exomes:

1) 53.7 disease-causing alleles from HGMD and ClinVar in an exome, of which 47.2 with AF_POPMAX>1% This is incompatible even with recessive inheritance \Rightarrow misclassification, incomplete penetrance

2) 179,774 high-confidence PTVs, 121,309 (67%) are singletons

- 85 heterozygous and 35 homozygous PTVs, of which
- 18 (het) and 0.19 (hom) are rare (AF< 1%), 2 singletons

Analysis of protein-coding genetic **EXAC** variation in 60,706 humans


Monkol Lek^{1,2,3,4}, Konrad J. Karczewski^{1,2*}, Eric V. Minikel^{1,2,5*}, Kaitlin E. Samocha^{1,2,5,6*}, Eric Banks², Timothy Fennell², Anne H. O'Donnell-Luria^{1,2,7}, James S. Ware^{2,8,9,10,11}, Andrew I. Hill^{1,2,12}, Bervi B. Cummings^{1,2,5}, Taru Tukiainen^{1,2}, 18 AUGUST 2016 | VOL 536 | NATURE 285

SNVs	Average	Deviation		SNVs	Average	Devia
PTV HIGH	97	6	Ş	Singleton	18	13
Missense MODERATE	6291	139		<0.01%	177	30
				0.01-1%	273	23
Synonymous LOW	7192	88		1-10%	1308	72
Other MODIFIER	561	13		>10%	12365	109
Indels				Indels		
Frameshift	69	3		<=5%	15	5
Other	41	3		>5%	151	6

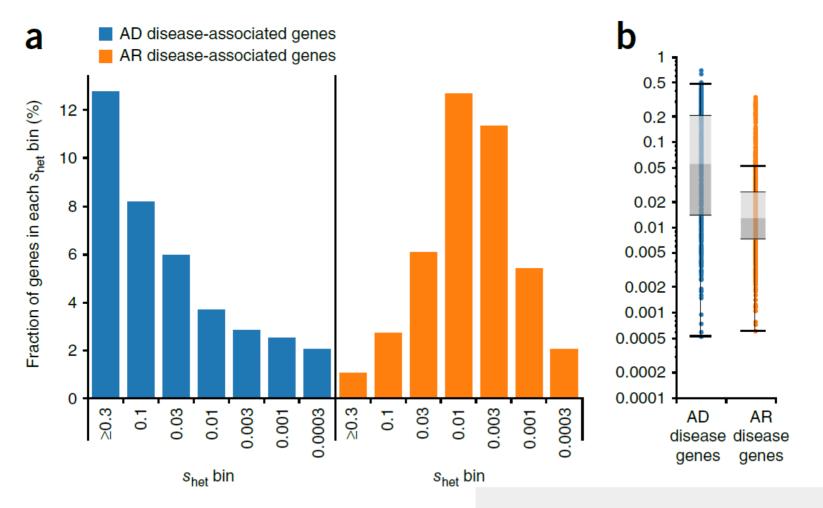
Exercise: why most variants here are common, not rare?

Estimating the selective effects of heterozygous protein-truncating variants from human exome data

Christopher A Cassa^{1,2,9}, Donate Weghorn^{1,9}, Daniel J Balick^{1,9}, Daniel M Jordan^{3,9}, David Nusinow¹, Kaitlin E Samocha^{4,5}, Anne O'Donnell-Luria^{4,6}, Daniel G MacArthur^{2,4}, Mark J Daly^{2,4}, David R Beier^{7,8} & Shamil R Sunyaev^{1,2} VOLUME 49 | NUMBER 5 | MAY 2017 **NATURE GENETICS**

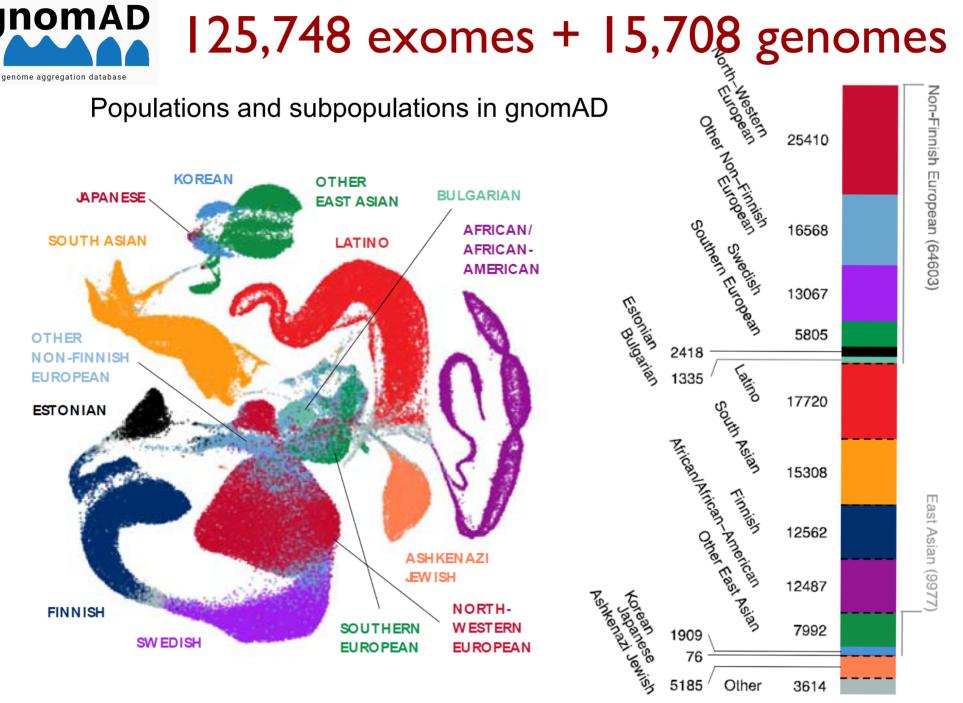
ExAC

20


S_{het} applications:

- Discrimination between AR and AD modes of inheritance
- In dominant diseases, restricting to genes with S_{het} >0.04 provides a 3x reduction of candidate variants
- S_{het} helps predict phenotypic severity, age of onset, penetrance

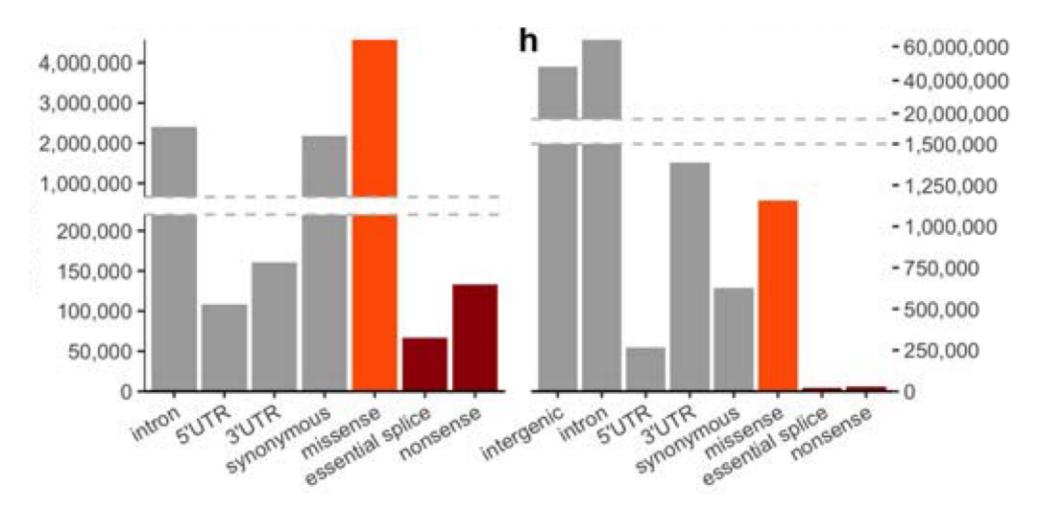
"The cumulative frequency of rare deleterious PTVs [in a gene] is primarily determined by the **balance** between incoming mutations and purifying selection rather than genetic drift. This enables the estimation of the genome-wide distribution of selection coefficients for heterozygous PTVs and corresponding Bayesian estimates for individual genes."


Estimating the selective effects of heterozygous protein-truncating variants from human exome data

Christopher A Cassa^{1,2,9}, Donate Weghorn^{1,9}, Daniel J Balick^{1,9}, Daniel M Jordan^{3,9}, David Nusinow¹, Kaitlin E Samocha^{4,5}, Anne O'Donnell-Luria^{4,6}, Daniel G MacArthur^{2,4}, Mark J Daly^{2,4}, David R Beier^{7,8} & Shamil R Sunyaev^{1,2} VOLUME 49 | NUMBER 5 | MAY 2017 NATURE GENETICS

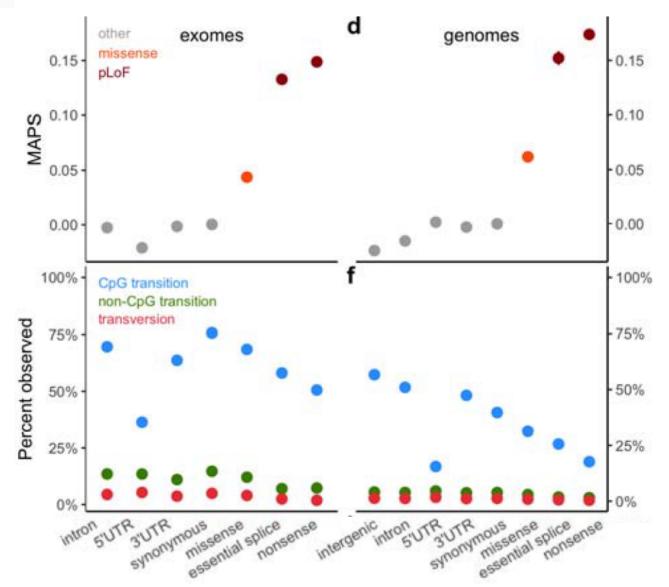
Q: do we observe all S values?

ExAC

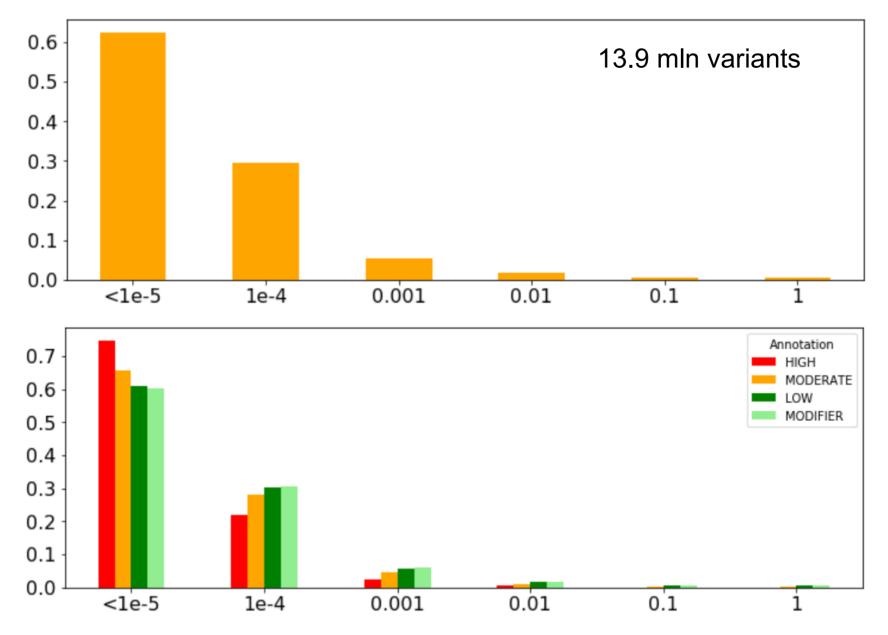


Karczewski biorXiv http://dx.doi.org/10.1101/531210

gnomAD



The total number of variants observed in each functional class for exomes (g) and genomes (h).


