Введение в биологическую кристаллографию

Владимир Юрьевич ЛУНИН

Институт Математических Проблем Биологии РАН

(филиал Института Прикладной Математики им. М.В. Келдыша РАН)

Пущино

Определение структуры вещества на основе результатов рентгеновского дифракционного эксперимента

- рентгеноструктурный анализ;
- белковая кристаллография;
- кристаллография макромолекул;
- биологическая кристаллография;
- coherent diffraction imaging;
- рентгеновская микроскопия.

Методы определения трехмерной структуры с атомным разрешением

- рентгеноструктурный анализ (дифракция рентгеновских лучей);
- дифракция нейтронов;
- дифракция электронов;
- двумерный ЯМР;
- трехмерная реконструкция объекта по данным электронной крио-микроскопии.

Дифракционный эксперимент

- изучаем «отраженные» от объекта лучи;
- нет фокусирующих линз;
- вращение объекта трехмерный набор данных;
- необходимо «восстановить» структуру объекта

crystal: endonuclease Sm

Schot *et al.* 2015 NatCommun.6 5704 live cyanobacteria cell

Petrova *et al.*,2012, Acta Cryst. F68, 163-165 crystal: DNA ligase

Song *et al.* 2008 PhysRevLet. 101 158101-4 murine herpesvirus-68 (MHV-68) virions

Биология, биохимия

выбор объекта, интерпретация результата

Биохимия

получение белка, очистка, кристаллизация

Физика

источники рентгеновского излучения, системы регистрации, теория рассеяния рентгеновских лучей

Математика, компьютерные технологии

алгоритмы решения обратной задачи теории рассеяния, управление экспериментом, обработка экспериментальной информации, визуализация результатов

V век до н.э. Демокрит

Атомы

XVII век Рене Декарт

Координаты

An Information Portal to <u>156365</u> Biological Macromolecular Structures

established in 1971 at Brookhaven National Laboratory

ATOM	719	CG	PRO	А	36	5.814 -20.800	18.406	1.00	5.79
ATOM	720	CD	PRO	А	36	6.304 -19.896	17.288	1.00	5.14
ATOM	728	N	GLY	A	37	6.021 -17.853	20.161	1.00	5.00
ATOM	730	CA	GLY	A	37	6.460 -17.080	21.310	1.00	5.65
ATOM	732	С	GLY	А	37	6.310 -15.586	21.073	1.00	5.00
ATOM	734	0	GLY	А	37	5.798 -15.167	20.034	1.00	5.43
ATOM	742	N	ALA	А	38	6.827 -14.792	22.008	1.00	4.32

Crambin 327 атомов

Шаперон GroEL 30 000 атомов

Планетарная модель атома

"Электрон вокруг протона обращается Эта штука 'атом Бора' называется"

Функция распределения электронной плотности

 $\rho(\mathbf{r})$ (или $\rho(x,y,z)$) - функция распределения электронной плотности

 $\rho(\mathbf{r})dV$ (или $\rho(x_0, y_0, z_0)dxdydz)$ - средний (по времени) заряд в объеме dV

Распределение электронной плотности в атоме (гауссово приближение) (|r|²)

dV

$$\rho(\mathbf{r}) \approx \alpha \exp\left(-\frac{|\mathbf{r}|}{\beta}\right)$$

Таблицы: 5-гауссовое приближение

Electron density distribution

ρ(**r**) (или *ρ*(*x*,*y*,*z*)) - функция распределения электронной плотности

 $\rho(\mathbf{r})dV$ (или $\rho(x_0,y_0,z_0)dxdydz)$ - средний (по времени) заряд в объеме dV

Распределение электронной плотности в белке альдозредуктазе (экспериментально полученная карта – "синтез Фурье электронной плотности").

dV

aldose reductase, 0.9Å, MAD

RNAse sa, 2.5Å, MIR

RNAse sa, 2.5Å, MIR

Интерпретация электронной плотности

Рентгеновский эксперимент дает информацию о распределении электронной плотности в исследуемом объекте.

