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ABSTRACT Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural
similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local
structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations
(RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that,
given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise
RMSD for a single molecular species, <RMSD2>1/2, is directly related to average B-factors (<B>) and <RMSF2>1/2. We show
this relationship and explore its limits of validity on a heterogeneous ensemble of structures taken from molecular dynamics
simulations of villin headpiece generated using distributed-computing techniques and the Folding@Home cluster. Our results
provide a basis for quantifying global structural diversity of macromolecules in crystals directly from x-ray experiments, and we
show this on a large set of structures taken from the Protein Data Bank. In particular, we show that the ensemble-average pairwise
backbone RMSD for a microscopic ensemble underlying a typical protein x-ray structure is ~1.1 Å, under the assumption that the
principal contribution to experimental B-factors is conformational variability.
INTRODUCTION
The most frequently used measure for structure comparison

in structural biology is, arguably, the atom-positional root

mean-square deviation (RMSD) obtained after roto-transla-

tional least-squares fitting (1–5). Its applications are diverse

and include monitoring structural changes in simulations of

protein folding and dynamics (6–12), evaluating the quality

of structure prediction schemes (13–16), comparing the

diversity of model structures derived from experiments

(17,18), assessing the properties of modeling approaches at

different levels of resolution (19,20), and defining high-

resolution shapes of polymers (21). Furthermore, structural

diversity of an ensemble of biomolecular structures obtained

through computer simulations is analyzed frequently by

calculating an all-against-all distribution of RMSD values

(pairwise RMSD) (22,23). Such calculation is also carried

out commonly in NMR spectroscopy to assess the mutual

similarity of the lowest energy structures in an ensemble

produced by the refinement process (24–26). The resulting

distribution of pairwise RMSD values captures the degree

of structural heterogeneity of a given ensemble that can be

due to either the intrinsic flexibility of a given structure or

the uncertainties of the refinement procedure. The properties

of this distribution, calculated typically for backbone atoms,

are often summarized by reporting its arithmetic mean. Even

though the calculations of pairwise RMSD values can be

computationally demanding for large ensembles, they are
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also frequently used as an appropriate measure for clustering

of structures (7,27–29).

A distribution of pairwise RMSD values provides infor-

mation on the mutual similarity of members of a given

ensemble when it comes to their global structure. However,

to obtain information on local structural flexibility, ther-

mal stability, and heterogeneity of macromolecules, root

mean-square fluctuations (RMSF) are often studied (30–32).

Most importantly, RMSF can be obtained through Debye-

Waller or temperature factors (B-factors) in x-ray experi-

ments using Eq. 1, where B-factors are usually defined as a

measure of spatial fluctuations of atoms around their average

position and where their motion is described as an isotropic

Gaussian distribution of displacements about the average

position (33). The inverse of this equation has often been

used in the literature to calculate B-factors from various

models (most often molecular dynamics simulations or

Gaussian network models) and to compare them to experi-

mental values (34–42):

RMSF2
i ¼

3Bi

8p2
: (1)

B-factors have also been used in a variety of studies to

predict protein flexibility (43,44), assess their thermal

stability (45–47), test for errors in protein structures (48),

analyze active sites and binding pockets (49–51), correlate

side-chain mobility with conformation (52,53), investigate

crystal packing contacts (54), analyze and predict protein

disordered regions (55–58), and study protein dynamics

(37,40,59). However useful B-factors may be, one should

always keep in mind that they include not only the positional

variance of macromolecules that is due to local thermal
doi: 10.1016/j.bpj.2009.11.011
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motion, but also the effects of noise due to refinement errors,

lattice defects, crystal contacts, and rigid-body motions

(36,41,60). Furthermore, they also contain components

coming from both static and dynamic disorder (61,62) whose

separation is nontrivial (36). Finally, RMSF can also be

predicted from NMR chemical shifts via a measure called

random coil index (63–65).

Because pairwise RMSD, B-factors (or RMSF) are all

frequently used to give information on different aspects

of biomolecular ensembles, we study their relationship.

We present a derivation showing that, given a set of conserva-

tive assumptions, <RMSD2>1/2 is directly proportional to

average experimental B-factors (<B>), i.e., <RMSF2>1/2

for a single molecular species. Our finding is illustrated and

its limits of validity probed by calculations made on structures

taken from molecular dynamic (MD) simulations of the native

and unfolded state of the villin headpiece domain (10,66)

generated using worldwide-distributed computing tech-

niques. In particular, we use simulated ensembles to study

the effects of the exact method of structure alignment on the

derived relationship, and show that the influence is typically

only marginal. Finally, the newly derived relation is used to

calculate quadratic means of pairwise RMSD distributions

for a set of x-ray structures, given the B-factors reported in

the Protein Data Bank (PDB), to assess their heterogeneity

in the crystal environment.

To foreshadow the derivation presented in this study,

we would like to introduce a useful analogy between
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<RMSD2>1/2 and <RMSF2>1/2 on the one hand and the

radius of gyration (Rg) on the other. The radius of gyration,

a measure often used to describe the dimensions of biopoly-

mers such as proteins (67–69), can be analytically calculated

in two ways: one using the pairwise distances between

monomers (Eq. 2, Fig. 1 A), and the other using the distances

between each monomer and their center of mass, i.e., the

average position of all monomers if they have the same

mass (Eq. 3, Fig. 1 B).

