Факультет биоинженерии и биоинформатики, Московский государственный университет имени М.В.Ломоносова

Молекулярный визуализатор PyMol

Биоинформатика, 4 курс ФББ МГУ, осенний семестр Злобин А. С., alexander.zlobin@fbb.msu.ru

Визуализаторы

Больше для анализа

Больше для иллюстраций

Чаще всего визуализаторы используют для, очевидно, визуального анализа и для подготовки изображений публикационного качества. Для глубокого анализа приходится использовать специализированные инструменты или плагины.

Допбаллы: разберите один из инструментов помимо PyMol и напишите по нему туториал на русском языке, понятный вашим текущим и будущим коллегам.

plugin for pymol			× Searc			
Advanced Create alert Create RSS		rt Create RSS	User Guide			
Save	Email	Send to	Sorted by: Best match	Display options		

77 results

1 Cite Share	Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules. Arroyuelo A, Vila JA, Martin OA. J Comput Aided Mol Des. 2016 Aug;30(8):619-24. doi: 10.1007/s10822-016-9944-x. Epub 2016 Aug 22. PMID: 27549814 Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL , Azahar
2 Cite Share	PyTMs: a useful PyMOL plugin for modeling common post-translational modifications.Warnecke A, Sandalova T, Achour A, Harris RA.BMC Bioinformatics. 2014 Nov 28;15(1):370. doi: 10.1186/s12859-014-0370-6.PMID: 25431162Free PMC article.CONCLUSION: PyTMs is a useful, user-friendly modelling plugin for PyMOL. Advantages of PyTMs include standardized generation of PTMs, rapid time-to-result and facilitated user controlPyTMs is freely available as part of the PyMOL script repository projec
3 Cite Share	 iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach. Faure G, Joseph AP, Craveur P, Narwani TJ, Srinivasan N, Gelly JC, Rebehmed J, de Brevern AG. Source Code Biol Med. 2019 Nov 2;14:5. doi: 10.1186/s13029-019-0075-3. eCollection 2019. PMID: 31700529 Free PMC article. To facilitate the usage of iPBA, we designed and implemented iPBAvizu, a plugin for PyMOL that

allows users to run iDRA in an easy way and analyse protein superimpositions. CONCLUSIONS:

Больше возможностей для анализа в РуМоl

Установка PyMol

- 1. Пройти на <u>www.pymol.org</u>
- 2. Нажать на Download Now
- 3. Выбрать нужную ОС
- 4. Установить
- 5. Вернуться на сайт, нажать на **Buy** Licence, выбрать Student/Teacher
- 6. Лицензия приходит на почту в течение пары дней
- Скачать файл лицензии, указать к нему путь при запуске PyMol (или в любое другое время Help -> Install new License File)

Загрузка молекулы

File > Open	Откроет файл формата pdb, cif (структуры), dsn6, ccp4, mtz (электронные плотности)
File > Get PDB	Скачает и откроет структуру и (опционально) электронную плотность

Загрузка молекулы (CLI)

fetch 6XMK	Скачает 6XMK.cif* в папку, откуда запущен pymol, загрузит информацию о координатах в объект 6xmk			
fetch 6XMK, my_protein	То же, но имя объекта будет my_protein			
<pre>fetch 6XMK, type=pdb1, multiplex=1</pre>	Вместо асимметрической единицы скачает и загрузит биологическую сборку			
set assembly, 1 fetch 6XMK				
fetch 6XMK, type=2fofc	Скачает карту электронной плотности** в формате ccp4, загрузит в объект 6xmk_2fofc			
load <path_to_file>, <some_name></some_name></path_to_file>	Загрузит информацию из файла в объект с именем some_name, тип информации попытается распознать из расширения файла			

* cif это более новый стандарт для депонирования структур, он более гибкий, чем pdb, но сложен для чтения человеком

** Вы так же можете указать fofc. Что вообще значат эти буквы и что за информация содержится в fofc карте вы узнаете на лекции про комбинированые синтезы Фурье

Камера

Приблизить: зажать ПКМ + тянуть мышь на себя Отдалить: зажать ПКМ + тянуть мышь от себя Вращение вокруг якорной точки: зажать ЛКМ + водить мышью Перемещение камеры: зажать СКМ + водить мышью Близость clipping plane и точки начала "тумана" (fog) к якорной точке: колесико Изменить якорную точку: щелчок СКМ по любому атому

Камера

Якорная точка на ближней сфере Якорная точка на дальней сфере

Сохранить понравившийся ракурс

Ctrl+F{1-12} сохраняет ракурс под номером 1-12. Вернуться к нему можно в любой момент нажатием **F{1-12}** соответственно

Если забыли сочетания мыши и клавиатуры

Подсказка по управлению камерой всегда располагается в нижнем правом углу:

Правая кнопка мыши: информация об атоме

Щелчок правой кнопкой мыши по атому выведет контекстное меню с информацией об остатке и атоме, слева направо:

- Объект
- Сегмент
- Цепь
- Имя остатка
- Номер остатка
- Имя атома

Объекты

Можно одновременно работать с несколькими объектами.

