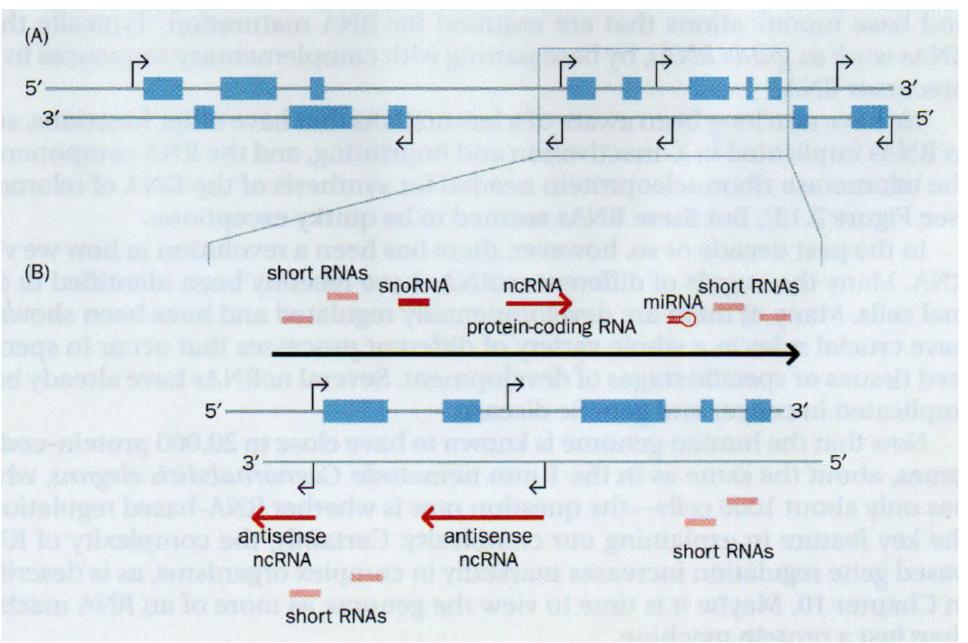
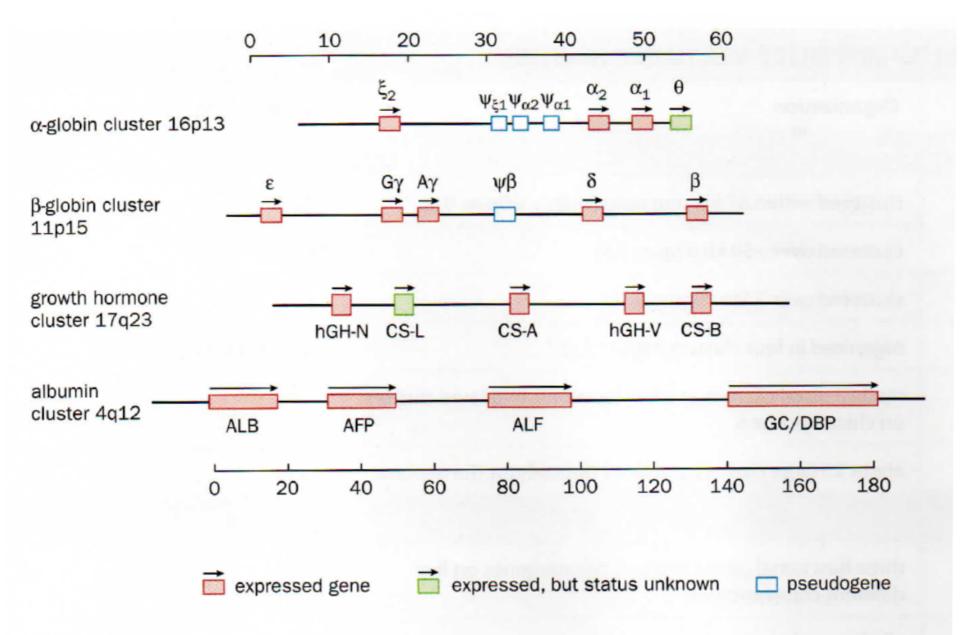

# **MUTATIONS IN SPACE:**

# GENES AND CONSEQUENCES


#### Lecture plan

- Overview of human genes structure and processing
- Alternative splicing
- Epigenetics. Chromosomal imprinting.
- Variant annotation. ENSEMBL Variant Effect Predictor: impact and consequences
- Protein-truncating and loss-of-function variants
- Missense variants, inframe indels
- Synonymous and regulatory variants
- Variant effect, dominant and recessive variants, gainand loss-of-function

#### UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly




### Blurring of gene boundaries

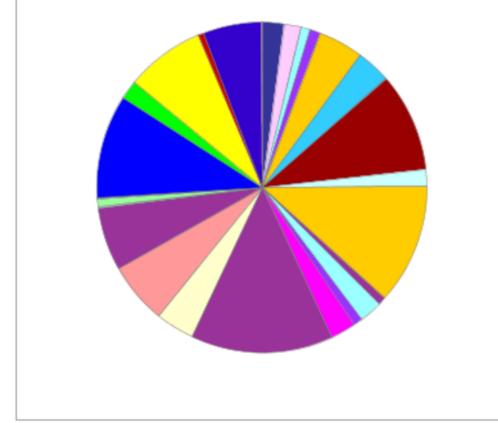


Strachan, Read – Human Molecular Genetics

#### Multigene families



Strachan, Read – Human Molecular Genetics


## Multigene families

| Family Copy no. Organization                                                      |                                                                 | Organization                                                                                      | Chromosome location(s)       |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|
| CLUSTERED GENE FAMILIES                                                           |                                                                 |                                                                                                   |                              |
| Growth hormone gene cluster                                                       | 5                                                               | clustered within 67 kb; one pseudogene (Figure 9.8)                                               | 17q24                        |
| α-Globin gene cluster                                                             | 7                                                               | clustered over ~50 kb (Figure 9.8)                                                                | 16p13                        |
| Class I HLA heavy chain genes                                                     | s I HLA heavy chain genes ~20 clustered over 2 Mb (Figure 9.10) |                                                                                                   | 6p21                         |
| HOX genes                                                                         | 38                                                              | organized in four clusters (Figure 5.5)                                                           | 2q31, 7p15, 12q13, 17q21     |
| Histone gene family                                                               | 61                                                              | modest-sized clusters at a few locations; two large clusters<br>on chromosome 6                   | many                         |
| Olfactory receptor gene family                                                    | > 900                                                           | about 25 large clusters scattered throughout the genome                                           | many                         |
| INTERSPERSED GENE FAMILIES                                                        |                                                                 |                                                                                                   |                              |
| dolase 5 three functional genes and two pseudogenes on five different chromosomes |                                                                 | many                                                                                              |                              |
| PAX                                                                               | 9                                                               | all nine are functional genes                                                                     | many                         |
| NF1 (neurofibromatosis type I)                                                    | > 12                                                            | one functional gene at 22q11; others are nonprocessed pseudogenes or gene fragments (Figure 9.11) | many, mostly pericentromeric |
| Ferritin heavy chain 20                                                           |                                                                 | one functional gene on chromosome 11; most are processed pseudogenes                              | many                         |



#### Human protein classes

PANTHER Protein Class Total # Genes: 20996 Total # protein class hits: 11214



\*\*Chart tooltips are read as: Category name (Accession): # genes; Percent of gene hit against total # genes; Percent of gene hit against total # Protein Class hits

Click to get gene list for a category:

- calcium-binding protein (PC00060)
- cell adhesion molecule (PC00069)
- <u>cell junction protein (PC00070)</u>
- <u>chaperone (PC00072)</u>
- cytoskeletal protein (PC00085)
- defense/immunity protein (PC00090)
- enzyme modulator (PC00095)
- extracellular matrix protein (PC00102)
- hydrolase (PC00121)
- isomerase (PC00135)
- <u>ligase (PC00142)</u>
- Iyase (PC00144)
- membrane traffic protein (PC00150)
- nucleic acid binding (PC00171)
- oxidoreductase (PC00176)
- receptor (PC00197)
- signaling molecule (PC00207)
- storage protein (PC00210)
- structural protein (PC00211)
- surfactant (PC00212)
- transcription factor (PC00218)
- transfer/carrier protein (PC00219)
- <u>transferase (PC00220)</u>
- transmembrane receptor regulatory/adaptor protein (PC00226)
- transporter (PC00227)
- viral protein (PC00237)