R2
g ¼

1

2N2
m

XNm

i¼ 1

XNm

j¼ 1

k~ri �~rjk2
; (2)

R2
g ¼

1

Nm

XNm

i¼ 1

k~ri � h~rik2
: (3)

Indices i and j refer to different monomers, whereas Nm is

a total number of monomers in a chain. Vector~r represents

spatial coordinates of a monomer, whereas h~ri is the average

position of Nm monomers. Equations 2 and 3 are shown to be

identical by modifications of the Lagrange’s theorem (70).

Our derivation of the relationship between <B>,

<RMSF2>1/2, and <RMSD2>1/2, which is the main result

of this study, mirrors the relationship between these two defi-

nitions of the radius of gyration. Namely, the two definitions

given for Rg can be applied easily to ensembles of biomolec-

ular structures where monomers are replaced by structures

and RMSD is used as a measure of distance between them
FIGURE 1 Analogy connecting <RMSD2>1/2 and

<RMSF2>1/2 with the radius of gyration. (A) For a polymer

consisting of Nm monomers, the radius of gyration can be

calculated as a root mean-square average over all pairwise

distances between monomers as shown in Eq. 2. (B)

Another way of calculating the radius of gyration is

through distances between monomers and their average

position shown in Eq. 3. Analogously to the two ways of

calculating Rg, there is equivalence between the root

mean-square average of pairwise RMSD for a set of

structures (<RMSD2>1/2) (C) and the root mean-

square average deviation from the average structure

(<RMSF2>1/2) (D), as shown in this study. k is a multipli-

cative factor that is a function of Ns (see Eq. 19). Villin

structures in C and D have been prepared by VMD

v1.8.6 (85).
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(Eq. 2, Fig. 1, C and D). Following this analogy, there is

equivalence between root mean-square average pairwise

RMSD, <RMSD2>1/2 (recalling the first definition of Rg,

see Eq. 2) and the root mean-square average deviation bet-

ween each structure and the average structure of the ensem-

ble, <RMSF2>1/2 (recalling the second definition of Rg,

see Eq. 3). The exact relationship between <RMSD2>1/2,

<RMSF2>1/2, and <B> is explored below, together with

an analysis of a novel measure of structural diversity in

ensembles, the structural radius (Rstruct), which can be

thought of as a structural analog of Rg.
MATERIALS AND METHODS

Molecular dynamics simulations

Thousands of tens of nanoseconds long, independent trajectories for the vil-

lin headpiece domain were generated using a heterogeneous computer

cluster as a part of the ongoing Folding@Home distributed computing

project (10,66). The folding simulations were initiated from fully extended

conformations (4 ¼ �135�, j ¼ 135�) with N-acetyl and C-amino caps.

The equilibrium simulations were started from the experimental NMR

structure of the molecule (PDB code 1VII, average structure) (66). The

simulations, run using Tinker biomolecular simulation package, involved

Langevin dynamics in implicit GB/SA solvent (71) (velocity damping

parameter of g ¼ 91 ps�1) with a 2-fs integration step, at 300 K. Bond

lengths were constrained using RATTLE (72). No cutoffs were used for

electrostatics. The protein was modeled using the OPLSua force field

(73). The molecule in the equilibrium simulations was stable with respect

to both secondary and tertiary structure (10,74).

The structures were divided into two data sets for calculations: one that

included native-like structures (1543 structures taken from the same number

of independent equilibrium simulations at t ¼ 20 ns), whereas the other one

contained unfolded structures 5213 structures taken from the same number

of independent folding trajectories at t ¼ 27 ns).

RMSD calculations—pairwise alignment

To illustrate the relationship between average RMSD and RMSF for ensembles

spanning a large range of average RMSD values, we used a clustering proce-

dure on the two villin data sets. The main purpose of this procedure was to

derive a set of mutually different distributions of pairwise RMSD to help us

illustrate and assess the properties of the derivation provided in this study.

Backbone atoms for each pair of structures from both simulated data sets

were optimally aligned (pairwise alignment (PA)) before RMSD calculations.

Nonweighted pairwise RMSDs were then calculated for the aligned backbone

atoms that included C, N, and Ca of every residue (108 atoms in total). A dis-

tribution of the calculated pairwise RMSD values was plotted and divided

into 20 equal segments between the smallest and the largest RMSD value.

The structure that appeared in the highest number of pairs in a given segment

was chosen as the center of a cluster, and the structures paired with it were

assigned to that particular cluster as well. Twenty clusters were obtained

through such a procedure for each data set (number of structures in each cluster

is listed in Table S1 in the Supporting Material). Nonweighted pairwise RMSD

was calculated for each cluster in the same way as described above using

backbone-based PA. Quadratic mean of pairwise RMSD for each cluster was

calculated as well.

We have noticed that the choice of the reference structure for the align-

ment of all the structures before calculating RMSF does affect its quadratic

value in the very heterogeneous data set as shown in the Results. Therefore,

RMSF for each cluster was calculated by using every single structure from

the cluster for the alignment before the calculations and then quadratically

averaging the obtained values to get the RMSF value for each cluster.
All the alignments and calculations were done by using GROMACS-3.3

and its routines (75).