Включить/выключить отображение: щелчок по -

Действия

										×
Vizard	Plugin	Help								
				<	Reset Unpidk < < Builde	Zoom Desel Stop r f	Orie ect Play Properti	nt Dr Rock > > es	aw/R Get M Rebu	ay 👻 View Clear Ild
					all			A S		L
					6xmk 1	/1		A S	H	LC
					6w2a 🔝	/1		A S	E	L
	5	~			6vgz 1	<u>/1</u>		A S	H	L
1	~/~	1			6vgy 1	/1		A S	E	LC
~2	Cla				6vh1 1	/1		A S	H	L
	S		9.							

Большинство имеют очевидные названия. Нам в курсе потребуются блоки команд 1, 4, 5, 6, 7

PyMOL	- 🗆 🗙
File Edit Build Movie Display Setting Scene Mouse Wizard Plugin Help	
ExecutiveLoad-Detail: Creating assembly '1'	🔨 Reset Zoom Orient Draw/Ray 🕶
You clicked /6vh1/8/8/PHE`188/CA	Unpick Deselect Rock Get View
Selector: selection "sele" defined with 24 atoms.	<pre> < < Stop Play > > MClear</pre>
	Builder Properties Rebuild
PyMOL>	
For Educational Use Only	all 🔒 🖻 🗉 🛴 💋
	6xmk 1/1 🔒 S 🗌 L 🔎
	6w2a Action:
	6vgz 1/1 zoom
	6vb1 1/1 orient 1
	(sele) origin
	drag matrix 2
	3 drag coordinates clean
	preset find 4 align generate
	Sassign sec. struc.
	rename object copy to object group delete object
	hydrogens 7 remove waters 7
	Mouse Mo Buttons & Keys Shft Ctrl movement CtSh SnglClk
	DBICIk Menu - PkAt Selecting Atoms State 1/ 1
PyMUL>_	M < E > > M S V F

Отображения

Включить

Выключить

Выберите Wizard > Demo > Representations для наглядной демонстрации всех типов отображений в PyMol (кроме nonbonded).

Полезные варианты помимо одноцветных:

by element красит все элементы, кроме С, в их цвета по умолчанию. Цвет для С можно выбрать из списка.

by chain удобен для быстрого визуального различения цепей

spectrum > rainbow позволяет визуально проследить за ходом цепи от N к C концу

spectrum > b-factors делает раскраску по В-фактору в цветовой схеме по умолчанию. Если хочется другую, см. дальше покраску с помощью команд.

Выделения

Можно задавать отображение и раскраску не всему объекту, а только отдельным его частям. Для этого нужно использовать выделения. Простейший способ задать выделение – щелкнуть левой кнопкой мыши по атому.

Режим Mouse Mode: Viewing задает возможность выделять (щелкните по строчке "3-Button Viewing", чтобы посмотреть, какие еще есть режимы)

Режим Selecting определяет, что выделяется при щелчке по атому. Щелкните по строчке "Residues", чтобы посмотреть, какие у вас есть опции

Щелчок по другому атому добавляет его (или весь остаток, если выбрано Selecting Residues) в выделение. Щелчок по атому, который уже находится в выделении, исключает его из выделения.

Выделения

Маленькие квадраты показывают, что находится в активном выделении Активное выделение появляется в меню справа и называется **sele**. Вы заметите, что к названию добавлены скобки, чтобы отличить выделение от объекта. Чтобы иметь несколько сохраненных выделений, можно переименовать sele: **A > rename selection**, тогда все, что будет выбрано мышью потом, будет помещаться уже в новый sele.

Альтернативно можно воспользоваться командной строкой: select <selection_name>, <selection_expression>

Например, чтобы сохранить то, что мы выбрали мышью: select his_and_ser, sele

С выделениями можно работать так же, как с объектами.