125,748 exomes + 15,708 genomes

gnome aggregation database

(d) The mutability-adjusted proportion of singletons (MAPS)(f) The proportion of all possible variants

gnomad.broadinstitute.org

«We classify human protein-coding genes along a spectrum representing intolerance to inactivation»

- **pLoF, putative loss-of-function** ≈ PTV (protein-truncating variants)
- LOFTEE tool: a high confidence set of 443,769 pLoF variants (413,097 in the canonical transcripts of 16,694 genes)
- A median of 17.3 expected pLoF variants per gene, at least one pLoF in 95.8% of all genes
- LOEUF: observed / expected pLoF variants, binned into deciles of ~1,920 genes each
- 1,752 genes that are likely tolerant to biallelic inactivation.
- 1,266 with no observed pLoFs (obs lof=0, some have quite large exp_lof)
 Exercise:* retrieve genes with obs_lof=0

ARPC4 actin related protein 2/3 complex subunit 4

Category	Exp. SNVs	<u>Obs. SNVs</u>	Constraint metrics	
Synonymous	<u>37.7</u>	31	Z = 0.86 o/e = <u>0.82</u> (<u>0.62</u> - <u>1.11</u>) ⁰ <u>1</u>	
Missense	<u>106</u>	42	Z = 2.21 o/e = <u>0.4</u> (<u>0.31</u> - <u>0.51</u>) 0 <u>0</u> 1	
pLoF	<u>11.3</u>	0	pLI = 0.97 o/e = $0(0 - 0.27)$ 0 • 1	

ARPC3 actin related protein 2/3 complex subunit 3

Category	<u>Exp. SNVs</u>	<u>Obs. SNVs</u>	Constraint metrics	
Synonymous	<u>31.3</u>	21	Z = 1.45 o/e = <u>0.67</u> (<u>0.47</u> - <u>0.97</u>) ⁰ -	° 1
Missense	<u>91.6</u>	81	Z = 0.39 o/e = 0.88 (0.74 - 1.06) ⁰	<u>°</u> 1
pLoF	<u>11.4</u>	3	pLI = 0.22 o/e = $0.26 (0.12 - 0.68)^{-0}$	<mark>0</mark> 1

PCSK9 proprotein convertase subtilisin/kexin type 9

Category	Exp. SNVs	<u>Obs. SNVs</u>	Constraint metrics
Synonymous	<u>187.5</u>	170	Z = 1.01 o/e = <u>0.91</u> (<u>0.8</u> - <u>1.03</u>) 0 <u>0</u> 1
Missense	<u>435</u>	419	Z = 0.27 o/e = 0.96 (0.89 - 1.04) 0 0 1
pLoF	<u>26.9</u>	26	pLI = <u>0</u> o/e = <u>0.97</u> (<u>0.71</u> - <u>1.34</u>) ⁰ ⁰

APOBEC1 apolipoprotein B mRNA editing enzyme

Category	Exp. SNVs	<u>Obs. SNVs</u>	Constraint metrics
Synonymous	<u>46.7</u>	42	Z = 0.54 o/e = 0.9 (0.7 - 1.16) 0 1
Missense	<u>134.2</u>	109	Z = <u>0.77</u> o/e = <u>0.81 (0.69 - 0.95</u>) ⁰ <u>0</u> 1
pLoF	<u>12.1</u>	12	pLI = <u>0</u> o/e = <u>0.99</u> (<u>0.63</u> - <u>1.59</u>) ⁰ ⁰ 1

Although $\circ e$ is a continuous value, we understand that it can be useful to use a threshold for certain applications. In particular, for the interpretation of Mendelian diseases cases, we suggest using the upper bound of the $\circ e$ CI < 0.35 as a threshold if needed. Again, ideally $\circ e$ should be used as a continuous value rather than a cutoff and evaluating the $\circ e$ 90% CI is a must.

DECOMPAND LOEUF: intolerance to pLoF variation

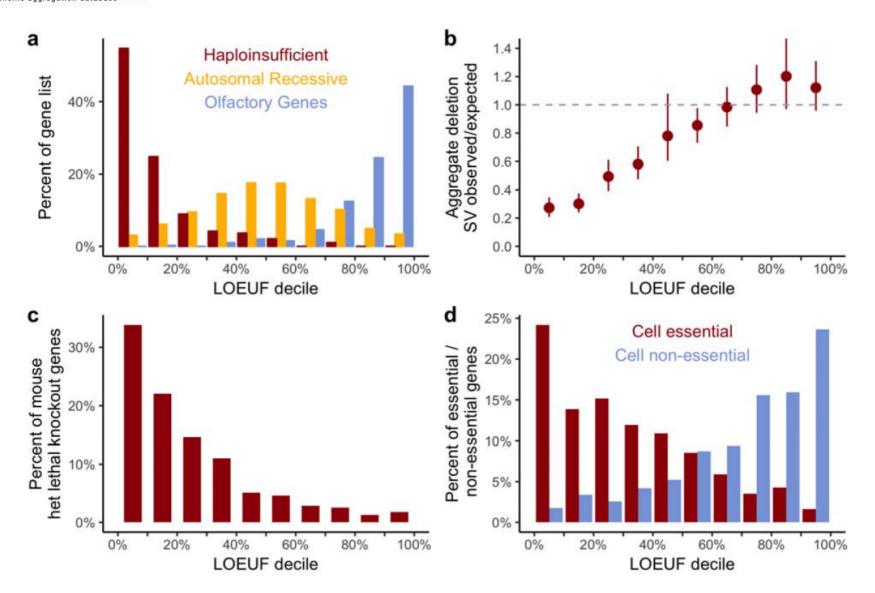
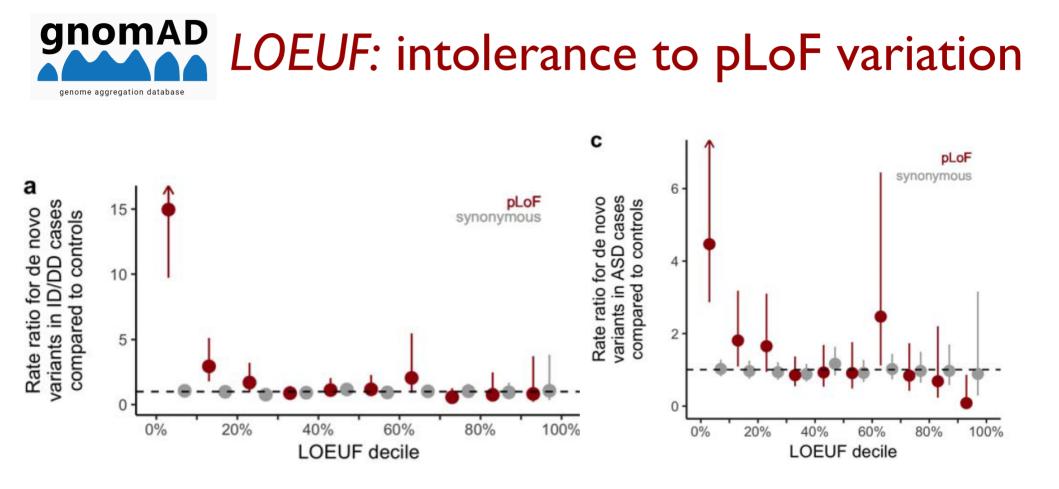
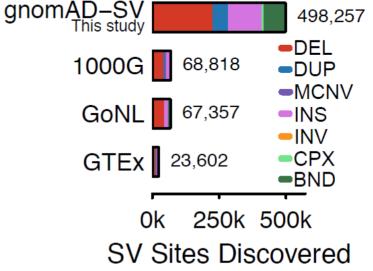