Удобно представлять электронную плотность в виде суммы вкладов отдельных атомов.

Разбивка плотности на атомы – интерпретация электронной плотности.

В PDB хранится результат интерпретации электронной плотности – координаты атомов.

Рентгеновские лучи

- А. Электромагнитная синусоидальная волна: длина волны λ ; амплитуда волны **E**; регистрируется интенсивность (энергия) $I \sim |\mathbf{E}|^2$
- Б. Поток фотонов:

энергия фотона E_{photon} ; плотность потока $j = \begin{bmatrix} photons \\ A^2 \cdot sec \end{bmatrix}$;

регистрируется число фотонов (энергия) $J = j \cdot \Delta S \cdot \Delta t$

$$E_{photon} = \frac{hc}{\lambda}, \ j = \frac{\lambda}{8\pi h} |\mathbf{E}|^2$$

Кинематическая теория рассеяния рентгеновских лучей

Рентгеновские лучи – электромагнитные волны с длиной волны в диапазоне 0.01 – 100. Å

Прямая задача теории рассеяния:

- знаем: как устроен образец (распределение электронов);
- хотим знать: картину рассеяния (направление и интенсивность "вторичных" рентгеновских лучей).

Цель

получить формулы для расчета интенсивности вторичных лучей при условии, что известно распределение электронов (атомов).

Электромагнитные волны

Электромагнитное поле

- на заряд q действует сила $\mathbf{F}=q\mathbf{E}$
- Е вектор напряженности электрического поля
- **E**(**r**) стационарное электрическое поле
- $E(\mathbf{r},t)$ электрическое поле
- электрические поля суммируюся
- имеется магнитная составляющая поля **H**(**r**,t)

синусоидальная ЭМ волна – специальный вид поля, при котором изменение поля и во времени и в пространстве имеет синусоидальный характер

qE(r,t) – волна силы, действующей на электрон;

Два подхода к изучению нестационарного поля

"Мгновенный снимок"

Фиксируется момент времени $t=t^0$. Изучается распределение поля в пространстве $E^0(r)=E(r,t^0)$.

Фиксация точки наблюдения.

Фиксируем точку наблюдения $r=r^0$. Изучаем, как меняется поле в этой точке с течением времени. $E_{r0}(t)=E(r^0,t)$.

$$E(x,t) = E_0 \sin\left[2\pi\left(\frac{x}{\lambda} - vt + \delta\right)\right]$$

$$E_0 \sin\left[2\pi \frac{x}{\lambda}\right]$$

"мгновенный снимок", время фиксировано

$$E_0 \sin\left[-2\pi v t\right]$$

фиксирована точка наблюдения

- на заряд q действует сила $\mathbf{F}=\!q\mathbf{E}$
- Е вектор напряженности электрического поля
- $E(\mathbf{r},t)$ электрическое поле

"Бегущая волна"

"мгновенный снимок"

- на заряд q действует сила $\mathbf{F}=\!q\mathbf{E}$
- Е вектор напряженности электрического поля
- **E**(**r**,t) электрическое поле

"мгновенный снимок"

- на заряд q действует сила $\mathbf{F}=\!q\mathbf{E}$
- Е вектор напряженности электрического поля
- **E**(**r**,t) электрическое поле

"мгновенный снимок"

- на заряд q действует сила $\mathbf{F}=\!q\mathbf{E}$
- Е вектор напряженности электрического поля
- **E**(**r**,t) электрическое поле

"мгновенный снимок"

- на заряд q действует сила $\mathbf{F}=\!q\mathbf{E}$
- Е вектор напряженности электрического поля
- **E**(**r**,t) электрическое поле

"мгновенный снимок"

Сложение волн с разными фазами $E(u) = E_0 \sin[2\pi u] + E_0 \sin[2\pi (u - \Delta)]$ $\Delta = 0$ $\Delta = 1/4$ $\Delta = 3/8$ $\Delta = 4/8$

Амплитуда суммарной волны зависит от разности фаз двух волн.