#### Human protein classes

|   | 1  | Nucleic acid binding (PC00171)                             | 1567  |                       |
|---|----|------------------------------------------------------------|-------|-----------------------|
|   | 2  | Hydrolase (PC00121)                                        | 1322  |                       |
|   | 3  | Transcription factor (PC00218)                             | 1138  |                       |
|   | 4  | Enzyme modulator (PC00095)                                 | 1079  |                       |
|   | 5  | Transferase (PC00220)                                      | 867   |                       |
|   | 6  | Signaling molecule (PC00207)                               | 693   |                       |
|   | 7  | Receptor (PC00197)                                         | 675   |                       |
|   | 8  | Transporter (PC00227)                                      | 638   |                       |
|   | 9  | Cytoskeletal protein (PC00085)                             | 497   |                       |
|   | 10 | Oxidoreductase (PC00176)                                   | 424   |                       |
|   | 11 | Defense/immunity protein (PC00090)                         | 386   |                       |
|   | 12 | Membrane traffic protein (PC00150)                         | 280   |                       |
|   | 13 | Ligase (PC00142)                                           | 250   |                       |
|   | 14 | Calcium-binding protein (PC00060)                          | 237   |                       |
|   | 15 | Transfer/carrier protein (PC00219)                         | 203   |                       |
|   | 16 | Cell adhesion molecule (PC00069)                           | 195   |                       |
|   | 17 | Extracellular matrix protein (PC00102)                     | 190   |                       |
|   | 18 | Chaperone (PC00072)                                        | 111   |                       |
|   | 19 | Cell junction protein (PC00070)                            | 98    |                       |
|   | 20 | Lyase (PC00144)                                            | 97    |                       |
|   | 21 | Isomerase (PC00135)                                        | 85    |                       |
|   | 22 | Structural protein (PC00211)                               | 84    |                       |
|   | 23 | Transmembrane receptor regulatory/adaptor protein (PC00226 | 64    |                       |
|   | 24 | Storage protein (PC00210)                                  | 18    |                       |
|   | 25 | Viral protein (PC00237)                                    | 8     | Exercise: think of    |
|   | 26 | Surfactant (PC00212)                                       | 8     |                       |
|   | 27 | Unknown                                                    | 9782  | appropriate questions |
|   |    | Total                                                      | 20996 |                       |
| - |    |                                                            |       |                       |

15



#### The resource for approved human gene nomenclature



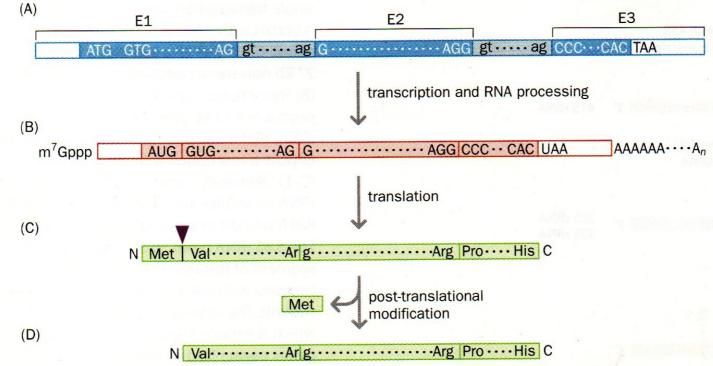
#### **GeneCards<sup>®</sup>:** The Human Gene Database

16

GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. The knowledgebase automatically integrates gene-centric data from ~150 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.






-----------TSS 5' 3' Exon 1 Exon 2 Exon 3 Intron 1 Intron 2 DNA gt ag gt ag **Transcription factor** Transcription binding sites downstream **TATA-box** element CCAAT-box Exon 2 Exon 1 Intron 1 Intron 2 Expn 3 ... Primary transcript ag 21 aug (uga,uaa,uag) cleavage Splicing site polyA signal 3'UTR 5'UTR CDS PolyA tail Mature 5'CAP AAA~AAA mRNA Start codon Stop codon aug cleavage (uga,uaa,uag) Translation site Protein

Note: CDS (coding sequence) vs. mRNA, splicing sites, stop and start codons

Exercise: draw a typical human gene

Carol Guze -- Biology 442 - Human Genetics

promoter



**Figure** 1.23 Transcription and translation of the human  $\beta$ -globin . (A) The  $\beta$ -globin gene comprises three exons (El-E3) and two introns. The 5'-end sequence of El and the 3' end sequence of E3 are noncoding sequences (unshaded sections). (B) These sequences are transcribed and so occur at the 5' and 3' ends (unshaded sections) of the  $\beta$ -globin mRNA that emerges from RNA processing. (C) Some codons can be specified by bases that are separated by an intron. The Arg104 is encoded by the last three nucleotides (AGG) of exon 2 but the Arg30 is encoded by an AGG codon whose first two bases are encoded by the last two nucleotides of exon 1 and whose third base is encoded by the first nucleotide of exon 2. (D) During post-translational modification the 147 amino acid precursor polypeptide undergoes cleavage to remove ils *N*-terminal methionine residue, to generate the mature 146-residue  $\beta$ -globin protein. The flanking *N* and *C* symbols to the left and right, respectively, in (C) Strachan, Read – Human Molecular Genetics

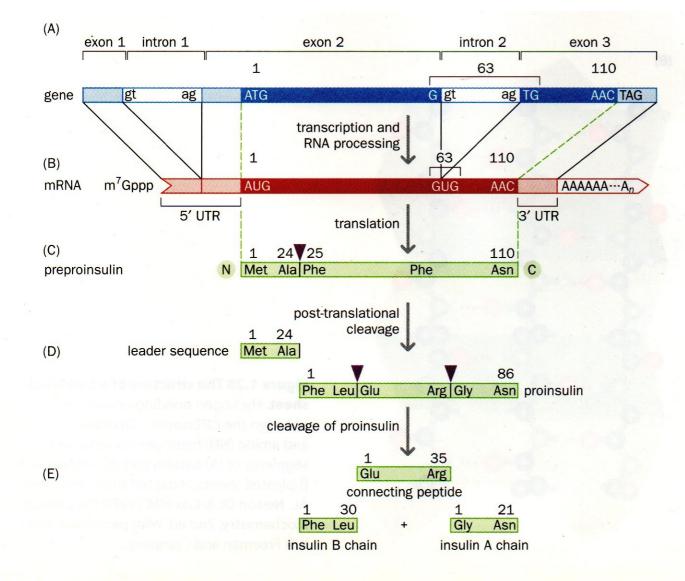
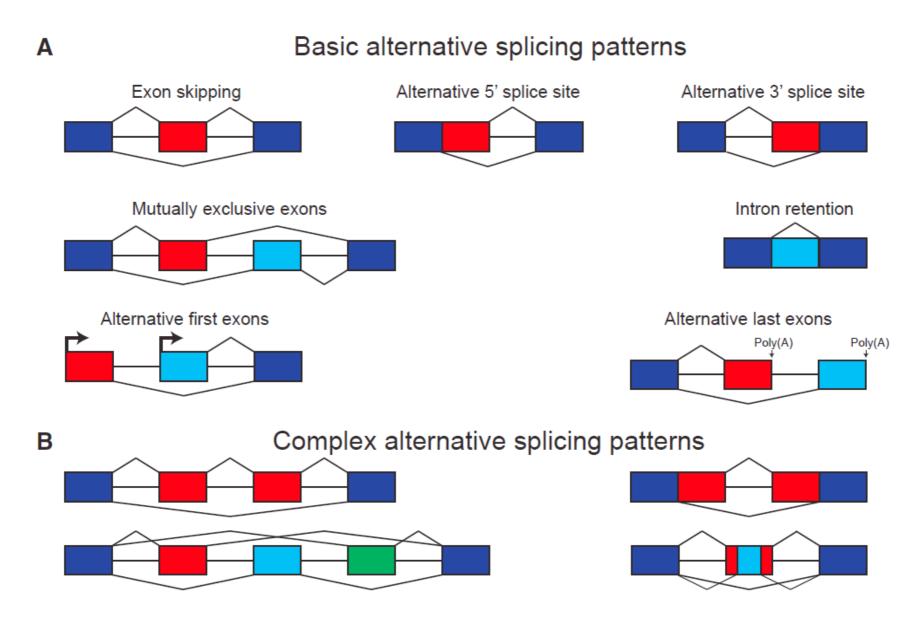
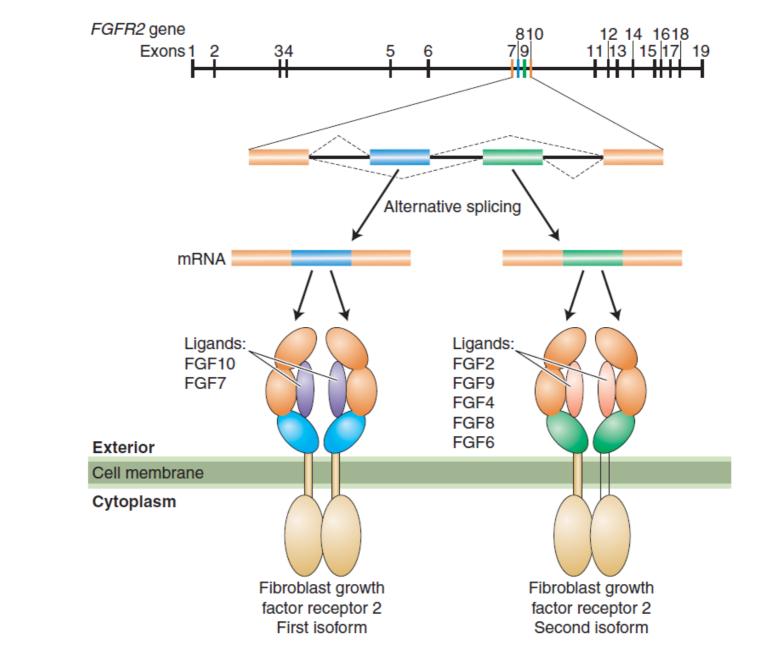