Figure 3 | The functional spectrum of pLoF impact

Disease applications of constraint. (a) The rate ratio is defined by the number per patient of *de novo* variants in **intellectual disability** / **developmental delay (ID/DD)** cases divided by the rate in controls. pLoF variants in the most constrained decile of the genome are approximately 11-fold more likely to be found in cases compared to controls. **(c) Autism cases**. pLoF variants in the most constrained decile of the genome are approximately 4-fold more likely to be found in cases compared to controls.



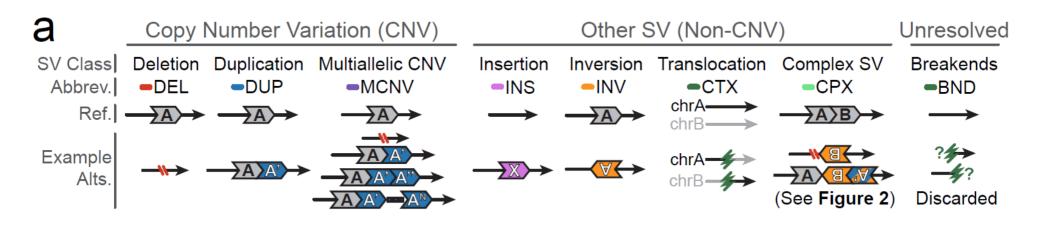
Structural variants (SVs): genomic rearrangements that alter segments of DNA \geq 50 bp

- Unbalanced (copy number variants, CNVs) and balanced (inversions, translocations) + more exotic Svs
- Method: four orthogonal signatures, 498,257 distinct SVs
- After filtering: 382,460 unique, completely resolved SVs from 12,549 unrelated genomes

SVs per genome:

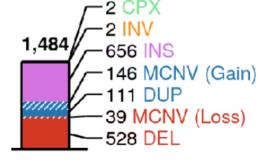
- 1000 Genomes: 3,441
- GTEx project: 3,658
- gnomAD-SV: 8,202
- Long-read WGS: 24,825

Collins *biorXiv* http://dx.doi.org/10.1101/578674

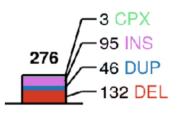

gnomAD Structural variants in 14,891 genomes

genome aggregation database

Complex SV Subclass	Abbrev.	Mutational Signature	Ref. Allele Structure	Alt. Allele Structure(s)	Resolved Variants	SV Size	Proportion Singletons
All Complex SV	СРХ	Varies	Varies	Varies	5,729	2.8kb	58.7%
Paired-Dup. Inversion	dupINVdup		→A>B>C>→		249	155.3kb	71.1%
Palindromic Inverted Dup.	piDUP (FR) piDUP (RF)		\rightarrow A \rightarrow		522	47.2kb	65.5%
Paired-Deletion Inversion	dellNVdel		→A>B>C>→		610	9.7kb	60%
Paired-Del./Dup. Inversion	dellNVdup duplNVdel		→A>B>C>→		536	8.6kb	56.2%
Deletion-Flanked Inversion	dellNV INVdel		→A>B>→		637	4kb	58.9%
Insertion with Ins. Site Del.	dDUP-iDEL INS-iDEL		→А≻₽		289	3.7kb	64.4%
DupFlanked Inversion	dupINV INVdup		→A>B>→		1,785	1.5kb	55.4%
Dispersed Duplication	dDUP				1,099	0.3kb	56.9%
	(Reference	Deletion Duplication	Insertion Inversion)	1006 1006 1006 1006 1006 1006 1006 1006	30% 50% 90%