Сферическая электромагнитная волна

$$E(\mathbf{r},t) = \frac{1}{|\mathbf{r}|} E_0 \sin\left[2\pi\left(\frac{|\mathbf{r}|}{\lambda} - vt + \delta\right)\right]$$

r – точка в трехмерном пространстве; $r = |\mathbf{r}|$ - длина вектора **r**

"Мгновенный снимок" (момент времени фиксирован)

На любой сфере поле постоянно.

Вдоль радиуса поле затухает синусоидально.

Сферическая электромагнитная волна

В фиксированной точке пространства – синусоидальное изменение поля во времени.

Одномерная волна

$$E(x,t) = E_0 \sin\left[2\pi\left(\frac{x}{\lambda} - vt + \delta\right)\right]$$

Сферическая волна

$$E(\mathbf{r},t) = \frac{1}{|\mathbf{r}|} E_0 \sin \left[2\pi \left(\frac{|\mathbf{r}|}{\lambda} - vt + \delta \right) \right]$$

Плоская электромагнитная волна

$$E(\mathbf{r},t) = E_0 \sin\left[2\pi\left(\frac{(\mathbf{r},\boldsymbol{\sigma})}{\lambda} - vt + \delta\right)\right]$$

 $|\sigma|=1, \sigma$ – направление

распространения волны

 $(r,\!\sigma)$ – проекция r на направление σ

"Мгновенный снимок" (момент времени фиксирован)

В любой плоскости, перпендикулярной направлению σ, поле постоянно. σ Вдоль σ поле меняется синусоидально.

Плоская электромагнитная волна

В фиксированной точке пространства – синусоидальное изменение поля во времени.

Одномерная волна

Плоская волна

$$E(x,t) = E_0 \sin\left[2\pi\left(\frac{x}{\lambda} - vt + \delta\right)\right]$$

$$E(\mathbf{r},t) = E_0 \sin\left[2\pi\left(\frac{(\mathbf{r},\boldsymbol{\sigma})}{\lambda} - vt + \delta\right)\right]$$

Рассеяние рентгеновских лучей электроном

падающая волна

$$E(\mathbf{r},t) = E_0 \sin \left[2\pi \left(\frac{(\boldsymbol{\sigma}_0,\mathbf{r})}{\lambda} - vt + \delta \right) \right]$$

уравнения Ньютона,

осцилляция электрона

уравнения Максвелла

рассеянная волна

$$E(\mathbf{r},t) = \frac{\varepsilon}{|\mathbf{r}|} E_0 \sin\left[2\pi\left(\frac{|\mathbf{r}|}{\lambda} - vt + \delta\right)\right]$$

 $\frac{\varepsilon}{|\mathbf{r}|} \approx 10^{-12}$

Рассеяние рентгеновских лучей электроном

 $E(\mathbf{r},t) = E_0 \sin\left[2\pi\left(\frac{(\boldsymbol{\sigma}_0,\mathbf{r})}{\lambda} - vt + \delta\right)\right]$

рассеянная волна

падающая волна

$$E(\mathbf{r},t) = \frac{\varepsilon}{|\mathbf{r}|} E_0 \sin\left[2\pi\left(\frac{|\mathbf{r}|}{\lambda} - vt + \delta\right)\right]$$

распространяется во всех направлениях

Эксперимент позволяет измерить интенсивность рассеянной волны. Интенсивность пропорциональна квадрату амплитуды.

$$I = \left(\frac{\varepsilon}{|\mathbf{r}|}\right)^2 I_0 \qquad \qquad \left(\frac{\varepsilon}{|\mathbf{r}|}\right)^2 \approx 10^{-24} \quad ! \quad ! \quad !$$