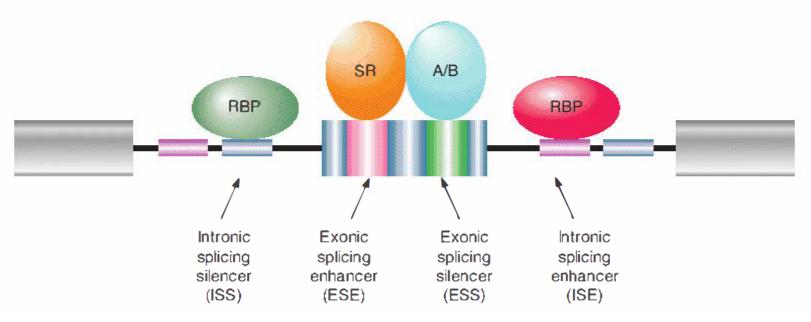

Figure 1.26 Insulin synthesis involves multiple post-translational cleavages of polypeptide precursors. (A) The human insulin gene comprises three exons and two introns. The coding sequence (the part that will be used to make polypeptide) is shown in deep blue. It is confined to the 3' sequence of exon 2 and the 5' sequence of exon 3. (B) Exon 1 and the 5' part of exon 2 specify the 5' untranslated region (5' UTR), and the 3' end of exon 3 specifies the 3' UTR. The UTRs are transcribed and so are present at the ends of the mRNA. (C) A primary translation product, preproinsulin, has 110 residues and is cleaved to give (D) a 24-residue N-terminal leader sequence (that is required for the protein to cross the cell membrane but is thereafter discarded) plus an 86-residue proinsulin precursor. (E) Proinsulin is cleaved to give a central segment (the connecting peptide) that may maintain the conformation of the A and B chains of insulin before the formation of their interconnecting covalent disulfide bridges (see Figure 1.29).


Examples of posttranslational processing

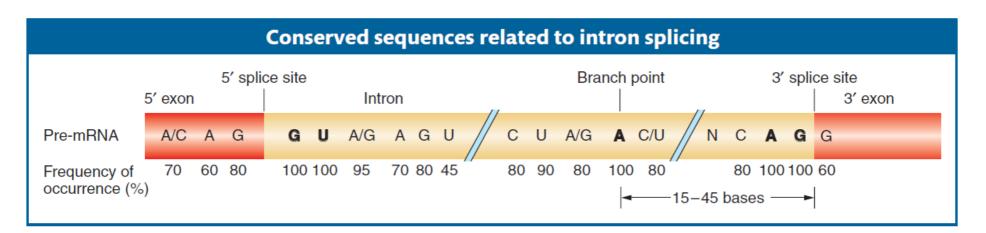
#### Strachan, Read – Human Molecular Genetics


#### TABLE 9-1 SOME VITAL STATISTICS FOR THE HUMAN GENOME

| DNA length                                                     | $3.2 \times 10^9$ nucleotide pairs*  |  |  |
|----------------------------------------------------------------|--------------------------------------|--|--|
| Number of genes                                                | approximately 25,000                 |  |  |
| Largest gene                                                   | $2.4 \times 10^{6}$ nucleotide pairs |  |  |
| Mean gene size                                                 | 27,000 nucleotide pairs              |  |  |
| Smallest number of exons per gene                              | 1                                    |  |  |
| Largest number of exons per gene                               | 178                                  |  |  |
| Mean number of exons per gene                                  | 10.4                                 |  |  |
| Largest exon size                                              | 17,106 nucleotide pairs              |  |  |
| Mean exon size                                                 | 145 nucleotide pairs                 |  |  |
| Number of pseudogenes**                                        | more than 20,000                     |  |  |
| Percentage of DNA sequence in exons (protein coding sequences) | 1.5%                                 |  |  |
| Percentage of DNA in other highly conserved sequences***       | 3.5%                                 |  |  |
| Percentage of DNA in high-copy repetitive elements             | approximately 50%                    |  |  |


Q: what gene (exon) is the largest?




Park (2018) Am J Hum Genet



Griffiths -- Introduction to Genetic Analysis



Lewin – Genes XI



#### Griffiths -- Introduction to Genetic Analysis

# Alternative splicing of human genes Arg Arg

SR

ESE

UCCAUUCAUA-5'

ISE

ISE

ISE

AGGURAGU

5' splice site

hnRNP

ESS

SR

ESE

U2AF

NNYYYYYYYCAGGU

3' splice site

AUGA UG UACU AC

Branch site

Splicing enhancer

proteins

ESE

ESE

Figure 1 | **The splicing code. a** | A pre-mRNA as it might appear to the spliceosome. Red indicates consensus splice site sequences at the intron–exon boundaries. Blue indicates additional intronic cis-acting elements that make up the splicing code. **b** | cis-elements within and around an alternative exon are required for its recognition and regulation. The 5' splice site and branch site serve as binding sites for the RNA components of U1 and U2 small nuclear ribonucleoprotein (snRNPs), respectively. This RNA:RNA base pairing determines the precise joining of exons at the correct nucleotides. Mutations in the pre-mRNA that disrupt this base pairing decrease the efficiency of exon recognition. Exons and introns contain diverse sets of enhancer and suppressor elements that refine bone fide exon recognition. Some exon splicing suppressors (ESEs) bind SR proteins and recruit and stabilize binding of spliceosome components such as U2AF. Exon splicing suppressors (ESSs) bind protein components of heterogeneous nuclear ribonucleoproteins (hnRNP) to repress exon usage. Some intronic splicing enhancers (ISEs) bind auxiliary splicing factors that are not normally associated with the spliceosome to regulate alternative splicing. **2007**) Nat Rev Genet

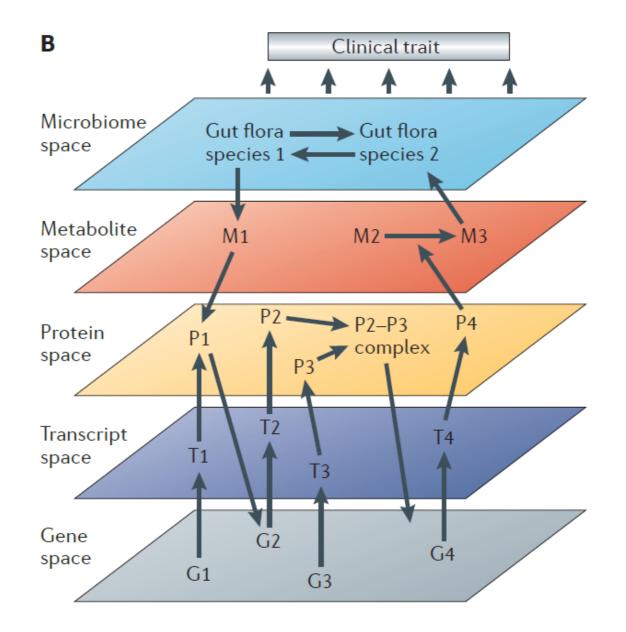
- ENSEMBL GRCh38 v.99, protein-coding genes and transcripts:
- 1 transcript: 22.2% (no alternative splicing)
- 2-5 transcripts: 52.9%
- >5 transcripts: 24.9%
- More than 75 transcripts: *ADGRG1, ANK2, KCNMA1, MAPK10, NDRG2, PAX6, TCF4*
- Longest transcript designated as **canonical** ( $\neq$  most biologically relevant)
- AS contribution to proteome complexity and transcript functionality is still debated: transcripts  $\neq$  protein isoforms
- AS transcripts that introduce premature stop codon are subject to NMD (nonsense-mediated decay)
- Microexons (3-30 nt): misregulated in autistic brain (Irimia (2014) *Cell*).