RMSD calculations—reference structure
alignment

Backbones of all the structures were aligned to the backbone of the native

structure of the villin headpiece domain taken from the PDB (average

NMR structure, PDB code 1VII) (reference structure alignment (RSA)) to

rule out the alignment effect from the calculations. Fitted structures were

then subjected to the same procedure described in the previous section to

obtain clusters (number of structures in each cluster is also listed in Table

S1) and quadratic averages of RMSD and RMSF values. Structures were

aligned to the reference structure using the McLachlan algorithm (76) as

implemented in the program ProFit v3.1 (Martin, A.C.R., http://www.

bioinf.org.uk/software/profit/).
RESULTS

Demonstration of a direct proportionality
between <RMSD2>1/2 and <RMSF2>1/2

RMSD is defined as the root mean-square-average distance

between atoms of two optimally superimposed macromole-

cules (Si and Sj) and is calculated as a minimum over all

rotations and translations of one of the structures being

compared (Eq. 4).

RMSD
�
Si; Sj

�
¼ min

 
1

Na

XNa

k¼ 1

k~rik �~rjkk2

!1
2

rot;trans

; (4)

where Na is the number of atoms in a structure and should not

be confused with the Avogadro constant. Indices i and j refer

to different structures, whereas the index k refers to the atom

position in a given structure. Vector~r represents spatial coor-

dinates of a given atom.

To capture the properties of a distribution of pairwise

RMSD, in this study we have used its quadratic mean

calculated using Eq. 5 as it lends itself to better analytic

manipulation compared to the arithmetic mean that is usually

reported in NMR studies.

�
RMSD2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NsðNs � 1Þ
XNs�1

i¼ 1

XNs

j>i

RMSD2
�
Si; Sj

�vuut ; (5)

where Ns is the number of structures in an ensemble. Here

and in the rest of the derivation we will assume that all the

structures are aligned to the same reference structure (there-

fore, the notation from Eq. 4 was simplified). Note that for

the derivation it is not relevant what the exact nature of the

reference structure is, as long as the same structure is used

for aligning the whole ensemble. This is to be contrasted

with typical calculation of pairwise RMSD, where each

pair of structures is mutually superimposed.

RMSF for a specific number of structures is defined as

a root mean-square-average distance between an atom and

its average position in a given set of structures (Eq. 6)
Biophysical Journal 98(5) 861–871
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RMSFk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i¼ 1

k~rik � h~rikk
2

vuut ; (6)

where h~rik is the average position of the atom k over Ns

structures (Eq. 7)

h~rik¼
1

Ns

XNs

i¼ 1

~rik: (7)

In the following, we have used the quadratic mean of RMSF

calculated using Eq. 8

�
RMSF2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

RMSF2
k

vuut : (8)

If Eq. 6 is inserted into Eq. 8,

�
RMSF2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

1

Ns

XNs

i¼ 1

k~rik � h~rikk
2

vuut : (9)

On the other hand, if Eq. 4 is inserted into Eq. 5,

�
RMSD2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NsðNs � 1Þ
XNs�1

i¼ 1

XNs

j>i

1

Na

XNa

k¼ 1

k~rik �~rjkk2

vuut :

(10)

The sums in Eq. 10 can be rearranged

�
RMSD2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

2

NsðNs � 1Þ
XNs�1

i¼ 1

XNs

j>i

k~rik �~rjkk2

vuut :

(11)

The sums over Na can now be written

�
RMSD2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

2N2
s

NsðNs�1Þ
1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

k~rik�~rjkk2

vuut :

(12)

For simplicity, let us define a new variable

R2
k ¼

1

Ns

XNs

i¼ 1

k~rik � h~rikk
2 ¼ 1

Ns

XNs

i¼ 1

�
~r2

ik � 2~rikh~rikþh~ri
2

k

�

¼ �h~ri2k þ
1

Ns

XNs

i¼ 1

~r2
ik: ð13Þ

The first term on the right-hand side of Eq. 13 can be sepa-

rated by applying Eq. 7 and the second term can be repre-

sented as a double summation over the number of structures

R2
k ¼ �

 
1

Ns

XNs

i¼ 1

~rik

! 
1

Ns

XNs

j¼ 1

~rjk

!
þ 1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

�
~r2

ik þ~r
2
jk

�
:

(14)
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Terms in Eq. 14 can be added

R2
k ¼

1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

�
� 2~rik~rjk þ ~r2

ik þ ~r
2
jk

�

¼ 1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

k~rik �~rjkk2
: (15)

By combining Eqs. 13 and 15, we now see that

R2
k ¼

1

Ns

XNs

i¼ 1

k~rik � h~rikk
2 ¼ 1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

k~rik �~rjkk2
:

(16)

Using the former definition of R2
k in Eq. 16, we can express

<RMSF2>1/2 (Eq. 9) as

�
RMSF2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

R2
k

vuut : (17)

Furthermore, we can express <RMSD2>1/2 (Eq. 12) as

�
RMSD2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

2Ns

Ns � 1

XNa

k¼ 1

R2
k

vuut : (18)

Finally, combining Eqs. 1, 17, and 18, a formula is derived

that proves that <RMSD2>1/2 is directly proportional to

<RMSF2>1/2 and, subsequently, B-factors.

�
RMSD2

�1=2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ns

Ns � 1

r �
RMSF2

�1=2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ns

Ns � 1

1

Na

XNa

k¼ 1

3Bk

8p2

vuut : (19)

Finally, for Ns [ 1,

�
RMSD2

�1=2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Na

XNa

k¼ 1

3Bk

8p2

vuut : (20)

Exclusion of the ensemble size effect
and the derivation of identity

Typical calculations of the average pairwise RMSD for a given

ensemble exclude the RMSDs between the same structures

(equaling zero). One can show (see below) that this causes

the relationship between the average RMSD and RMSF (and

subsequently B-factors) to depend on the number of structures

in an ensemble as in Eq. 19. This effect, as seen in Eq. 20,

vanishes only for a large number of structures in the ensemble.