Рассеяние рентгеновских лучей двумя электронами

- В «точке» детектора складываются два электрических поля
- Можно измерить амплитуду суммарной волны

$$\begin{split} E(\mathbf{r},t) &= E_0 \sin \left[2\pi \left(\frac{(\mathbf{r},\mathbf{\sigma})}{\lambda} - vt + \delta \right) \right] & \Delta_1 = \frac{(\mathbf{u},\mathbf{\sigma}_0)}{\lambda} & \Delta_2 = \frac{(\mathbf{u},\mathbf{\sigma})}{\lambda} \\ E_1(t) &\propto E_0 \sin [2\pi(-vt)] \\ E_2(t) &\propto E_0 \sin [2\pi(-vt - \Delta)] & \mathbf{s} = \frac{\mathbf{\sigma} - \mathbf{\sigma}_0}{\lambda} & \text{вектор рассеяния} \end{split}$$

Сложение волн от двух электронов

Амплитуда рассеянной волны зависит от взаимного расположения рассеивающих электронов.

по амплитуде рассеянной волны можем сделать вывод о сдвиге фазы Δ;

$$\Delta = \left(\frac{\mathbf{\sigma} - \mathbf{\sigma}_0}{\lambda}, \mathbf{u}\right) - проекция вектора \mathbf{u} на направление \quad \mathbf{s} = \frac{\mathbf{\sigma} - \mathbf{\sigma}_0}{\lambda}$$

при известном векторе рассеяния получаем величину этой проекции;

меняя направление первичного пучка и положение детектора, определяем проекции вектора **u** на разные направления s_1 , s_2 , s_3 ;

можем определить вектор и;

Основа рентгеноструктурного анализа

- амплитуда рассеянной волны зависит от взаимного расположения рассеивающих электронов;
- амплитуда рассеянной волны зависит от направления рассеяния

Метод проб и ошибок

- гипотеза вектор и;
- для разных направлений σ рассчитываем сдвиг фазы ∆ и ожидаемую амплитуду рассеянной в этом направлении волны;
- измеряем соответствующие амплитуды в эксперименте;
- сравниваем предсказанные значения с экспериментом

«Определение расстояния между двумя электронами»

Проблема:

Направление вектора **u** известно, не знаем только длину (расстояние между электронами). Хотим определить это расстояние

Эксперимент:

направляем первичный пучок в направлении и
вращаем детектор с шагом 10 градусов
измеряем интенсивность

$$E(t) = E_0 \sin[2\pi(-\nu t)] + E_0 \sin[2\pi(-\nu t - \Delta)] \qquad \Delta = \left(\frac{\sigma - \sigma_0}{\lambda}, \mathbf{u}\right) = -2u \sin^2 \theta$$
$$I^{\text{theoretical}}(\theta) = 4\cos^2[2\pi u \sin^2 \theta] \qquad E_0 = 1., \lambda = 1.$$

$$I^{theoretical}(\theta) = 4\cos^2\left[2\pi u \sin^2\theta\right]$$

«правильное» значение *u*=0.74 Å

Источники рентгеновского излучения

Генераторы с вращающимся анодом.

Генераторы с жидким анодом. (Ga, $t_{\pi\pi} = 29.8$ °C)

Grenoble, France

Quantum 4

Quantum 210

Area Detector Systems Corporation

Détecteur bi-dimensionnel ($coût = \frac{500000}{650000} euros)$

Источники рентгеновского излучения

Синхротронное излучение.

Ондуляторы.

Генераторы с вращающимся анодом.

Генераторы с жидким анодом.

X-ray Free-Electrons Laser

Рассеяние рентгеновских лучей двумя электронами

- В «точке» детектора складываются два электрических поля
- Можно измерить амплитуду суммарной волны

$$E_{1}(t) \propto E_{0} \sin[2\pi(-vt)] \qquad \Delta_{1} = \frac{(\mathbf{u}, \mathbf{\sigma}_{0})}{\lambda} \qquad \Delta_{2} = \frac{(\mathbf{u}, \mathbf{\sigma})}{\lambda}$$
$$E_{2}(t) \propto E_{0} \sin[2\pi(-vt - \Delta)] \qquad \Delta = \Delta_{2} - \Delta_{1} = (\mathbf{u}, \mathbf{s})$$