Полезный минимум

resi X	Все атомы в остатках с номером Х	byres X	Расширить выделение Х до целых				
resn X	Все атомы в остатках с именем Х		модификаторы, см. Wiki				
chain X	Все атомы в цепи Х	X within Y of Z	Элементы выделения X в радиусе Y от любого элемента выделения Z				
name X	Все атомы с именем Х						
id X	Все атомы с номером Х	A также hydrogens, metals, polymer.protein, polymer.nucleic и еще много всего полезного.					
Х	Объект или выделение с именем Х	Полный список по надобности смотреть тут: https://pymolwiki.org/index.php/Selection_Algebra Выражения можно комбинировать с помощью скобок и and, or, not Также полезно использовать + и Так, выражение					
alt X	Все атомы, принадлежащие альтлоку Х						
ss X	Все атомы во вторичной структуре определенного типа: S бета-лист, H альфа-спираль, L+ все остальное						
backbone	Все атомы остова	эквивалентно resi 10 or resi 33 or resi 34 or resi 35 or resi 36 or resi 40 or resi 41 or resi 42 Но его гораздо проще записать					
sidechain	Все атомы боковых радикалов						
pepseq X	Атомы, принадлежащие пептидной последовательности X (в однобуквенном коде)						

Показ последовательности

Очень полезная опция. Включается по щелчку на S в панели внизу справа.

Можно выделять остатки щелчком по буквам в последовательности. Сейчас в (sele) находятся атомы остатков 8, 9 и 10

Отображения и раскраска (CLI)

show <representation>, <selection or object>
hide <representation>, <selection or object>

color <color>, <selection or object> <u>Список доступных именных цветов</u>

Сделать свой именной цвет по значениям RGB: set_color <color name>, [15, 76, 129]

Покраска по B-фактором: spectrum b, blue_white_red Можно задавать кастомную цветовую схему, минимальное и максимальное значение шкалы. См <u>spectrum</u>.

PANTONE 2020

19 4052 - Classic Blue

Задание 1

Чтобы сделать картинку с прошлого слайда, понадобились следующие команды и немного манипуляций мышкой и GUI

После команд:

Убедитесь, что вы понимаете, что делают команды из первых двух абзацев fetch 6xmk hide everything bg_color white show cartoon, all color gray80, element C color white, chain B

select ligand, chain A and resn QYS

select site, byres all within 5 of ligand

show sticks, ligand

show sticks, site

orient site

set cartoon_side_chain_helper, 1
set cartoon_transparency, 0.5
set ray_trace_mode, 1

Руками я немного подправил ракурс, а также перекрасил лиганд и добавил подписи.

Покраска лиганда: (ligand) > C > by element > вторая строчка

Подписи: Щелчок по атому серина > (sele) > L > residues

Щелчок по атому лиганда > (sele) > L > residue name

Подписи будут некрасиво наслаиваться на атомы, а еще они мелковаты.

Задать размер: set label_size, 30

Переместим их: щелчок по режиму Mouse Mode сменит его на Editing. Теперь Ctrl+ЛКМ позволит двигать отдельные атомы и подписи.

А о чем были последние три настройки?

set cartoon_side_chain_helper, 0 set cartoon_side_chain_helper, 1

Эта настройка при одновременном отображении cartoon и stick скрывает атомы остова. Это позволяет сделать картинку чище и читаемей. Ее же можно найти в Setting > Cartoon > Side Chain Helper

Иногда все же нужно показать какие-то отдельные атомы остова, например, когда они явно участвуют в изучаемом феномене. Тогда можно локально скрыть cartoon для конкретного остатка. Общее правило для структурных иллюстраций – **показывать только то, что нужно для понимания месседжа**.

Transparency

set cartoon_transparency, 0

set cartoon_transparency, 0.5

Прозрачность. Есть варианты выставить прозрачность для каждого типа отображения. Для surface нужно просто set_transparency. Можно выставить из меню: Setting > Transparency Прозрачность часто нужна **для разграничения между более важным и менее важным** в рамках одной иллюстрации. Также прозрачность позволяет одновременно показывать и поверхность белка, и то, что под ней находится.

Ray tracing

Команда **draw** или File > Export Image As > Draw antialiased OpenGL image

Команда **ray** или File > Export Image As > Ray trace with ...