#### Aberrant splicing in disease

• Cis-acting splicing mutations: disruption of the splicing code, 15-60% of human disease mutations (Wang 2007 *Nat Rev Genet*)

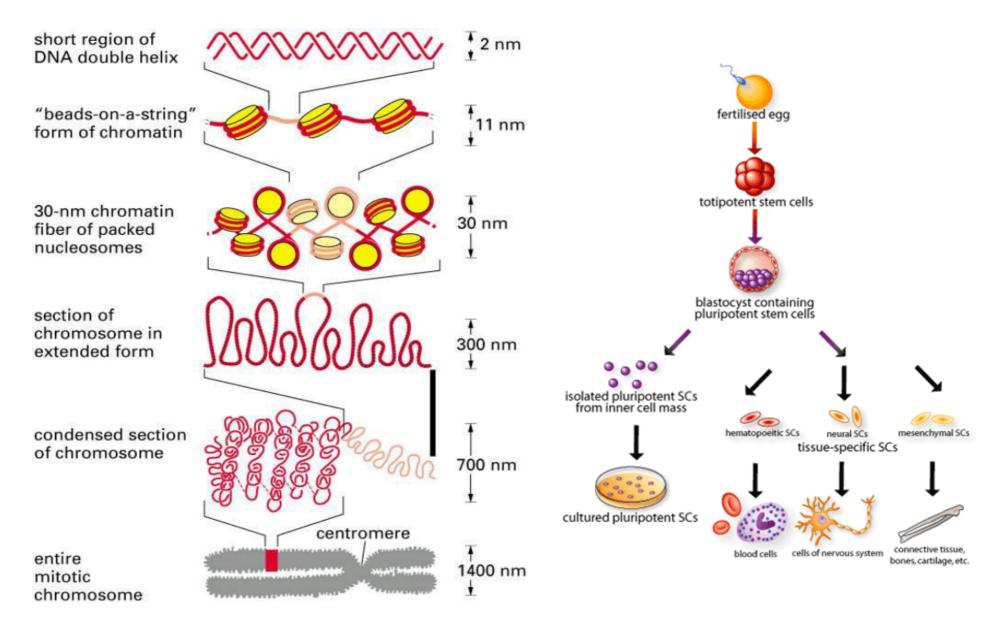
Examples: synonymous mutations in  $CFTR \Rightarrow$  cystic fibrosis;

Splice site mutations in  $MITF \Rightarrow$  Waardenburg syndrome type 2 (WS2), a dominantly inherited syndrome of hearing loss and pigmentary disturbances


• **Trans-acting mutations**: disruption of the splicing RNA-protein machinery.

Example: mutations in  $SMN1 \Rightarrow$  loss of snRNP production  $\Rightarrow$  spinal muscular atrophy (SMA). Nusinersen, an antisense oligonucleotide drug for correcting splicing in spinal muscular atrophy.

Park, E., Pan, Z., Zhang, Z., Lin, L., and Xing, Y. (2018). The Expanding Landscape of Alternative Splicing Variation in Human Populations. *Am. J. Hum. Genet.* 102, 11–26.


Wang, G.-S., and Cooper, T.A. (2007). Splicing in disease: disruption of the splicing code and the decoding machinery. *Nat. Rev. Genet.* 8, 749–761.

#### Human genome in action



Civelek (2014) Nat Rev Genet

#### More realistic picture

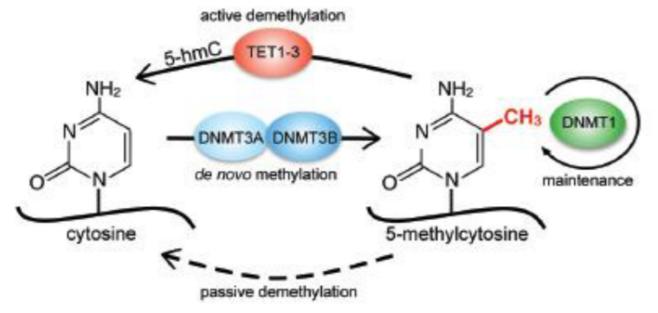


Molecular Biology of the Cell, 4th ed.

Chaudrey (2004) Stem Cell Bioeng

# **Epigenetics**

**Epigenetics**: heritable phenotype changes that do not involve alterations in the DNA sequence

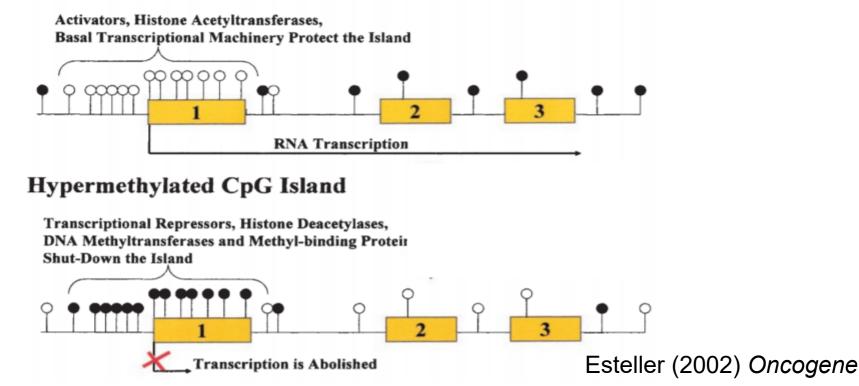

#### **Epigenetic regulation:**

- 1. DNA methylation at CpG dinucleotides
- 2. Covalent modification of histone proteins
- 3. Noncoding RNAs
- *Above the genetis*: instructions on using instructions, or gene expression control mechanisms
- Methylation and histone modifications are reversible
- Maintained at cell division and erased during early embriogenesis
- Affected by internal (development, aging) and environmental (chemicals, drugs, diet, lifestyle) factors

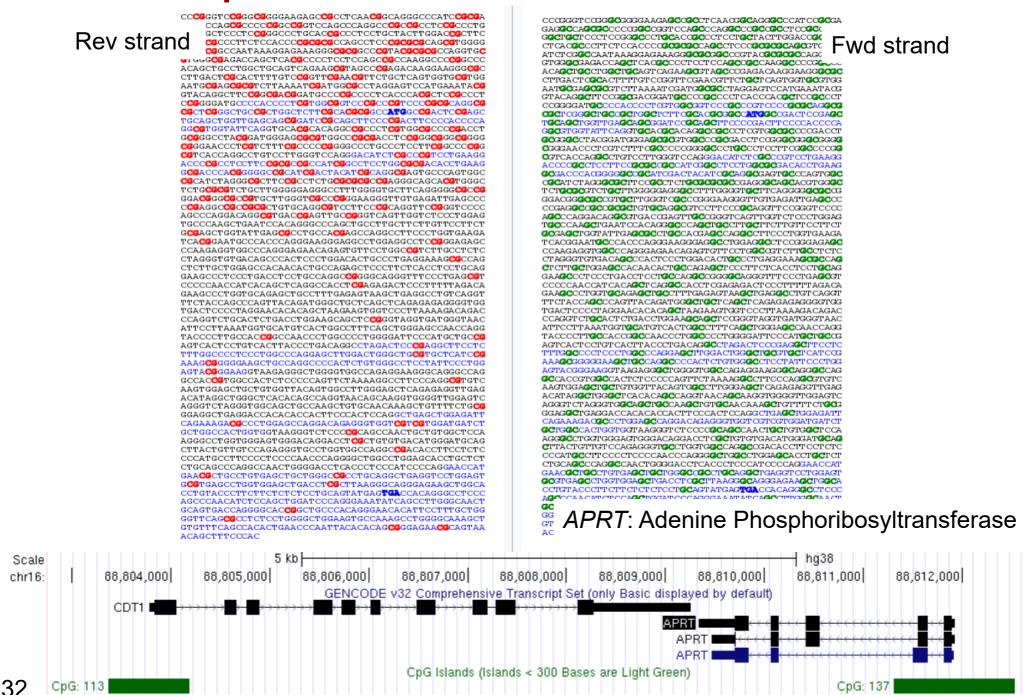


## **DNA** methylation

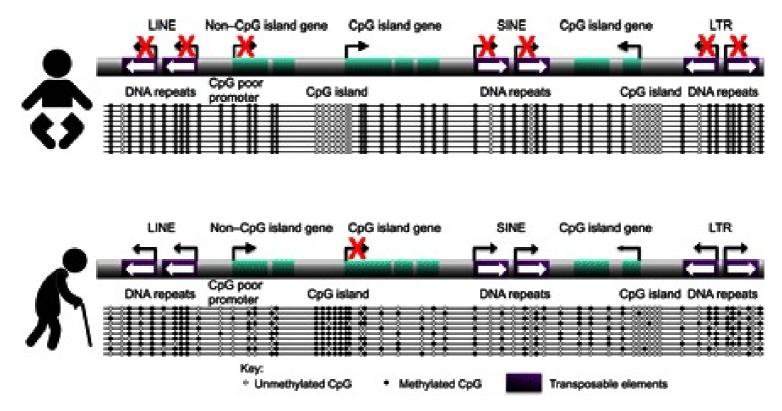
- The only known epigenetic modification of DNA in mammals is methylation of cytosine at position C<sub>5</sub> in CpG dinucleotides
- DNA methyltransferases (DNMTs) establish and maintain DNA methylation patterns
- Methyl-CpG binding proteins (MBDs) read them
- Patterns of CpG methylation may be person-specific, tissuespecific, or locus-specific