$$\mathbf{s} = \frac{\boldsymbol{\sigma} - \boldsymbol{\sigma}_0}{\lambda}$$

вектор рассеяния

$$E(t) \propto E_0 \sin[2\pi(-\nu t)]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_2)\right)\right]$$

$$E(t) \propto E_0 \sin[2\pi(-\nu t)]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_2)\right)\right]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_3)\right)\right]$$

$$E(t) \propto E_0 \sin[2\pi(-\nu t)]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_2)\right)\right]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_3)\right)\right]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_4)\right)\right]$$

$$F(\mathbf{s})\cos\varphi(\mathbf{s}) = \sum_{j}\cos 2\pi(\mathbf{s}, \mathbf{u}_{j})$$
$$F(\mathbf{s})\sin\varphi(\mathbf{s}) = \sum_{j}\sin 2\pi(\mathbf{s}, \mathbf{u}_{j})$$

$$E(t) \propto E_0 \sin[2\pi(-\nu t)]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_2)\right)\right]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_3)\right)\right]$$

$$+E_0\sin\left[2\pi\left(-\nu t-(\mathbf{s},\mathbf{u}_4)\right)\right]$$

$$= F(\mathbf{s}) E_0 \sin[2\pi(-\nu t) - \varphi(\mathbf{s})]$$

 F(s) - модуль структурного фактора;
 φ(s) - фаза структурного фактора;

$$F(\mathbf{s})\cos\varphi(\mathbf{s}) = \sum_{j}\cos 2\pi(\mathbf{s}, \mathbf{u}_{j})$$
$$F(\mathbf{s})\sin\varphi(\mathbf{s}) = \sum_{j}\sin 2\pi(\mathbf{s}, \mathbf{u}_{j})$$

 $E(t) \propto F(\mathbf{s}) E_0 \sin[2\pi(-\nu t) - \varphi(\mathbf{s})]$

 F(s) - модуль структурного фактора;
 φ(s) - фаза структурного фактора;

$$F(\mathbf{s})\cos\varphi(\mathbf{s}) = \sum_{j}\cos 2\pi(\mathbf{s}, \mathbf{u}_{j})$$
$$F(\mathbf{s})\sin\varphi(\mathbf{s}) = \sum_{j}\sin 2\pi(\mathbf{s}, \mathbf{u}_{j})$$

$$E(t) \propto F(\mathbf{s}) E_0 \sin[2\pi(-\nu t) - \varphi(\mathbf{s})]$$

Интенсивность рассеянной волны

$$I(\mathbf{s}) = I(\sigma_0, \sigma) \propto \left[\sum_{j} \cos 2\pi (\mathbf{s}, \mathbf{u}_j) \right]^2 + \left[\sum_{j} \sin 2\pi (\mathbf{s}, \mathbf{u}_j) \right]^2$$

Структурный фактор

F - вектор (комплексное число)

$$F(\mathbf{s})\cos\varphi(\mathbf{s}) =$$
 $F(\mathbf{s})\sin\varphi(\mathbf{s}) =$ Электроны в точках
 $\mathbf{u}_1, \mathbf{u}_2, \dots$ $\sum_j \cos 2\pi(\mathbf{s}, \mathbf{u}_j)$ $\sum_j \sin 2\pi(\mathbf{s}, \mathbf{u}_j)$ "Неединичные заряды
в точках $\mathbf{u}_1, \mathbf{u}_2, \dots$ $\sum_j Z_j \cos 2\pi(\mathbf{s}, \mathbf{u}_j)$ $\sum_j Z_j \sin 2\pi(\mathbf{s}, \mathbf{u}_j)$ Непрерывное
распределение $\rho(\mathbf{r})$ $\sum_j \rho(\mathbf{r}_j) dV_{\mathbf{r}} \cos 2\pi(\mathbf{s}, \mathbf{r}_j)$ $\sum_j \rho(\mathbf{r}_j) dV_{\mathbf{r}} \sin 2\pi(\mathbf{s}, \mathbf{r}_j)$ $\int \rho(\mathbf{r}) \cos 2\pi(\mathbf{s}, \mathbf{r}) dV_{\mathbf{r}}$ $\sum_j \rho(\mathbf{r}) dV_{\mathbf{r}} \sin 2\pi(\mathbf{s}, \mathbf{r}_j)$