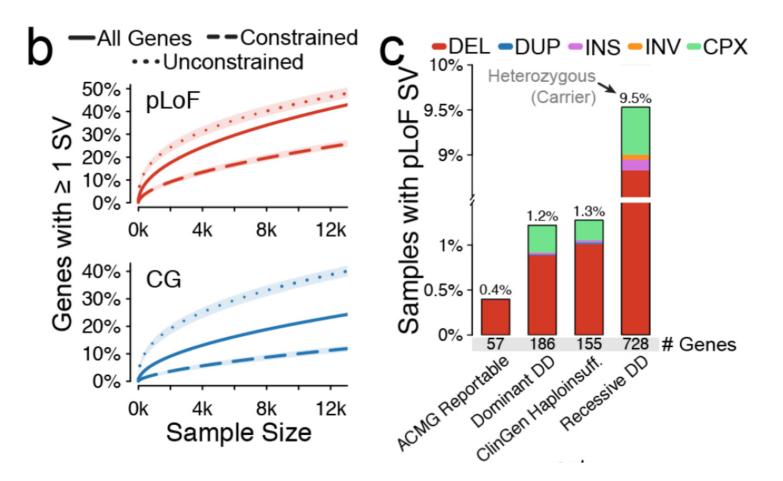

Figure 2 | Complex SVs are abundant in the human genome

gnomAD genome aggregation database

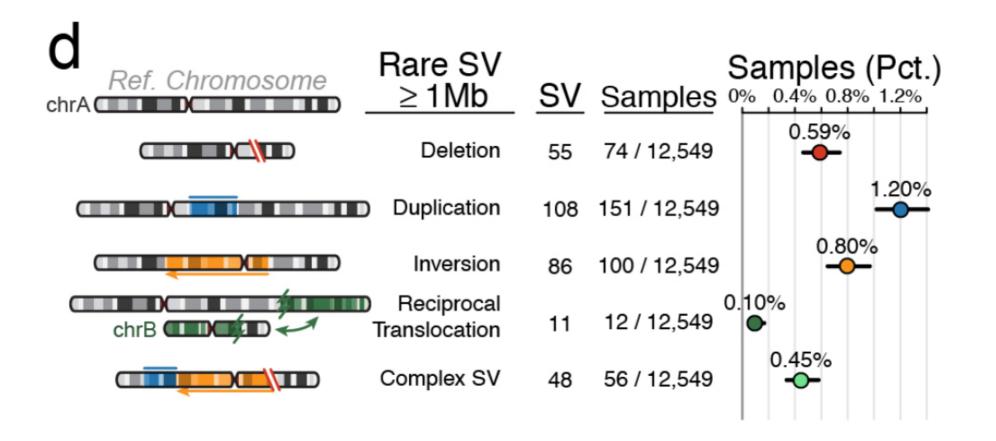


Average genome: 8,202 SVs

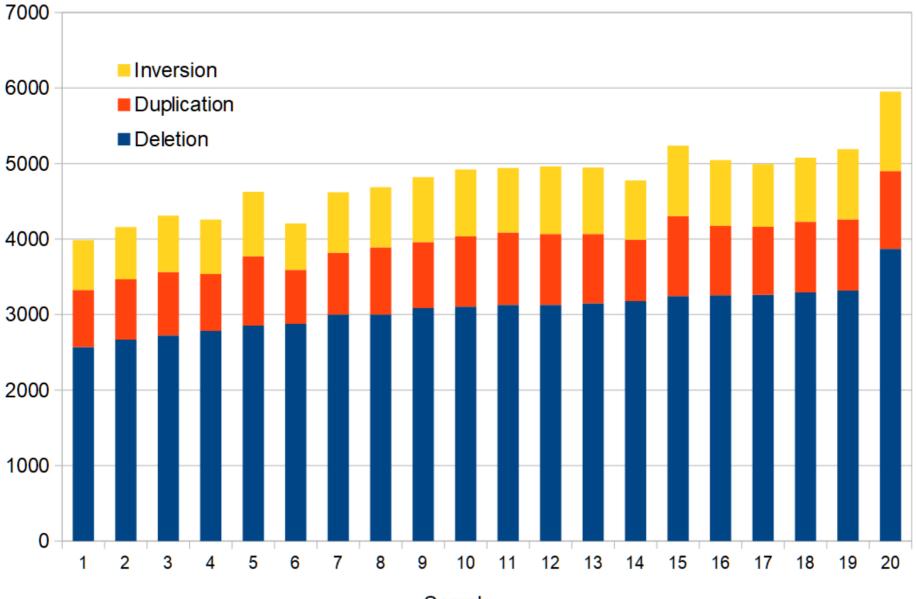
- Small (median SV size=374 bp)
- ...and rare (92% are AF<1%)
- 46.4% are singletons
- Eight genes altered by rare SVs
- Large (≥1Mb), rare autosomal SVs in 3.1% of genomes



Homozygous SVs


Rare SVs

gnomAD Genome aggregation database


(b) At least one pLoF or CG SV was detected in 40.4% and 23.5% of all autosomal genes, respectively. (c) Up to 1.3% of genomes in gnomAD-SV harbored a very rare (AF<0.1%) pLoF SV in a medically relevant gene across several gene lists.

(d) We found **308 rare autosomal SVs** \geq **1Mb**, revealing that ~3.1% of genomes carry a large, rare chromosomal abnormality.

Structural variants in 20 genomes by Delly

Sample

ClinVar: an open archive of variants with

- clinical phenotypes
- evidence
- interpreted clinical significance.

Submitted variants are classified by

- type of submitter
- number of agreeing submissions
- the variant interpretation guidelines used