Ambrosi (2017) J Mol Biol


## CpG dinucleotides and islands

- **CpG island** *ad hoc* definition: length >200 bp, CG >50%, observedto-expected CpG ratio >60%
- ~30,000 CpG islands in the human genome
- ~70% of human promoters have high CpG content (Saxonov 2006 PNAS)
- Methylation of CpG islands silences gene expression

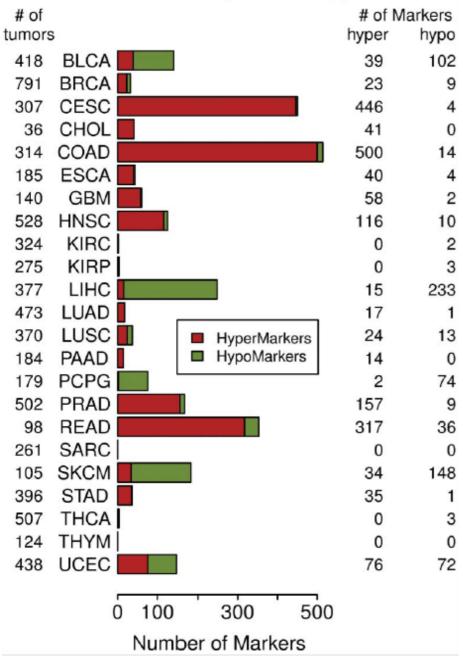

**Unmethylated CpG Island** 



#### CpG dinucleotides and islands



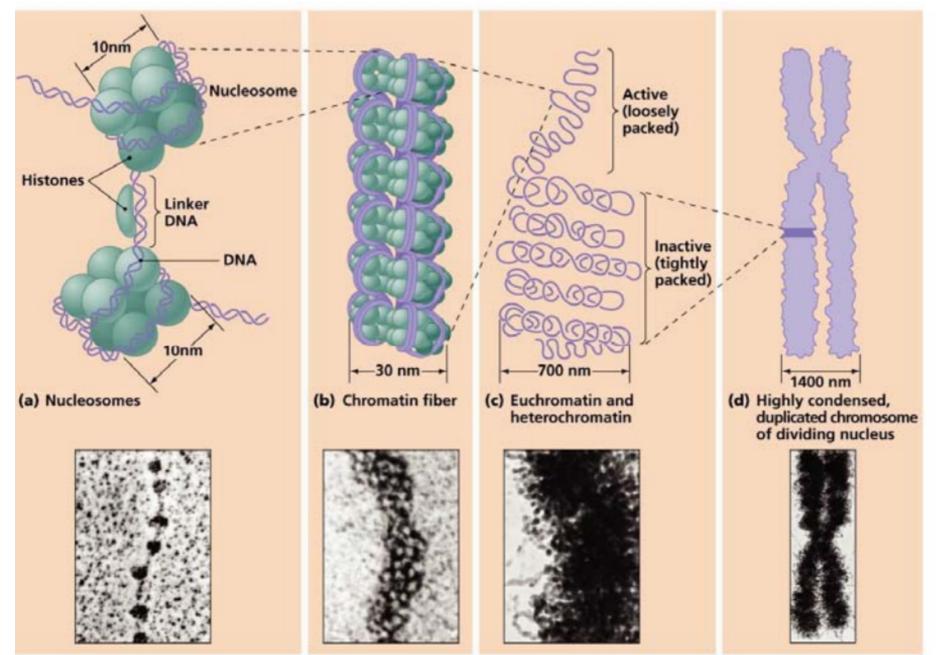
### DNA methylation and aging




Young mammalian cells are characterized by DNA hypermethylation over the genome, with the exception of CpG islands within the promoters of expressed genes. In particular, DNA repeats, such as LINE, SINE, and long terminal repeat (LTR) transposable elements, are heavily DNA-methylated, helping to maintain them in a constitutive heterochromatin state. **During aging, there is general DNA hypomethylation over the genome, which mostly occurs in a stochastic manner within the cell population.** Loss of DNA methylation leads to activation of normally silenced DNA sequences like the transposable elements. However, DNA methylation also increases in a nonstochastic manner over the CpG islands of certain genes, correlating with their heterochromatinization and silencing.

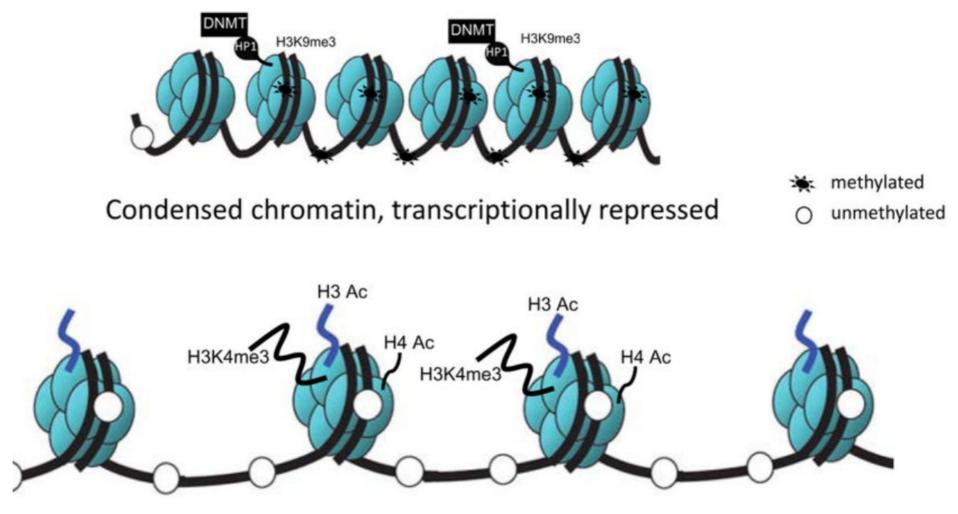
#### Pal & Tyler (2016) Sci Adv

#### **DNA** methylation and cancer


#### Filtered markers per cancer type



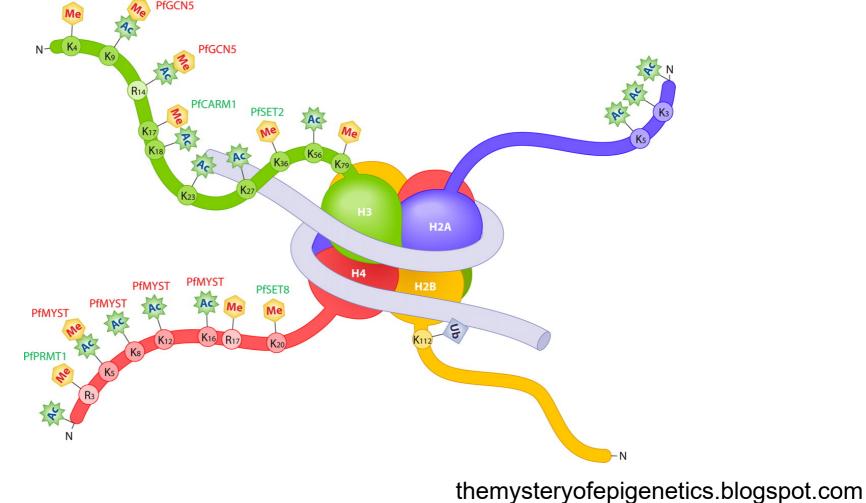
34


We identified **differentially methylated** regions for individual cancer types and those were further filtered against data from normal tissues to obtain marker regions with cancer-specific methylation, resulting in a total of 1,250 hypermethylated 584 and hypomethylated marker CpGs. From hypermethylated markers, optimal sets of six markers for each TCGA cancer type were chosen that could identify most tumors with high specificity and sensitivity [area under the curve (AUC): 0.969-1.000] and a universal 12 marker set that can detect tumors of all 33 TCGA cancer types (AUC >0.84).