- $F(\mathbf{s})$ модуль структурного фактора (structure factor magnitude);
- $\phi(s)$ фаза структурного фактора (structure factor phase)

Рассеяние атомом

$$F(\mathbf{s}) = \sqrt{\left[\int \rho(\mathbf{r}) \cos 2\pi (\mathbf{s}, \mathbf{r}) dV_{\mathbf{r}}\right]^2 + \left[\int \rho(\mathbf{r}) \sin 2\pi (\mathbf{s}, \mathbf{r}) dV_{\mathbf{r}}\right]^2}$$

Для атома, находящегося в начале координат

$$\rho(\mathbf{r}) = C\left(\frac{4\pi}{B}\right)^{3/2} \exp\left(-\frac{4\pi^2|\mathbf{r}|^2}{B}\right)$$
$$F(\mathbf{s}) = f\left(|\mathbf{s}|\right) \qquad \varphi(\mathbf{s}) = 0$$
$$f\left(s\right) = C \exp\left(-B\frac{s^2}{4}\right)$$

f(s) - фактор атомного рассеяния (атомный формфактор)

$$F(\mathbf{s})\cos\varphi(\mathbf{s}) = F(\mathbf{s})\sin\varphi(\mathbf{s}) =$$

Электроны в точках **u**₁, **u**₂, ...

Непрерывное распределение $\rho(\mathbf{r})$

Атомы с формфакторами $f_i(s)$ в точках $\mathbf{r}_1, \mathbf{r}_2, ...$

$$\sum_{j} \cos 2\pi (\mathbf{s}, \mathbf{u}_{j}) \qquad \sum_{j} \sin 2\pi (\mathbf{s}, \mathbf{u}_{j})$$
$$\int \rho(\mathbf{r}) \cos 2\pi (\mathbf{s}, \mathbf{r}) dV_{\mathbf{r}} \qquad \int \rho(\mathbf{r}) \sin 2\pi (\mathbf{s}, \mathbf{r}) dV_{\mathbf{r}}$$
$$\sum_{j} f_{j}(|\mathbf{s}|) \cos 2\pi (\mathbf{s}, \mathbf{r}_{j}) \qquad \sum_{j} f_{j}(|\mathbf{s}|) \sin 2\pi (\mathbf{s}, \mathbf{r}_{j})$$

i

 $F(\mathbf{s})$ - модуль структурного фактора (structure factor magnitude);

 $\phi(\mathbf{s})$ - фаза структурного фактора (structure factor phase)

Структурный фактор

F - вектор (комплексное число)

F(s)cos
$$\varphi(\mathbf{s}) =$$
F(s)sin $\varphi(\mathbf{s}) =$ Атомы с формфакторами $\sum_{j} f_j(s) cos 2\pi(\mathbf{s}, \mathbf{r}_j)$ $\sum_{j} f_j(s) sin 2\pi(\mathbf{s}, \mathbf{r}_j)$ $f_j(s)$ в точках $\mathbf{r}_1, \mathbf{r}_2, \dots$ $\sum_{j} f_j(s) cos 2\pi(\mathbf{s}, \mathbf{r}_j)$ $\sum_{j} f_j(s) sin 2\pi(\mathbf{s}, \mathbf{r}_j)$

Основы рентгеноструктурного анализа

- амплитуда регистрируемой суммарной волны зависит от взаимного расположения рассеивающих электронов; измеряя эту амплитуду, мы получаем возможность делать выводы о взаимном расположении электронов в объекте;
- амплитуда зависит от направления, в котором расположен детектор; измеряя амплитуду в разных направлениях, мы получаем набор независимых измерений;

- результаты эксперимента определяются расположением электронов; поэтому та информация, которую мы можем извлечь из эксперимента - это распределение электронной плотности в изучаемом объекте; координаты атомов - это упрощенное описание электронной плотности; метод РСА дает больше, нежели просто координаты атомов;
- если нам известна структура, мы можем рассчитать и амплитуду, и фазу суммарной волны, но в эксперименте может быть измерена только амплитуда.