One can define a new measure, Rstruct (that we term structural

radius), using the following equation instead of Eq. 5 to elimi-

nate the aforementioned effect:
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Rstruct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

RMSD2
�
Si; Sj

�vuut : (21)

Combining Eqs. 4 and 21, it follows

Rstruct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

1

Na

XNa

k¼ 1

k~rik �~rjkk2

vuut : (22)

The sums in Eq. 22 can be rearranged

Rstruct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

1

2N2
s

XNs

i¼ 1

XNs

j¼ 1

k~rik �~rjkk2

vuut : (23)

Equation 16 can be inserted into Eq. 23

Rstruct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

R2
k

vuut : (24)

The calculation of the average RMSD and RMSF remains

the same as in the previous section, so by combining Eqs.

1, 17, 20, and 24, it follows

Rstruct ¼
�
RMSF2

�1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Na

XNa

k¼ 1

3Bk

8p2

vuut z
1ffiffiffi
2
p
�
RMSD2

�1=2
:

(25)

With Eq. 25 we have shown that Rstruct and<RMSF2>1/2 are

identical and can be linked directly with both <RMSD2>1/2

and experimental B-factors. In this sense, Rstruct serves as

a measure of structural diversity of an ensemble of structures

that is in an intuitively clear fashion directly related to

B-factors, RMSF, and RMSD.
Illustrations of the relationship between
the average RMSD and RMSF

To demonstrate the derived relationship between the average

values of pairwise RMSD and RMSF, structures taken from

distributed-computing MD simulations of villin headpiece

domain were used to calculate the two measures. Each data

set (native and unfolded) was divided into two sets of 20 clus-

ters based on the distributions of pairwise RMSD values for

two types of alignment (PA or reference structure alignment

(RSA)). For RSA, all structures were first roto-translationally

aligned to a common reference structure before their pair-

wise RMSD values were calculated. For PA, each individual

pair of structures was first optimally aligned before calcu-

lating their RMSD. Fig. 2 shows these distributions, their

arithmetic means and standard deviations. For the native

data set, we can see that distributions of pairwise RMSD

are very much alike regardless of the type of the alignment.

Their arithmetic means and standard deviations are also very

similar: 4.02 5 1.95 Å for the PA curve and 4.07 5 2.01 Å

for the RSA curve. On the other hand, distributions associ-

ated with the unfolded data set and generated with different

types of alignment are more different that can be seen from

their arithmetic means and standard deviations: 7.38 5

1.23 Å for the PA curve and 7.86 5 1.39 Å for the RSA

curve. From the given values, it can be seen that RMSD

values calculated after aligning structures to a reference

structure are higher than the ones calculated after the pair-

wise alignment. This is, of course, expected as for each indi-

vidual pair of structures, PA gives by definition the lowest

values over all possible roto-translational fittings. To further

demonstrate this point, in the inset of Fig. 2 we compare

RMSD values calculated using both types of alignment for

several hundred randomly chosen pairs of structures from

both data sets. It is clear from the inset of Fig. 2 that none

of the RMSD values calculated after pairwise alignment of
FIGURE 2 Distributions of backbone pairwise RMSD

values of the native and unfolded ensembles of the villin

headpiece domain. The dashed black curve represents back-

bone RMSD values calculated using PA for the native

ensemble (<RMSD> ¼ 4.02 5 1.95 Å). Values for the

unfolded ensemble are shown with the thin curve

(<RMSD> ¼ 7.38 5 1.23 Å). Distributions of the corre-

sponding RMSD values calculated using initial alignment

to a reference structure (1VII, average structure) (RSA),

are shown with the dashed gray curve for the native

ensemble (<RMSD>¼ 4.07 5 2.01 Å) and with the thick

curve for the unfolded ensemble (<RMSD>¼ 7.86 5 1.39

Å). The average values and standard deviations for every

distribution are also given in the figure. All the values

were binned in 0.5 Å bins to generate the distributions. Inset:

Relationship between pairwise RMSD values calculated

using PA and RSA. For clarity, several hundred randomly

chosen points whose values have been taken from the native

ensemble are shown as solid circles, whereas several

hundred points whose values have been taken from the

unfolded ensemble are shown as open circles. The identity

line is shown in black.

Biophysical Journal 98(5) 861–871
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structures is higher than the corresponding values calculated

after aligning structures to a reference structure.

For every pair of structures belonging to a particular

cluster, pairwise RMSD (Eq. 4) was calculated using either

PA or RSA, and the quadratic mean of all the RMSD values

(Eq. 5) in the given cluster was determined. RSA-calcula-

tions were used to study the effect of the optimal alignment

on the derived relationship. RMSF for backbone atoms in the

cluster was computed as well and its quadratic mean was

calculated (Eq. 8). The average values of pairwise RMSD

and RMSF for clusters of both data sets and types of align-

ment are presented in Fig. 3. As can be seen, in the case of

RSA, the real data completely agrees with the analytical deri-

vation above (Fig. 3 A). The slope of the trendline shown in

Fig. 3 A is in complete agreement with the expected value of

21/2 (seen from the derivation) and its squared correlation
FIGURE 3 <RMSD2>1/2 versus [Ns/(Ns-1)]1/2<RMSF2>1/2 for native

and unfolded state clusters for the villin headpiece domain. <RMSD2>1/2

values were calculated using Eq. 5, whereas <RMSF2>1/2 values using

Eq. 8. Ns is the number of structures contained in a given cluster. The values

for the native ensemble are shown as solid diamonds, and the values for the

unfolded ensemble are shown as open circles. In A, all the values have been

calculated using RSA, whereas the values in B have been calculated using

PA. Trendlines, their analytic expressions, and R2 are also shown in the

figure.
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coefficient (R2) equals 1. However, in the case of PA

(Fig. 3 B), the slope of the trendline (1.2968) deviates

from the expected value due to the pairwise alignment of

structures before calculations, but the R2 still has a high value

of 0.9956. Deviations caused by the pairwise alignment are

smaller for the native data set and the trendline applied to

it would have a slope of 1.3862 with an R2 of 0.9998 (not

shown).