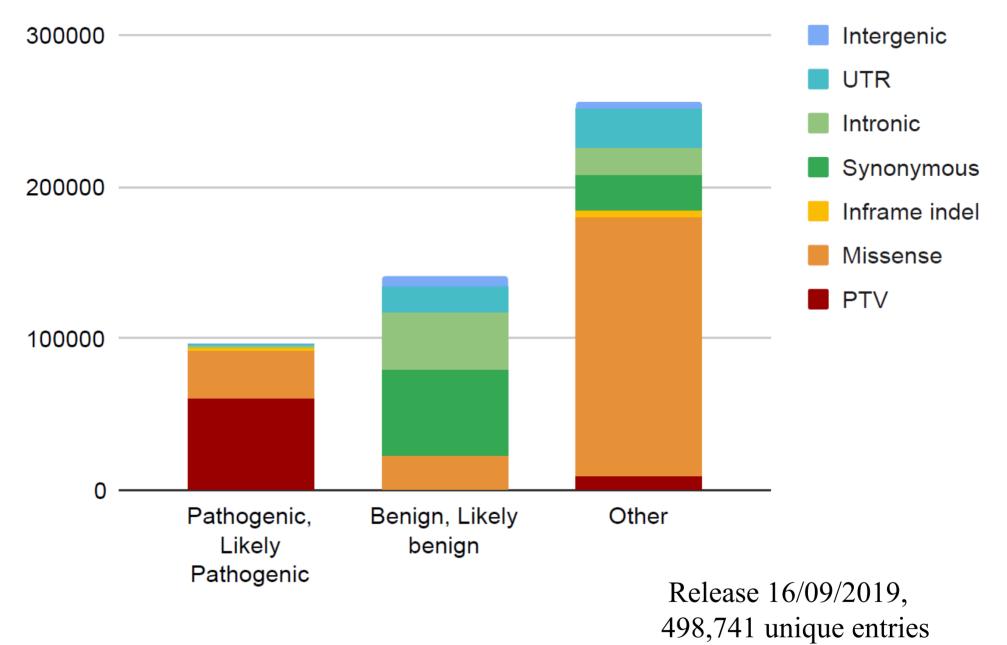
A key strength of this archive is the aggregation of data from multiple clinical laboratories, providing a growing record of support for each interpretation, in which the provenance for each interpretation is maintained. A benefit of this aggregation process is that disagreements about the significance of variants are collated and reported.

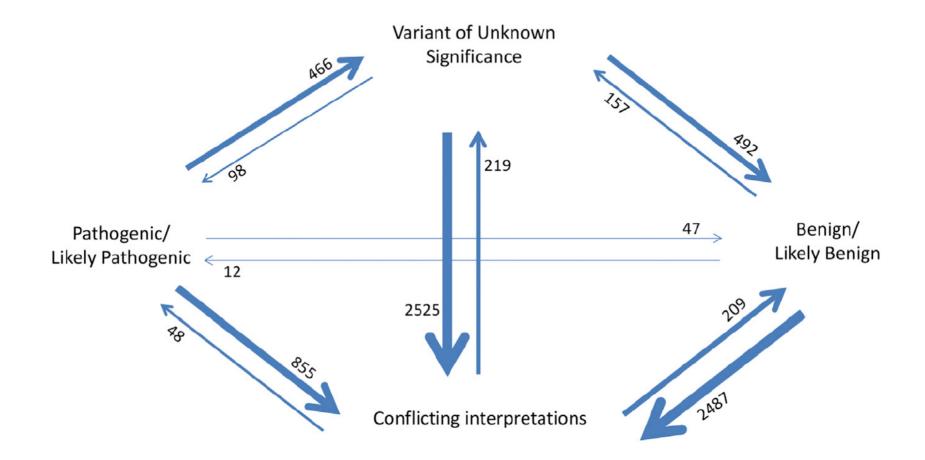
Eilbeck (2017) Nat Rev Genet

Submitted interpretations and evidence

Interpretation (Last evaluated)	Review status (Assertion criteria)	Condition (Inheritance)	Submitter	Supporting information (See all)
Pathogenic (Dec 30, 2016)	criteria provided, single submitter (ACMG Guidelines, 2015) Method: clinical testing	not provided Allele origin: germline	PreventionGenetics Accession: SCV000806334.1 Submitted: (Jan 29, 2018)	Evidence details
Pathogenic (Jun 27, 2018)	criteria provided, single submitter (Nykamp K et al. (Genet Med 2017)) Method: clinical testing	MYH- associated polyposis Allele origin: germline	Invitae Accession: SCV000545804.3 Submitted: (Aug 29, 2018)	Evidence details Publications PubMed (6) Comment: This sequence change creates a premature translational stop signa (p.Gln338*) in the MUTYH gene. It is expected to result in an absent or disrupted protein (more)

NM_000059.3(BRCA2):c.3909C>A (p.Gly1303=)


Interpretation:	Likely benign
Review status:	★★★☆ reviewed by expert panel
Supmissions:	2 (Most recent: Jun 29, 2017)
Last evaluated:	Jun 29, 2017
Accession:	VCV000051559.2
Variation ID:	51559
Description:	single nucleotide variant


Category of analysis	Current total (May 13, 2020)
Records submitted	1141302
Records with assertion criteria	969361
Records with an interpretation	1119301
Total genes represented	32838
Unique variation records	745458
Unique variation records with interpretations	733504
Unique variation records with assertion criteria	635153
Unique variation records with practice guidelines (4 stars)	656
Unique variation records from expert panels (3 stars)	10911
Unique variation records with assertion criteria, multiple submitters, and no conflicts (2 stars)	101805
Unique variation records with assertion criteria (1 star)	488040
Unique variation records with assertion criteria and a conflict (1 star)	33741
Unique variation records with conflicting interpretations	34051
Genes with variants specific to one gene	11064
Genes with variants specific to one protein-coding gene	10971
Genes included in a variant spanning more than one gene	33087
Variants affecting overlapping genes	27744
Total submitters	1565

Accession:	VCV000053510	
Variation:	NM_000492.3(CFTR):c.2	254G>T (p.Gly85Val)
Gene:	CFTR	
Condition:	Cystic fibrosis	
Clinical Sign	ificance (Interpretation):	Pathogenic, by submitter
Review statu	s (Assertion criteria):	Criteria provided, single submitter

Review status (Assertion criteria)	%	Clinical significance (Interpretation)	%
Criteria provided, single submitter	67.7	Uncertain significance; not provided	46.7
Criteria provided, multiple submitters,	15.4	Benign, Likely benign	28.4
no conflicts	10.4	Pathogenic, Likely pathogenic	19.7
No assertion criteria provided, no assertion provided	10.0	Conflicting interpretations	4.6
Criteria provided, conflicting		Risk factor, drug response, association	0.2
interpretations	4.6		
Reviewed by expert panel	2.2	Release 16/09/2019,	

498,741 unique entries

Change in ClinVar Variant Classification from May 2016 to September 2017. In the study period, 7,615 ClinVar variants changed classification. Overall, most of the re-classification in ClinVar feeds into "conflicting interpretation," B/LB and VUS, and away from P/LP.