Метод проб и ошибок

Гипотетическая структура; координаты атомов $(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$

Расчет соответствующей картины дифракции $F(\mathbf{s}_1), F(\mathbf{s}_2), ..., F(\mathbf{s}_K)$

Сравнение с экспериментом

$$R = \sum_{k=1}^{K} \left(F^{obs}(\mathbf{s}_k) - F^{calc}(\mathbf{s}_k) \right)^2$$

Sir William Henry Bragg Sir William Lawrence Bragg

Нобелевская премия 1915 г.

Определение структуры как задача минимизации

- имеем набор экспериментально определенных значений модулей структурных факторов $F^{obs}(\mathbf{s}_1), F^{obs}(\mathbf{s}_2), F^{obs}(\mathbf{s}_3), ...$
- для каждой пробной структуры r₁, r₂, r₃, r₄, ... умеем рассчитывать "теоретические" значения модулей

$$F^{calc}(\mathbf{s}) = \sqrt{\left[\sum_{j} f_{j}(|\mathbf{s}|)\cos 2\pi(\mathbf{s},\mathbf{r}_{j})\right]^{2} + \left[\sum_{j} f_{j}(|\mathbf{s}|)\sin 2\pi(\mathbf{s},\mathbf{r}_{j})\right]^{2}}$$

 хотим подобрать координаты атомов структуры r₁, r₂, r₃, r₄, ... так, чтобы минимизировать расхождение между теоретическими и экспериментальными значениями

$$Q(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ...) = \sum_k \left[F^{obs}(\mathbf{s}_k) - F^{calc}(\mathbf{s}_k; \mathbf{r}_1, \mathbf{r}_2, ...) \right]^2 \Longrightarrow \min$$

Проблема

Число неизвестных значений координат может достигать сотен тысяч. Число экспериментальных наблюдений - миллионов. Такие задачи наука, на сегодняшний день, решать не умеет.

Однако

Если удалось найти значения координат приближенно, то их можно уточнить, минимизируя погрешность $Q(\mathbf{r}_1,...,\mathbf{r}_N)$

$$Q(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ...) = \sum_k \left[F^{obs}(\mathbf{s}_k) - F^{calc}(\mathbf{s}_k; \mathbf{r}_1, \mathbf{r}_2, ...) \right]^2 \Longrightarrow \min$$

Необходимая точность определения стартовых координат: ~ 0.7Å

X-Ray-Radiation-Induced Cooperative Atomic Movements in Protein Petrova *et al.* (2009) *J.Mol.Biol.*,387,1092

План эксперимента

Цель исследования:

изучение изменения атомной структуры белковой глобулы под воздействием рентгеновского излучения.

Инструмент: локальное уточнение координат атомов при переходе к данным, соответствующим усиленной радиационной нагрузке.

normal dose Data 1 ➡ Model 1 "killing" dose normal dose Data 2 \Rightarrow Model 2 "killing" dose normal dose Data 3

→ Model 3 "killing" dose normal dose Data 4 ➡ Model 4
Проблема

Число неизвестных значений координат может достигать сотен тысяч. Число экспериментальных наблюдений - миллионов. Такие задачи наука, на сегодняшний день, решать не умеет.

Однако

Можно найти минимум, если уменьшить число варьируемых переменных.

- 1. Низкомолекулярные соединения
- 2. Подсистемы "тяжелых" атомов в белковых структурах
- 3. "Молекулярное замещение"

MR - Molecular Replacement Молекулярное замещение;

В общем случае положение твердого тела определяется шестью параметрами (α , β , γ , t_x , t_y , t_z).