The relationship shown between RMSD and RMSF

explored in Fig. 3 still depends on the number of structures

contained in a cluster. That effect can be eliminated by using

the structural radius (Eq. 21) as a measure of structural diver-

sity. The calculated values of the structural radius and

<RMSF2>1/2 for clusters of both data sets and types of

alignment are presented in Fig. 4. In the case of RSA

(Fig. 4 A), both slope of the applied trendline and its squared

correlation coefficient equal 1 showing that the two measures
FIGURE 4 Rstruct versus <RMSF2>1/2 for native and unfolded state clus-

ters for the villin headpiece domain. Rstruct values were calculated using

Eq. 21, whereas <RMSF2>1/2 values using Eq. 8. The values for the native

ensemble are shown as solid diamonds, and the values for the unfolded

ensemble are shown as open circles. In A, all the values have been calculated

using RSA. The values in B have been calculated using PA. Trendlines, their

analytic expressions, and R2 are also shown in the figure.
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are identical and confirming the derivation (Eq. 25). The

agreement of the two measures is slightly worse in Fig. 4

Bdue to the pairwise alignment of structures before calcula-

tions and the slope of the trendline (0.9099) differs from the

expected value of 1, but still has a very high R2 of 0.9960.

Once more, deviations caused by the pairwise alignment

are smaller for the native data set and the trendline applied

to it would have a slope of 0.9804 with R2 of 0.9999 (not

shown). Altogether, one can claim that the effects of the

alignment are negligible (<2%) for ensembles with

<RMSD2>1/2 under 4 Å.

We also examined how the choice of the reference struc-

ture for alignment affects the <RMSF2>1/2 values, by using

every single structure in a given cluster for the alignment

before calculations and comparing the obtained distributions

of <RMSF2>1/2 values for every cluster through their arith-

metic means and standard deviations. We have also analyzed

the maximal and the minimal quadratic means of every

cluster to show how extreme the effects of the choice of

the reference structure for the alignment can be (Fig. 5).

As can be seen from the figure, arithmetic means of both

data sets are very close to the minimal values of quadratic

means. Their standard deviations are also quite small and

they do not exceed the value of 0.26 Å, but they are higher

for the unfolded data set. However, for some of the clusters,

the difference between the maximal and the minimal value of

<RMSF2>1/2 is more than twofold (e.g., clusters 15 and 18

in the native ensemble) that implies that the choice of the

structure for the alignment can make a significant difference

for a very diverse data set such as this.

Structural heterogeneity of proteins in crystals

The above relationship between experimental B-factors,

<RMSD2>1/2 and the structural radius provided us with an

opportunity to calculate the latter (<RMSD2>1/2 and Rstruct)

for an ensemble of structures in a crystal using Eq. 25 and

the measured B-factors, thus assessing the heterogeneity of

a given crystal. The calculations were made under the

assumption that the crystal contains a very large number of

structures (Ns [ 1) that eliminated cluster size effect. Distri-
butions of <RMSD2>1/2 and Rstruct values for backbone and

all atoms for a representative set of x-ray structures from the

PDB with ~4800 structures are presented in Fig. 6 (see the

Supporting Material for selection criteria). <RMSD2>1/2

values for the backbone and all atoms are quite similar:

1.07 5 0.23 Å for the backbone and 1.13 5 0.23 Å for

all atoms with the maximum values that are <2.5 Å, but

still with >6% of structures with <RMSD2>1/2 >1.5 Å for

all atoms. The structural radius values are lower than

<RMSD2>1/2 values, but are still similar: 0.76 5 0.17 Å

for the backbone and 0.80 5 0.16 Å for all atoms with the

maximum values that do not exceed the value of 1.8 Å.

DISCUSSION

To the best of our knowledge, the heterogeneity of biomolec-

ular ensembles in crystals used in x-ray experiments

has never been evaluated previously on the level of pairwise

RMSD. Here, we have derived and illustrated a nontrivial

relationship between ensemble-average RMSD and RMSF

and, subsequently, isotropic B-factors that gave us the oppor-

tunity to evaluate the heterogeneity of the microscopic ensem-

bles underlying the typical crystal structures deposited in the

PDB. When these values (Fig. 6) are compared to the values

for villin headpiece obtained through simulation (Figs. 3

and 4), we can easily see that even the highest values for

proteins in a crystal are rather small and coincide with the

values for the native data set in the villin graphs, for which

the relationship between <RMSD2>1/2 and <RMSF2>1/2

is close to exact, regardless of the alignment. The crystal

lattice aligns the protein structures to a significant degree

such that the RSA would likely be a valid approximation,

but it is reassuring to see that the typical values for

<RMSD2>1/2 in crystals occupy the regime in which the

choice of alignment makes very little, if any, difference. It

is our estimate that if one calculates <RMSD2>1/2 from

B-factors as in Eq. 20, the error committed is<2% on average

compared to the ideal-case pairwise alignment. Namely, 2% is

the average deviation between the <RMSD2>1/2 values ob-

tained using RSA and PA for all villin structures below

<RMSD2>1/2 of 4 Å (Fig. 3). It has been proposed recently
FIGURE 5 Arithmetic mean, standard deviation and