Exercise

Use ClinVar (OMIM, SNPedia) to find and save one example of disease-associated pathogenic mutation for *each* annotation type:

- stop-gain
- synonymous
- missense
- splice-site
- frameshift indel

Now use gnomAD to get population frequencies for these variants

dbSNP: a free archive for genetic variation

NCBI Variation Summary

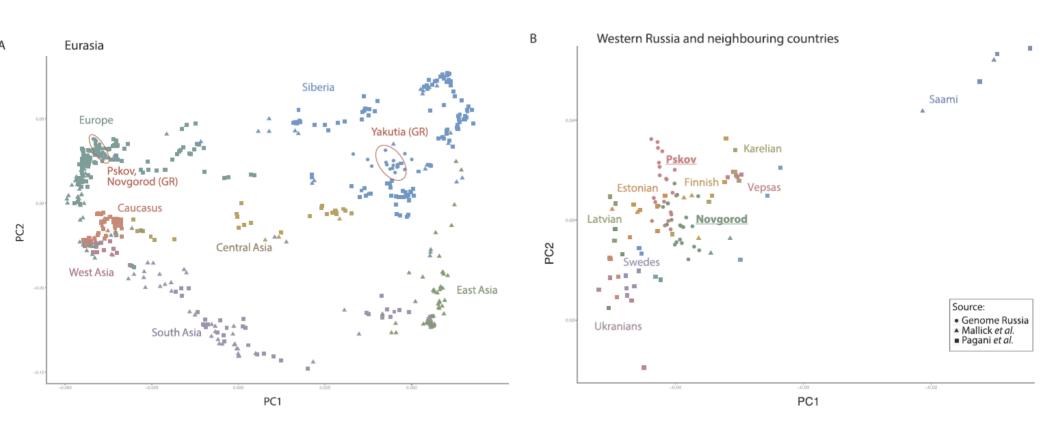
Description:

Summary of human variation data available from dbSNP and dbVar.

Report date: Tuesday, April 21, 2020

Total Variants:

- SubSNP count: 1,803,563,957
- RefSNP count: 660,773,127
- Variant Call count: 36,118,602
- Variant Region count: 6,023,949


dbVar is NCBI's database of human genomic Structural Variation – large variants >50 bp including insertions, deletions, duplications, inversions, mobile elements, translocations, and complex variants

Organism	Common Name	Taxon ID	dbSNP	dbVar
Homo	human	9606	Last Updated: Build 151 (Mar 22, 2018)	Last Updated: Apr 19, 2020
sapiens			RefSNP Count: 660.8 Million	Variant Regions: 6 Million
			SubSNP Count: 1803.6 Million	Variant Calls: 35.9 Million
			Assembly: GRCh37.p13, GRCh38.p7	Assembly: GRCh37, GRCh37.p13, GRCh38, GRCh38.p12, GRCh38.p13, GRCh38
			Data: <u>Search</u> , <u>FTP</u>	NCBI36
			Genome Data Viewer: GRCh37.p13,	Data: <u>Search</u> , <u>FTP</u>
			GRCh38.p7	dbVar Browser: GRCh37, GRCh38, NCBI34, NCBI35, NCBI36
				Genome Data Viewer: GRCh37, GRCh38

The Genome Russia Project

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation.

Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.

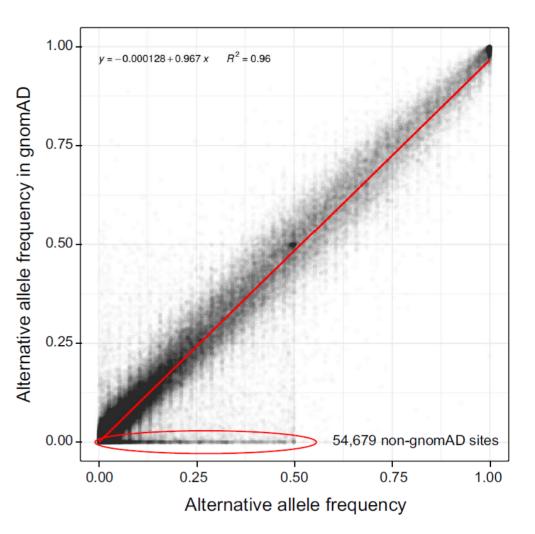
Zhernakova (2019) Genomics

The Genome Russia Project

Number of samples used in the study.

Sample group	Region	Number populations	Number samples	Number unrelated samples	Number families
GR Pskov	Western Russia	1	22	14	7
GR Novgorod	Western Russia	1	20	15	5
GR Yakuts	East Siberia	1	18	14	4
Mallick et al.	Many	18	31	32	0
Pagani et al.	Many	45	173	174	0
Total		55	264	249	16