углы вращения

вектор трансляции

MR - Molecular Replacement Молекулярное замещение;

Оптимальное размещение пробной модели

Для каждого допустимого набора параметров (α , β , γ , t_x , t_y , t_z) можно рассчитать соответствующие значения модулей структурных факторов $F^{calc}(\mathbf{s}_k, \alpha, \beta, \gamma, t_x, t_y, t_z)$

Хотим иметь наилучшее совпадение с экспериментально определенными модулями $F^{obs}(\mathbf{s}_k)$

$$Q(\alpha, \beta, \gamma, t_x, t_y, t_z) = \sum_k \left(F^{obs}(\mathbf{s}_k) - F^{calc}(\mathbf{s}_k, \alpha, \beta, \gamma, t_x, t_y, t_z) \right)^2 \quad \Rightarrow \quad \min$$

Задачу можно разделить на два этапа: поиск углов вращения ("функция вращения") и поиск трансляции ("функция трансляции").

Как измерить энергию рассеянной волны?

$$E(\mathbf{r},t) = E_0 \sin\left[2\pi\left(\frac{(\boldsymbol{\sigma}_0,\mathbf{r})}{\lambda} - vt + \delta\right)\right]$$

рассеянная волна

падающая волна

$$E(\mathbf{r},t) = \frac{\sigma}{|\mathbf{r}|} E_0 \sin\left[2\pi\left(\frac{|\mathbf{r}|}{\lambda} - vt + \delta\right)\right]$$

 (\mathbf{r})

распространяется во всех направлениях

Эксперимент позволяет измерить интенсивность рассеянной волны. Интенсивность пропорциональна квадрату амплитуды.

$$I = \left(\frac{\varepsilon}{|\mathbf{r}|}\right)^2 I_0 \qquad \qquad \left(\frac{\varepsilon}{|\mathbf{r}|}\right)^2 \approx 10^{-24} \quad \mathbf{I} \quad \mathbf{I}$$

Проблема

Интенсивность рассеяния отдельной молекулой слишком мала для регистрации.

Возможное решение:

- увеличение мощности источника излучения;
- повышение чувствительности регистрирующего устройства;
- увеличение времени экспозиции;
- рассеяние большим числом идентичных молекул.

Много молекул:

• растворы;

порошки;

кристаллы.

- газы;

линейные размеры кристалла 0.1мм=10⁶Å линейные размеры элементарной ячейки 100Å

количество копий молекулы в кристалле (10⁴)³=10¹²

Кристалл усиливает интенсивность в 10²⁴ раз !!!

```
Условия дифракции
(Лауэ):
(\mathbf{s},\mathbf{a})=h
(\mathbf{s},\mathbf{b})=k
(\mathbf{s},\mathbf{c})=l
h,k,l - целые числа
        (индексы рефлекса)
а,b,c - ребра элементарной ячейки
s = \frac{\sigma - \sigma_0}{2} - вектор рассеяния
```


Рассеяние кристаллами

Buried a thousand feet (300 meters) below Naica mountain in the Chihuahuan Desert, the cave was discovered by two miners excavating a new tunnel for the Industrias Peñoles company in 2000.

Т.Бландел, Л.Джонсон. Кристаллография белка. "Мир", Москва, 1979

- М.А.Порай-Кошиц. Основы структурного анализа химических соединений. Москва, "Высшая школа", 1989
- Ч.Кантор, П.Шиммел. Биофизическая химия, том 2. Москва, "Мир", 1984
- International Tables for Crystallography, vol. F. Crystallography of biological macromolecules. Second Edition. Wiley, 2011
- И.Сердюк, Н.Закаи, Дж.Закаи. Методы в молекулярной биофизике. т.2. М.КДУ, 2010
- Urzhumtsev A.G., Lunin V.Y. (2019). Introduction to crystallographic refinement of macromolecular atomic models. *Crystallography Reviews*. 25:3, 164-262.