Draw добавляет сглаживание. Ray добавляет тени, текстуру, сглаживание. Больше настроек в Setting > Rendering. Никогда не приводите принтскрины в своих отчетах и, тем более, статьях! Ray и draw могут подготовить изображение нужного размера: ray 2000 – 2000 пикселей по горизонтали ray 3440,1440 – 3440 по горизонтали, 1440 по вертикали После завершения рендеринга File > Export Image As > Capture Current Display или команда png <path_to_file.png>

Ray tracing

Пространство для творчества

Setting > Edit all показывает все, что можно настроить. Примеры того, что можно сделать

Также не забывайте про **Tab** (автодополнение команды). **Esc** переключает с вида молекулы на терминал. Внутри pymol работают команды bash: **pwd, ls, cd**...

Полное состояние сцены можно сохранить в виде pymol сессии:

File > Save Session As

Удачное отображение

Не очень удачное отображение

Много лишнего

Неудачное отображение

О чем эта история? С чем показаны взаимодействия?

Неудачное отображение

О чем эта история? Подписи заслонены

Задание 2, 3, 4

Загрузка электронной плотности (2fo-fc)

- 1. Скачать файл в формате DSN6 с сайта PDB, открыть через File > Open или через команду load
- 2. Воспользоваться File > Get PDB...
- 3. Воспользоваться командой fetch ..., type=2fofc

Volume

6xmk > A > volume > default

Красиво^{*}, но не информативно. Ray не работает на volume'ax - используйте draw. Зато видна плотность соседей по кристаллу и границы ячейки, из которой он целиком составлен.

*если у вас хорошая видеокарта, поиграйтесь с настройками числа уровней – можно получить очень гладкие облачка

Mesh

Более информативно отображение поверхности уровня в виде сетки (mesh). Оно же всегда используется в публикациях.

A > mesh > @ level 3.0 показывает поверхность уровня 3, т. е. отсекает те области пространства, внутри которых Zскор плотности выше или равен 3, т. е. это ~0.15% самых "плотных" областей.

6ХМК довольно хорошая расшифровка, и таких областей много, что значит, что исходные данные достаточно полны, чтобы добиться такого различия между сигналом и шумом.

Причесываем mesh

Построение mesh через GUI быстро, но грязно – построение идет для всего объекта. Иногда хочется добиться более определенного отображения, например, показать только ту плотность, по которой в дальнейшем были воссозданы координаты только атомов остова. Нам нужна команда **isomesh**

isomesh <имя будущего объекта>, <исходная карта>, <уровень подрезки>, <выделение>

Построит сетку внутри прямоугольника, задаваемого выделением (для построения прямоугольника будут взяты крайние атомы в выделении)

Прямоугольник можно увеличить, добавив аргумент buffer=...

Чтобы построить сетку не внутри прямоугольника, а **непосредственно вокруг выделения**, нужно добавить аргумент **carve=...**

Дальше будут примеры!

сагve позволяет сосредоточиться на конкретных регионах пространства и сделать незаграможденную картинку. Используйте его в задании 2! Но будьте осторожны с выбором значения – слишком маленькое может оставить без рассмотрения области с все еще значимой плотностью от изучаемого остатка:

Подсказка из PyMol Wiki

Пространство для творчества

Ray работает c mesh, но вряд ли вам понравится результат (попробуйте!). Лучше использовать draw.

Можно одновременно показать сетки для разных уровней подрезки и покрасить их в разные цвета:

Что я сделал:

fetch 20XI fetch 2QXI, type=2fofc fetch 3BSO fetch 3BSO, type=2fofc hide everything show cartoon select loop1, 2qxi and chain A and resi 144-152 select loop2, 3bsg and chain A and resi 138-146 isomesh 2QXI mesh, 2qxi 2fofc, 2, loop1 and backbone, carve=1.5 isomesh 3BSQ mesh, 3bsq 2fofc, 2, loop2 and backbone, carve=1.5 show sticks, loop1 or loop2 set cartoon transparency, 0.8, loop1 or loop2 color blue, *mesh bg color white

orient loop1 disable 3BSQ* draw

enable 3BSQ* disable 2QXI* orient loop2 draw

я воспользовался показом последовательности, чтобы найти соответствующий участок во второй структуре – как видите, нумерация различается. Альтернативно можно бы было посмотреть на последовательность 144-152 в первой структуре и сделать select loop2, 3bsq and chain A and pepseq TTSPDVTFP

на самом деле помимо orient я выбирал ракурс руками, но вас может устроить и тот, что получается с помощью orient

Не забывайте про смену якорной точки и настройку fog с помощью колесика