Category of discovery	Phenotype	Location	Variant id	ref∕ alt	Gene	MAF Pskov	MAF Novgorod	MAF Yakuts	MAF 1000G EUR	MAF 1000G EAS
Medically relevant gene	Albinism oculocutaneous II	15q13.1	rs74653330	C/T	OCA2	0.04	NA	0.214	0.01	0.027
variants	Charcot-Marie-Tooth disease 4b3	22q13.33	rs200488568	T/C	SBF1	0	0	0.107	0	0.001
	Age-related macular degeneration	1 p22.1	rs28938473	G/A	ABCA4	0	0.07	0	0.006	0
	tyrosinemia type I	15q25.1	rs11555096	C/T	FAH	0.14	NA	0	0.019	0
Lof SNPs	Coronary artery calcification	2q14.3	rs117753184	A/T	WDR33	0	0	0.179	0	0.026
	Diabetic kidney disease; Urinary uromodulin levels	8q24.13	rs10101626	G/T	TBC1D31	0.18	0.1	0.714	0.195	0.183
	Astigmatism; cerebrospinal fluid clustering measurement; coronary artery bypass, vein graft stenosis	7p12.3	rs141576983	G/T	ABCA13	0	0	<u>0.464</u>	0.002	0.023
Long indels	Complement C2 deficiency	6p21.33	rs572361305		C2	0	0.1	0	0.007	0
Population-specific	Lactose intolerance	2q21.3	rs4988235	A/G	MCM6	0.36	0.47	0.04	0.508	0
phenotypes	Warfarin dosage sensitivity	16p11.2	rs9923231	C/T	VKORC	0.25	0.2	0.86	0.388	0.885
	Skin pigmentation	5p13.2	rs16891982	C/G	SLC45A2	1	1	0.07	0.938	0.006
	Retinitis pigmentosa	1p36.11	rs3816539	G/A	DHDDS	0.11	0.07	0.96	0.235	0.709
	Short stature syndrome	2p24.3	rs369698072	C/T	NBAS	0	0	<u>0.071</u>	NA (ExAC: 0)	NA (ExAC: 1.3e-4)
Infectious diseases	Hepatitis B infection	6p21.32	rs9277535	A/G	HLA-DPB1	0.11	0.17	0.39	0.27	0.61
	Kaposi's sarcoma	11p15.4	rs11030122	C/G	STIM1	0.54	0.47	0.11	0.33	0.35
Pharmacogenomics	Tamoxifen outcomes in breast cancer	10q22.3	rs11593840	A/G	LRMDA	0.57	0.37	0.43	0.41	0.18
-	Irinotecan in Colorectal Cancer	2q37.1	rs6742078	G/T	UGT1A1	0.29	0.27	0.46	0.3	0.13
		2q37.1	rs887829	C/T		0.29	0.27	0.46	0.298	0.13
	Trastuzumab Lapatinib in Breast Cancer treatment	10q26.13	rs3135718	C/T	FGFR2	0.46	0.37	0.07	0.43	0.4


Variants described in multiple sections of the paper are listed in the table (column one corresponds to the section), showing variant and overlapping gene ids, phenotype associated with the variance (AF) for Genome Russia is given for the alternative allele. Details column gives the table/Fig. with more information on these variants. The last column gives the minimum *p*-value for a count difference between either Novgorod and Pskov compared with 1000G EUR or Yakut compared with 1000G EAS. The population AFs showing the minimum *p*-value are underlined.

Zhernakova (2019) Genomics

Northwest Russia exomes

Methods: In this work, we leveraged our access to a large dataset of 694 exome samples to analyze genetic variation in the Northwest Russia. We compared the spectrum of genetic variants to the dbSNP build 151, and made estimates of ClinVar-based autosomal recessive (AR) disease allele prevalence as compared to gnomAD r. 2.1.

Results: An estimated 9.3% of discovered variants were not present in dbSNP. We report statistically significant overrepresentation of pathogenic variants for several Mendelian disorders, including phenylketonuria (PAH, rs5030858), Wilson's disease (ATP7B,rs76151636), factor VII deficiency (F7, rs36209567), kyphoscoliosis type of Ehlers-Danlos syndrome (FKBP14, rs542489955), and several other recessive pathologies. We also make primary estimates of monogenic disease incidence in the population, with retinal dystrophy, cystic fibrosis, and phenylketonuria being the most frequent AR pathologies.

Barbitoff (2019) Mol Genet and Gen Med

Summary

- Earlier estimates of nucleotide diversity do not account for human rapid expansion and natural selection. They result in much higher and variable diversity and excess of rare alleles
- Recent large-scale sequencing studies (1000 Genomes, ExAC, gnomAD, UK Biobank) elucidate previously unknown patterns of human genome variation and enable valuable insights into human population and disease genetics
- In particular, variants with population frequency incompatible with recessive inheritance and previously considered as pathogenic are reclassified
- The sample accumulation enables gene-level resolution: gene intolerance measure or selection coefficients for putative loss-of-function (pLoF) variants
- There are few WES- and WGS-based variant prevalence studies in Russian population

Further reading

- Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 536, 285–291
- Cassa, C.A., Weghorn, D., Balick, D.J., Jordan, D.M., et al. (2017). Estimating the selective effects of heterozygous protein-truncating variants from human exome data. *Nat. Genet.* 49, 806–810
- Saleheen, D., Natarajan, P., Armean, I.M., Zhao, W., et al. (2017). Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. *Nature* 544, 235–239
- Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., et al. (2019). Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv 531210
- Collins, R.L., Brand, H., Karczewski, K.J., Zhao, X., et al. (2019). An open resource of structural variation for medical and population genetics. BioRxiv 578674
- Kiezun, A., Garimella, K., Do, R., Stitziel, N.O., et al. (2012). Exome sequencing and the genetic basis of complex traits. *Nature Genetics* 44, 623–630

Further reading

- The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. *Nature* 526, 68–74
- Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant prioritization and Mendelian disease. *Nature Reviews Genetics* 18, 599
- Rehm, H.L., Berg, J.S., and Plon, S.E. (2018). ClinGen and ClinVar Enabling Genomics in Precision Medicine. *Human Mutation* 39, 1473–1475
- Gao, F., and Keinan, A. (2016). Explosive genetic evidence for explosive human population growth. *Current Opinion in Genetics & Development* 41, 130–139
- Shah, N., Hou, Y.-C.C., Yu, H.-C., Sainger, R., Caskey, C.T., Venter, J.C., and Telenti, A. (2018). Identification of Misclassified ClinVar Variants via Disease Population Prevalence. *The American Journal of Human Genetics* 102, 609– 619.
- Barbitoff, Y.A., Skitchenko, R.K., Poleshchuk, O.I., Shikov, A.E., et al. (2019). Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. *Mol Genet Genomic Med 7*, e964.
- Zhernakova, D.V., Brukhin, V., Malov, S., Oleksyk, T.K., Koepfli, K.P., et al. (2019). Genome-wide sequence analyses of ethnic populations across Russia. *Genomics*.