extreme values of quadratic means of RMSF for every

cluster. <RMSF2>1/2 values for every cluster were calcu-

lated using Eq. 8, using every structure in the cluster for the

alignment before calculation. The lower curve shows arith-

metic means of the distributions of quadratic means for

native structure clusters. The upper line captures the values

for the unfolded structures. Standard deviations of the

distributions are shown with black bars. Extreme values

and their differences are shown with a light gray area for

the native ensemble and with a dark gray area for the

unfolded one.
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FIGURE 6 Distributions of root mean-square pairwise RMSD values

calculated for x-ray structures. Rstruct values calculated using Eq. 25 are

represented by the thin solid curve for the backbone atoms with the average

of 0.76 5 0.17 Å and the thick solid curve for all the atoms in the structure

(0.80 5 0.16 Å). <RMSD2>1/2 values calculated using Eq. 20 are repre-

sented by the thin dashed curve for backbone atoms (1.07 5 0.23 Å) and

the thick dashed curve for all the atoms in the structure (1.13 5 0.23 Å).

Average values and standard deviations for every distribution are also

shown in the figure. All the values were binned in 0.1 Å bins to generate

the distributions.
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that a single crystallographic structure deposited in the PDB is

not enough to assess the heterogeneity of a crystal and that an

ensemble of models would be a more suitable representation

(77). Nevertheless, we feel that the identity we have shown in

this study is a good starting point for the assessment of crystal

heterogeneity that could be generalized to an ensemble of

models in a straightforward manner. Finally, the derivation

presented here could in future research potentially be general-

ized to include anisotropic B-factors as well. Due to the addi-

tional information present, the associated <RMSD2>1/2

values would likely be more informative in that case.

Given the analogy between the structural radius and the

radius of gyration and our derivation, it becomes obvious

that the structural radius can be used for an ensemble of

macromolecular structures in the same sense as the radius

of gyration is used for a single macromolecular structure.

Although the radius of gyration provides information on a

macromolecule’s size, the structural radius tells how diverse

structures in a given ensemble are on a global scale. The

structural radius can be calculated either by using pairwise

RMSD as a measure of distance between structures

(Eq. 21), or by using RMSD values between each structure

and the average structure of the ensemble. The latter corre-

sponds to <RMSF2>1/2 as shown in Eq. 9, but with a differ-

ence of first summing over the number of atoms (Na), and then

over the number of structures (Ns), which is actually identical

to Eq. 9 because the sums are interchangeable. Note that if

the structural radius is calculated in this way, its usage should

be restricted to molecular ensembles whose <RMSD2>1/2 is

(6 Å (for which the alignment effects are (3%). For more

heterogeneous ensembles, we would advise to either use the

PA approach or simply exercise caution when interpreting
Biophysical Journal 98(5) 861–871
results because of the potential deviations at high RMSD

values. Here, it should be mentioned that it has been shown

previously that the sum of squared distances for all atomic

pairs equals the sum of squared distances to the average

structure (78). Even though the authors suggested that this

connection could be used for speeding up RMSD calcula-

tions (as the number of RMSD evaluations is reduced from

Ns(Ns � 1)/2 to Ns) and improving algorithms in multiple

structure alignment, they made no explicit link between

RMSD, RMSF, and B-factors.

An important challenge in quantifying the relationship

between RMSF and RMSD is the influence of optimal align-

ment of two structures on their mutual RMSD value. All the

RMSD values calculated after the optimal pairwise alignment

of two structures (PA) are lower than the ones calculated after

the initial alignment of all the structures to a reference (RSA).

Optimal alignment means that roto-translational fitting of the

structures is carried out to minimize the RMSD value between

them. Now, if one optimally aligns two structures to a refer-

ence structure, those two structures will not be optimally

aligned with each other and their mutual RMSD will not

be minimal, unless all three structures are mutually highly

similar. For example, the effect of the optimal alignment is

noticeably lesser in the native ensemble of villin than in the

unfolded one, because 1), the unfolded ensemble is much

more heterogeneous than the native one, and 2), the structure

used as a reference is the native form of the villin headpiece

domain taken from the PDB. However, as shown here, the

effects of the alignment are typically only marginal. Paren-

thetically, one way of avoiding roto-translational alignment

altogether would be to use internal coordinates to represent

biomolecules and assess their structural heterogeneity. Never-

theless, as biomolecular structures (including the associated

B-factors) are refined in Cartesian coordinates, we believe

that the most natural measure for evaluating their global struc-

tural diversity directly from experiment should also involve

atom-positional Cartesian representation, such as in the case

of RMSD. In fact, the mathematical simplicity of the connec-

tion between B-factors, RMSF, and RMSD described in this

study actually serves as indirect evidence supporting this

claim.