Vrba & Futscher (2018) Epigenetics



Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.


themysteryofepigenetics.blogspot.com



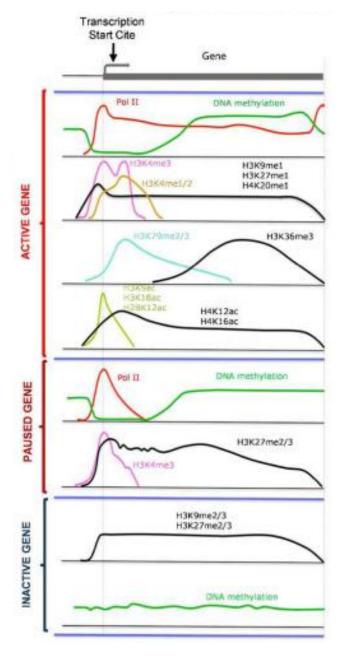
Open chromatin, transcriptionally active

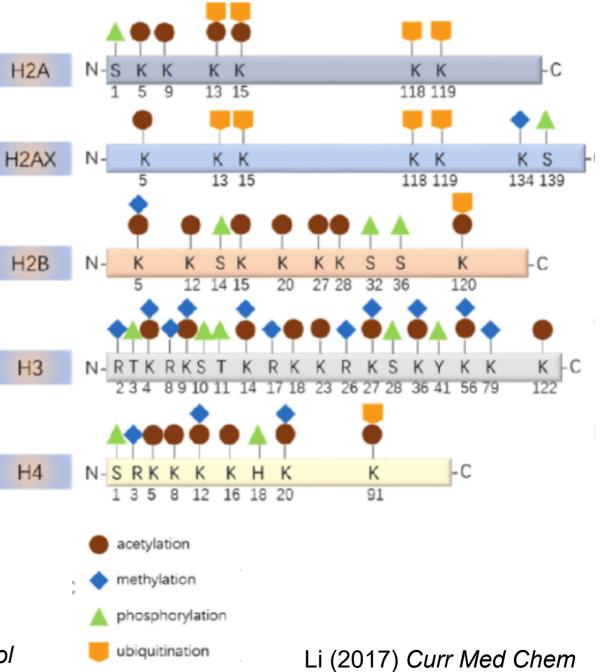
Bansal (2017) Pediatric Diabetes

- **Histone code**: post-translational modifications of histone N-ends (Lys, Arg, Cys) by phosphorylation, acetylation, methylation and ubiquitylation.
- These changes regulate gene expression by modulating the access of regulatory factors to the DNA



The eukaryotic genome is organized in what is known as a **nucleosome**, the first level of condensation. The nucleosome is composed of 147 base pairs of negatively-charged DNA wrapped twice around an octamer of positively-charged proteins called **histones**. It consists of two H2A and H2B dimers, and a H3 and H4 tetramer. The nucleosomes are separated by 1,016 base pairs (bp) of DNA called "linker DNA", which constitutes an arrangement referred to as "beads on a string", that is around 10nm in diameter. DNA can be further condensed at different points during the cell cycle, forming a 30nm chromatin fiber composed of packed nucleosomes using the histone H1, which binds to the linker DNA. These 30nm fibers can form scaffolds and further condense until chromosomes are formed, which are the highest form of DNA organization within a cell.

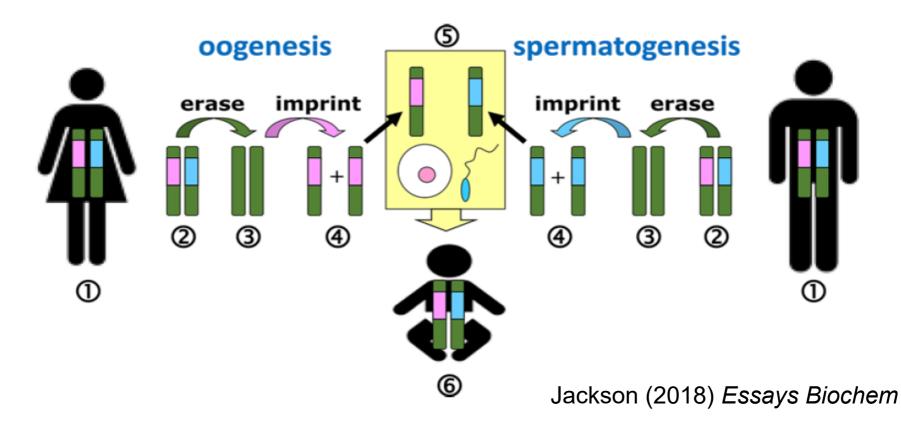

Histones have very dynamic N-terminal "tails" extending from the surface of the nucleosome that are rich in basic amino acids. These tails can be modified by post-translational modifications (PTM's) catalyzed by a variety of enzymes, by adding either methyl, acetyl or phosphoryl groups. Aditionally, lysines can be mono, di or tri-methylated, while arginine can accept up to two methyl groups which adds to the complexity. Methylation of DNA at cytosine residues, as well as PTMs of histones, including phosphorylation, acetylation, methylation and ubiquitylation, contributes to the epigenetic information carried by chromatin. These changes play an important role in the regulation of gene expression by modulating the access of regulatory factors to the DNA. Many modification sites are close enough to each other and it seems that modification of histone tails by one enzyme might influence the rate and efficiency at which other enzymes use the newly modified tails as a substrate.


37

#### Table 1. The histone code.

| Methylation     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  | Acetylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ubiquitination                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monomethylation | Dimethylation                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e and an an an an                                                                                                                                                                                                                                                                                                                                                                   |  |
| -               | _                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Repression                                                                                                                                                                                                                                                                                                                                                                          |  |
| Activation      | _                                                                                                                                                        | Repression                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Activation      | Activation                                                                                                                                               | Activation                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Activation      | Repression                                                                                                                                               | Repression                                                                                                                                                                                                                                                                                                                                                       | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -               | _                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -               | _                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Activation      | Repression                                                                                                                                               | Repression                                                                                                                                                                                                                                                                                                                                                       | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Repression      | Activation                                                                                                                                               | Activation                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| _               | _                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Activation      | Activation                                                                                                                                               | Activation, repression                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -               | _                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                | Activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Activation      |                                                                                                                                                          | Repression                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                 | <ul> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>-</li> <li>Activation</li> <li>Repression</li> <li>-</li> <li>Activation</li> </ul> | <ul> <li>–</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Repression</li> <li>–</li> <li>Activation</li> <li>Repression</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> <li>Activation</li> </ul> | MonomethylationDimethylationTrimethylationActivation-RepressionActivationActivationActivationActivationRepressionRepressionActivationRepressionRepressionActivationActivationActivationActivationActivationActivationActivationActivationActivationActivationActivationActivation,<br>repression </td <td>MonomethylationDimethylationTrimethylationActivation-Repression-ActivationActivationActivation-ActivationRepressionRepressionActivationActivationActivationActivationActivationActivationActivationRepressionRepressionActivationActivationActivationActivationActivationActivationActivationActivationActivationActivation, repressionActivation, repressionActivation, repression</td> | MonomethylationDimethylationTrimethylationActivation-Repression-ActivationActivationActivation-ActivationRepressionRepressionActivationActivationActivationActivationActivationActivationActivationRepressionRepressionActivationActivationActivationActivationActivationActivationActivationActivationActivationActivation, repressionActivation, repressionActivation, repression |  |

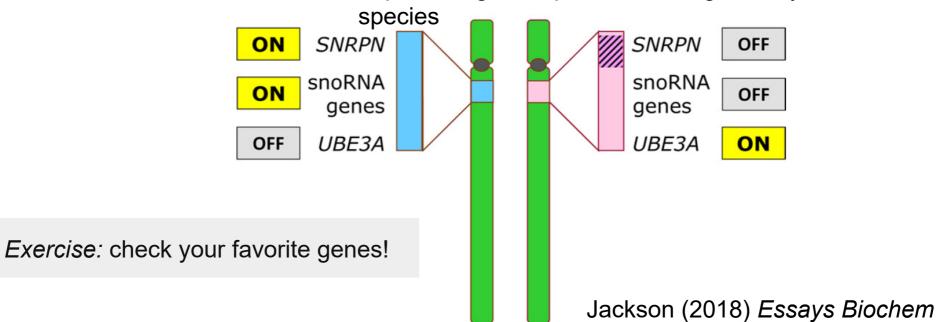
For each post-translational modification, the known functional association on gene transcription is shown. By reading the combinatorial and/or sequential histone modifications that constitute the histone code, it may be possible to predict which gene products will be transcribed. However, this code is controversial, since some gene loci present marks both associated with transcriptional activation and linked with repression. These bivalent domains are posited to be poised for either up- or down-regulation and to provide an epigenetic blueprint for lineage determination, and are usually found in stem cells.