In addition, RMSF values are also affected by the choice

of the reference structure for the alignment. In Fig. 5, we

show the arithmetic mean and standard deviation of distribu-

tions of<RMSF2>1/2 values calculated for every cluster, but

differing in the choice of the structure used for the alignment

before calculations. Even though the standard deviations

throughout the clusters are quite small and they never exceed

the value of 0.26 Å, the differences between the maximal and

minimal values of quadratic means in some clusters are

twofold (Fig. 5), which suggests that the choice of a reference

structure in certain rare cases could indeed influence the

outcome significantly. Contrary to this finding, Yang et al.

(39) found no major effect of the choice of the alignment

structure in their studies where they calculated residual
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RMSD of the ensembles of NMR models. We explain this

discrepancy with the greater diversity of structures in our

data set compared to most ensembles of NMR models, and

we would like to stress the necessity of evaluating the diver-

sity of an ensemble before ruling out the possible effect of

the choice of the reference structure.

Here, we would like to emphasize that all of our conclu-

sions involving B-factors and other nonprimary data depend

on several critical assumptions. The danger of using derived

data, such as B-factors, lies in the inaccuracies of the refine-

ment processes linking the primary data from x-ray crystal-

lography and NMR with model structures. All the structures

submitted to the PDB are based on time and ensemble-

average signals that undoubtedly affect the nature of the

models derived from them and potentially cause different

artifacts to appear (79,80). Furthermore, it is hard to tell

whether the refinement has been conducted using the state-

of-the-art software at the time of deposition and whether

the software has been used in an optimal manner (81). For

that reason, there have been several re-refinement attempts

that yielded improved structural models (81–83). Until all

the artifacts are fully resolved and understood, making

assumptions based on the comparison of simulations and

secondary or derived data can result in overinterpreted or

misinterpreted conclusions (84). Nonetheless, we find the

interpretation of our results to be useful for determining

the <RMSD2>1/2 of an ensemble of structures in a crystal

from B-factors as long as the Eq. 1 holds, i.e., as long as the

major contribution to the measured B-factors is indeed the

structural heterogeneity of molecules.
SUPPORTING MATERIAL

One table is available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)01738-X.

We thank Ivo F. Sbalzarini, Christian L. Müller, and the members of the

Laboratory of Computational Biophysics at MedILS for useful comments

on the manuscript. Contribution of Folding@Home members is gratefully

acknowledged.

This work was supported in part by the National Foundation for Science,

Higher Education and Technological Development of Croatia (EMBO

Installation grant to B.Z.), the Unity Through Knowledge Fund (UKF 1A

to B.Z.), and a National Institutes of Health R01-GM062868 grant (Fol-

ding@Home).
REFERENCES

1. McLachlan, A. D. 1972. Mathematical procedure for superimposing
atomic coordinates of proteins. Acta Crystallogr. A. 28:656–657.

2. Kabsch, W. 1976. A solution for the best rotation to relate two sets of
vectors. Acta Crystallogr. A. 32:922–923.

3. Kabsch, W. 1978. A discussion of the solution for the best rotation to
relate two sets of vectors. Acta Crystallogr. A. 34:827–828.

4. Kneller, G. R. 1991. Superposition of molecular structures using quater-
nions. Mol. Simul. 7:113–119.
5. Kneller, G. R. 2005. Comment on ‘‘Using quaternions to calculate
RMSD’’ [J. Comp. Chem. 25, 1849 (2004)]. J. Comput. Chem.
26:1660–1662.

6. Duan, Y., and P. A. Kollman. 1998. Pathways to a protein folding inter-
mediate observed in a 1-microsecond simulation in aqueous solution.
Science. 282:740–744.

7. Daura, X., B. Jaun, ., A. E. Mark. 1998. Reversible peptide folding in
solution by molecular dynamics simulation. J. Mol. Biol. 280:925–932.

8. Daura, X., W. F. van Gunsteren, and A. E. Mark. 1999. Folding-unfold-
ing thermodynamics of a beta-heptapeptide from equilibrium simula-
tions. Proteins. 34:269–280.

9. Zagrovic, B., E. J. Sorin, and V. Pande. 2001. Beta-hairpin folding
simulations in atomistic detail using an implicit solvent model.
J. Mol. Biol. 313:151–169.

10. Zagrovic, B., C. D. Snow, ., V. S. Pande. 2002. Simulation of folding
of a small alpha-helical protein in atomistic detail using worldwide-
distributed computing. J. Mol. Biol. 323:927–937.

11. Yang, J. S., W. W. Chen, ., E. I. Shakhnovich. 2007. All-atom ab
initio folding of a diverse set of proteins. Structure. 15:53–63.

12. Verma, A., and W. Wenzel. 2009. A free-energy approach for all-atom
protein simulation. Biophys. J. 96:3483–3494.

13. Schueler-Furman, O., C. Wang, ., D. Baker. 2005. Progress in
modeling of protein structures and interactions. Science. 310:638–642.

14. Rangwala, H., and G. Karypis. 2008. fRMSDPred: predicting local
RMSD between structural fragments using sequence information.
Proteins. 72:1005–1018.

15. Zhang, Y. 2008. Progress and challenges in protein structure prediction.
Curr. Opin. Struct. Biol. 18:342–348.

16. Bowman, G. R., and V. S. Pande. 2009. The roles of entropy and
kinetics in structure prediction. PLoS One. 4:e5840.

17. Andrec, M., D. A. Snyder, ., R. M. Levy. 2007. A large data set
comparison of protein structures determined by crystallography and

NMR: statistical test for structural differences and the effect of crystal
packing. Proteins. 69:449–465.

18. Saccenti, E., and A. Rosato. 2008. The war of tools: how can NMR spec-

troscopists detect errors in their structures? J. Biomol. NMR. 40:251–261.

19. Sullivan, D. C., and I. D. Kuntz. 2001. Conformation spaces of proteins.

Proteins. 42:495–511.

20. Sullivan, D. C., and I. D. Kuntz. 2004. Distributions in protein confor-

mation space: implications for structure prediction and entropy.
Biophys. J. 87:113–120.

21. Müller, C. L., I. F. Sbalzarini, ., P. H. Hünenberger. 2009. In the eye of
the beholder: inhomogeneous distribution of high-resolution shapes
within the random-walk ensemble. J. Chem. Phys. 130:214904–214925.
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and Mössbauer spectroscopy. Eur. Biophys. J. 30:319–329.

63. Berjanskii, M., and D. S. Wishart. 2006. NMR: prediction of protein
flexibility. Nat. Protoc. 1:683–688.

64. Berjanskii, M. V., and D. S. Wishart. 2007. The RCI server: rapid and
accurate calculation of protein flexibility using chemical shifts. Nucleic
Acids Res. 35(Web Server issue):W531–W537.

65. Berjanskii, M. V., and D. S. Wishart. 2008. Application of the random
coil index to studying protein flexibility. J. Biomol. NMR. 40:31–48.

66. McKnight, C. J., P. T. Matsudaira, and P. S. Kim. 1997. NMR structure of
the 35-residue villin headpiece subdomain. Nat. Struct. Biol. 4:180–184.

67. Eliezer, D., P. A. Jennings, ., H. Tsuruta. 1995. The radius of gyration
of an apomyoglobin folding intermediate. Science. 270:487–488.

68. Bright, J. N., T. B. Woolf, and J. H. Hoh. 2001. Predicting properties
of intrinsically unstructured proteins. Prog. Biophys. Mol. Biol. 76:
131–173.

69. Knott, M., and H. S. Chan. 2006. Criteria for downhill protein folding:
calorimetry, chevron plot, kinetic relaxation, and single-molecule radius
of gyration in chain models with subdued degrees of cooperativity.
Proteins. 65:373–391.

70. Flory, P. J. 1989. Statistical Mechanics of Chain Molecules. Hanser
Publishers, New York.

71. Qiu, D., P. S. Shenkin, ., W. C. Still. 1997. The GB/SA continuum
model for solvation. A fast analytical method for the calculation of
approximate Born radii. J. Phys. Chem. 101:3005–3014.

72. Andersen, H. C. 1983. Rattle—a velocity version of the shake algorithm
for molecular-dynamics calculations. J. Comput. Phys. 52:24–34.

73. Jorgensen, W. L., and J. Tiradorives. 1988. The Opls potential functions
for proteins - energy minimizations for crystals of cyclic-peptides and
crambin. J. Am. Chem. Soc. 110:1657–1666.

74. Zagrovic, B., C. D. Snow, ., V. S. Pande. 2002. Native-like mean
structure in the unfolded ensemble of small proteins. J. Mol. Biol.
323:153–164.

75. Lindahl, E., B. Hess, and D. van der Spoel. 2001. GROMACS 3.0:
a package for molecular simulation and trajectory analysis. J. Mol.
Model. 7:306–317.

76. McLachlan, A. D. 1982. Rapid comparison of protein structures. Acta
Crystallogr. A. 38:871–873.



Determination of Average RMSD from B-Factors 871
77. Furnham, N., T. L. Blundell, ., T. C. Terwilliger. 2006. Is one solution
good enough? Nat. Struct. Mol. Biol. 13:184–185, discussion 185.

78. Wang, X., and J. Snoeyink. 2006. Multiple structure alignment by
optimal RMSD implies that the average structure is a consensus.
LSS Computational Systems Bioinformatics Conference, Stanford, CA.
79–87.

79. Bürgi, R., J. Pitera, and W. F. van Gunsteren. 2001. Assessing the effect
of conformational averaging on the measured values of observables.
J. Biomol. NMR. 19:305–320.

80. Zagrovic, B., and W. F. van Gunsteren. 2006. Comparing atomistic
simulation data with the NMR experiment: how much can NOEs
actually tell us? Proteins. 63:210–218.
81. Joosten, R. P., T. Womack, ., G. Bricogne. 2009. Re-refinement from

deposited x-ray data can deliver improved models for most PDB entries.

Acta Crystallogr. D Biol. Crystallogr. 65:176–185.

82. Nabuurs, S. B., A. J. Nederveen, ., C. A. Spronk. 2004. DRESS:

a database of REfined solution NMR structures. Proteins. 55:483–486.

83. Joosten, R. P., and G. Vriend. 2007. PDB improvement starts with data

deposition. Science. 317:195–196.

84. van Gunsteren, W. F., J. Dolenc, and A. E. Mark. 2008. Molecular simu-

lation as an aid to experimentalists. Curr. Opin. Struct. Biol. 18:149–153.

85. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molec-

ular dynamics. J. Mol. Graph. Model. 14:33–38.
Biophysical Journal 98(5) 861–871


	Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors
	Introduction
	Materials and Methods
	Molecular dynamics simulations
	RMSD calculations-pairwise alignment
	RMSD calculations-reference structure alignment

	Results
	Demonstration of a direct proportionality between 1/2 and 1/2
	Exclusion of the ensemble size effect and the derivation of identity
	Illustrations of the relationship between the average RMSD and RMSF
	Structural heterogeneity of proteins in crystals

	Discussion
	Supporting Material
	References