39 Botchkarev (2012) J Invest Dermatol

## Chromosomal imprinting


- Chromosomal imprinting, or imprints: ~100 genes on various chromosomes, one copy is inactive by epigenetic mechanisms depending upon parent of origin
- For some genes (~70) only the paternal allele is active, while the maternal copy is epigenetically silenced throughout the life of the individual, and vice versa (~30 genes)
- Mutations in an active copy of a gene result in **imprinting disorders**



#### Chromosomal imprinting

| Gene      | Aliases                                                                                                                                                            | Location            | Status    | Expressed Allele |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------------------|
| MAGEL2    | nM15, NDNL1                                                                                                                                                        | 15q11-q12 <i>AS</i> | Imprinted | Paternal         |
| MKRN3     | D15S9, RNF63, ZFP127, ZNF127, MGC88288                                                                                                                             | 15q11-q13           | Imprinted | Paternal         |
| UBE3A     | AS, ANCR, E6-AP, HPVE6A, EPVE6AP, FLJ26981                                                                                                                         | 15q11-q13 <i>AS</i> | Imprinted | Maternal         |
| NPAP1     | C15orf2                                                                                                                                                            | 15q11-q13           | Imprinted | Unknown          |
| ZNF127AS  | MKRN3AS, Znp127as                                                                                                                                                  | 15q11-q13           | Unknown   | Unknown          |
| SNORD109A | HBII-438A                                                                                                                                                          | 15q11.2             | Imprinted | Paternal         |
| SNORD108  | HBII-437, HBII-437 C/D box snoRNA                                                                                                                                  | 15q11.2             | Imprinted | Paternal         |
| SNORD107  | HBII-436, HBII-436 C/D box snoRNA                                                                                                                                  | 15q11.2             | Imprinted | Paternal         |
| SNORD109B | HBII-438B, HBII-438B C/D box snoRNA                                                                                                                                | 15q11.2             | Imprinted | Paternal         |
| ATP10A    | ATPVA, ATPVC, ATP10C, KIAA0566                                                                                                                                     | 15q11.2 <i>AS</i>   | Imprinted | Maternal         |
| SNRPN     | SMN, PWCR, SM-D, RT-LI, HCERN3, SNRNP-N,<br>FLJ33569, FLJ36996, FLJ39265, MGC29886, SNURF-<br>SNRPN, DKFZp762N022, DKFZp686C0927,<br>DKFZp761I1912, DKFZp686M12165 | 15q11.2             | Imprinted | Paternal         |

http://www.geneimprint.com/site/genes-by-



#### Imprinting disorders

|                                                                                                          | Angelman syndrome                                                                                                                                             | Prader-Willi syndrome                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Key features                                                                                             | <ul> <li>* Moderate to severe ID (IQ ~25-54)</li> <li>* Jerky, puppet-like movements</li> <li>* Happy and sociable disposition</li> <li>* Seizures</li> </ul> | <ul> <li>* Mild to moderate ID (IQ ~60-70)</li> <li>* Insatiable appetite leading to<br/>morbid obesity</li> <li>* Behaviour problems</li> </ul> |
| Frequency in the population                                                                              | ~1/20,000                                                                                                                                                     | ~1/15,000                                                                                                                                        |
| Underlying genetic<br>abnormality (in some<br>cases, the underlying<br>cause has not been<br>determined) | <ul> <li>Maternal 15q11.2 deletion (~70%)</li> <li>Paternal UPD (~4%)</li> <li>Imprinting defect (~8%)</li> <li>Pathogenic variant in UBE3A (~6%)</li> </ul>  | – Paternal 15q11.2 deletion (~70%)<br>– Maternal UPD (~20%)<br>– Imprinting defect (~5%)                                                         |
| Key genes                                                                                                | <i>UBE3A</i> encoding a ubiquitin ligase                                                                                                                      | SNORD116 gene cluster encoding<br>snoRNAs (other genes in the<br>imprinted region may also influence<br>the phenotype)                           |

Jackson (2018) Essays Biochem

## Imprinting disorders

- IGF2 is a hormone that stimulates growth during embryonic and fetal development // not the IGF2 receptor gene!
- Normally maternally silenced in humans
- Epimutation (missing methyl tags) can result in two active copies

Activation of the maternal *IGF2* gene during egg formation or very early in development causes **Beckwith-Wiedemann Syndrome (BWS):** Beckwith-Wiedemann syndrome

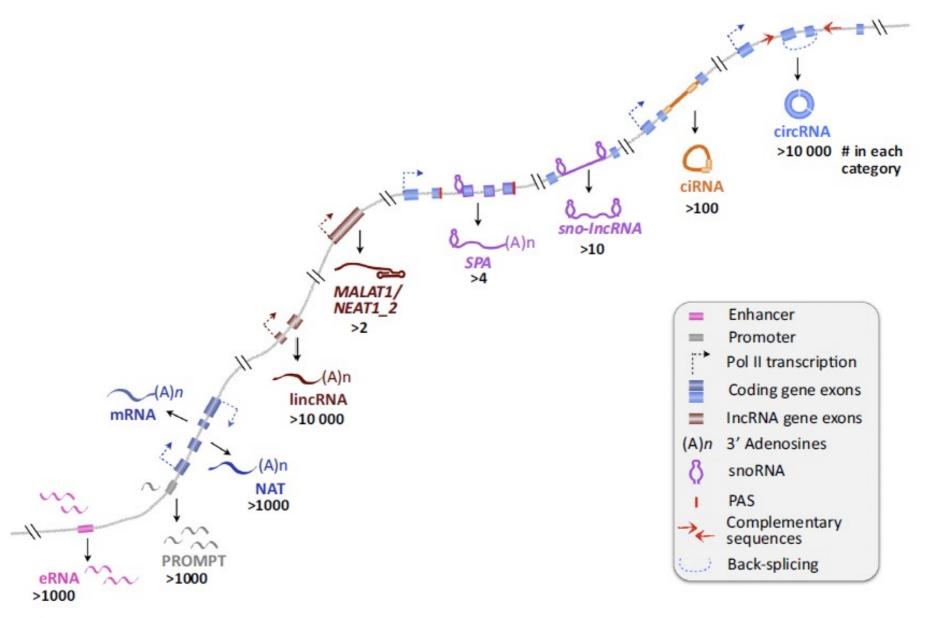
- overgrowth
- an increased risk of cancer, especially during childhood
- variety of other symptoms





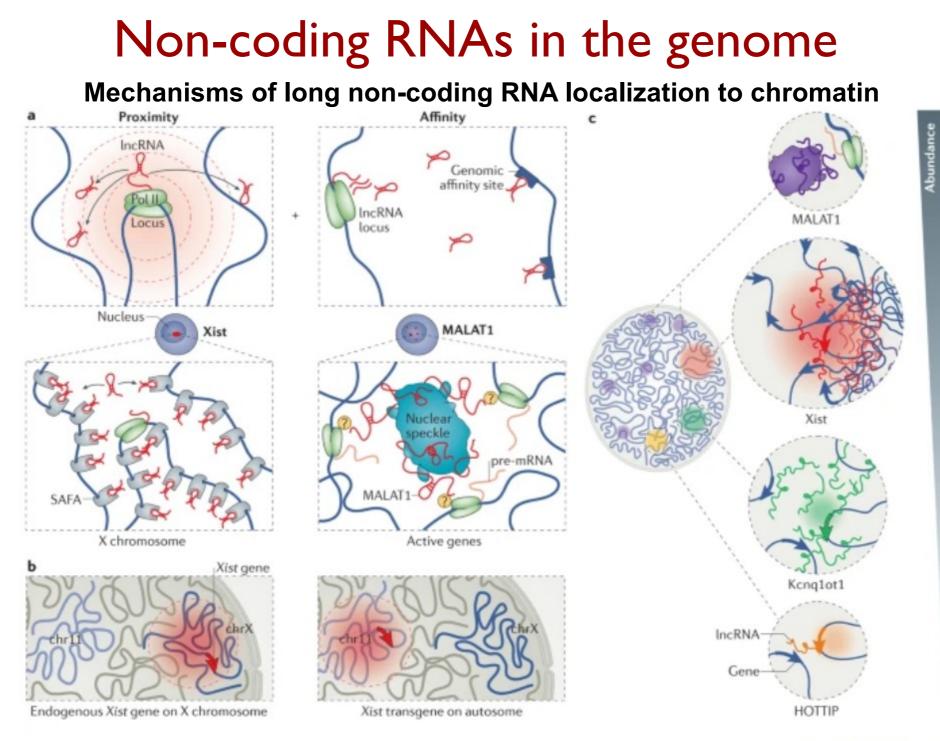


Macroglossia


Umbilical hernia

Omphalocele

Frequency:  $\sim 15,000$  births. However, in babies that were conceived in the laboratory with the help of artificial reproductive technology, the rate of BWS may be as high as 1/4,000.


https://learn.genetics.utah.edu/content/epigenetics/imprinting

#### Non-coding RNAs in the genome



**Trends in Genetics** 

Huang Wu (2017) Trends Genet



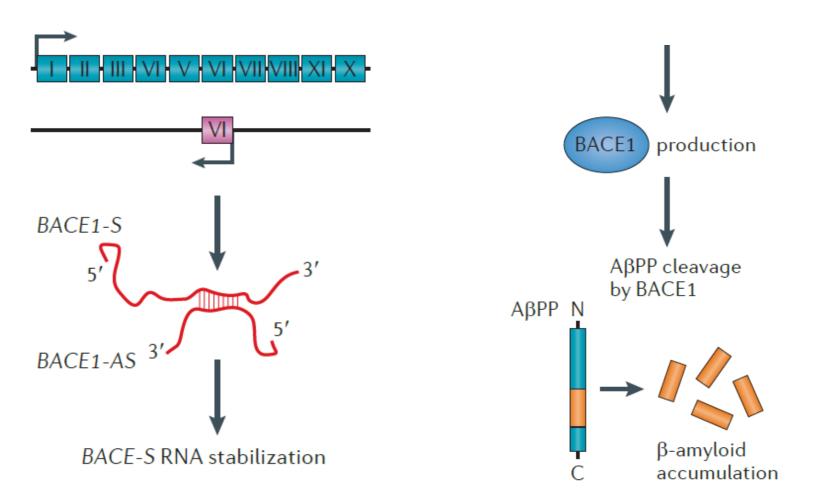
45 Engreitz (2016) Nat Rev Mol Cell Biol

Nature Reviews | Molecular Cell Biology

## Non-coding RNAs in the genome

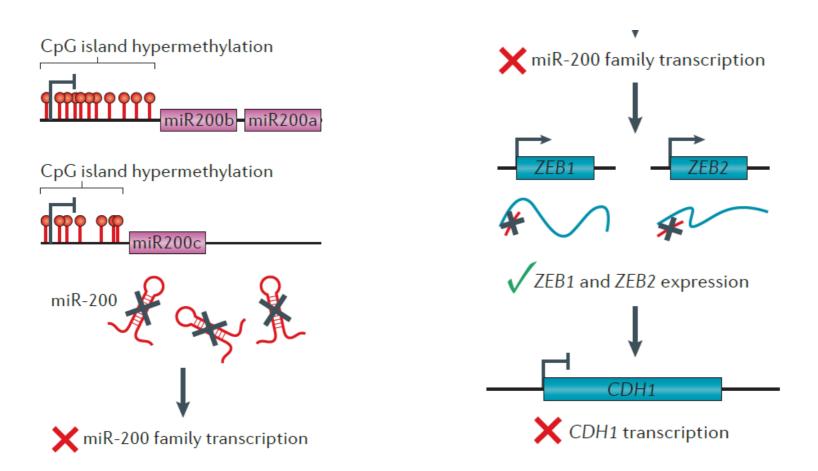
| Name             | Size      | Location                                 | Number<br>in humans | Functions                                                                         | Illustrative examples                                  |
|------------------|-----------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|
| Short ncRN       | As        |                                          |                     |                                                                                   |                                                        |
| miRNAs           | 19–24 bp  | Encoded at<br>widespread locations       | >1,424              | Targeting of mRNAs and many others                                                | miR-15/16, miR-124a,<br>miR-34b/c, miR-200             |
| piRNAs           | 26–31bp   | Clusters, intragenic                     | 23,439              | Transposon repression, DNA methylation                                            | piRNAs targeting RASGRF1<br>and LINE1 and IAP elements |
| tiRNAs           | 17–18bp   | Downstream of TSSs                       | >5,000              | Regulation of transcription?                                                      | Associated with the CAP1 gene                          |
| Mid-size nc      | RNAs      |                                          |                     |                                                                                   |                                                        |
| snoRNAs          | 60–300 bp | Intronic                                 | >300                | rRNA modifications                                                                | U50, SNORD                                             |
| PASRs            | 22–200 bp | 5′ regions of<br>protein-coding<br>genes | >10,000             | Unknown                                                                           | Half of protein-coding genes                           |
| TSSa-RNAs        | 20–90 bp  | –250 and +50 bp of<br>TSSs               | >10,000             | Maintenance of transcription?                                                     | Associated with RNF12 and CCDC52 genes                 |
| PROMPTs          | <200 bp   | –205 bp and –5 kb<br>of TSSs             | Unknown             | Activation of transcription?                                                      | Associated with EXT1 and RBM39 genes                   |
| Long ncRN/       | ls        |                                          |                     |                                                                                   |                                                        |
| lincRNAs         | >200 bp   | Widespread loci                          | >1,000              | Examples include scaffold DNA–<br>chromatin complexes                             | HOTAIR, HOTTIP, lincRNA-p21                            |
| T-UCRs           | >200 bp   | Widespread loci                          | >350                | Regulation of miRNA and mRNA levels?                                              | uc.283+, uc.338, uc160+                                |
| Other<br>IncRNAs | >200 bp   | Widespread loci                          | >3,000              | Examples include X-chromosome<br>inactivation, telomere regulation,<br>imprinting | XIST, TSIX, TERRAs, p15AS,<br>H19, HYMAI               |

#### Esteller (2011) Nat Rev Genet


#### Non-coding RNAs in non-cancer disease

| Disease                             | Involved ncRNAs                                | ncRNA type |
|-------------------------------------|------------------------------------------------|------------|
| Spinal motor neuron disease         | miR-9                                          | miRNA      |
| Spinocerebellar ataxia type 1       | miR-19, miR-101, miR-100                       | miRNA      |
| Amyotropic lateral sclerosis        | miR-206                                        | miRNA      |
| Arrhytmia and hypertension          | miR-1                                          | miRNA      |
| Atheromatosis and atherosclerosis   | miR-10a, miR-145, mR-143 and miR-126           | miRNA      |
| Atheromatosis and atherosclerosis   | Circular ncRNA linked to the CDKN2A locus      | lncRNA     |
| Cardiac hypertrophy                 | miR-21                                         | miRNA      |
| Rett's syndrome                     | miR-146a, miR-146b, miR-29 and miR-382         | miRNA      |
| 5q syndrome                         | miR-145 and miR-146a                           | miRNA      |
| ICF syndrome                        | miR-34b, miR-34c, miR-99b, let-7e and miR-125a | miRNA      |
| Crohn's disease                     | miR-196                                        | miRNA      |
| Prader–Willi and Angelman syndromes | snoRNA cluster at 15q11–q13 imprinted locus    | snoRNA     |
| Beckwith–Wiedeman syndrome          | IncRNAs H19 and KCNQ1OT1                       | IncRNA     |
| Uniparental disomy 14               | snoRNA cluster at 14q32.2 imprinted locus      | snoRNA     |
| Silver–Russell syndrome             | IncRNA H19                                     | IncRNA     |
| Silver–Russell syndrome             | miR-675                                        | miRNA      |
| McCune–Albright syndrome            | IncRNA NESP-AS                                 | IncRNA     |
| Deafness                            | miR-96                                         | miRNA      |
| Alzheimer's disease                 | miR-29, miR-146 and miR-107                    | miRNA      |
| Alzheimer's disease                 | ncRNA antisense transcript for BACE1           | lncRNA     |

Exercise: research a ncRNA-related disease


Esteller (2011) Nat Rev Genet

#### Non-coding RNAs in Alzheimer's disease



An antisense lncRNA, *BACE1-AS*, regulates the expression of the sense *BACE1* gene (labelled *BACE1-S* in the figure) through the stabilization of its mRNA. *BACE1-AS* is elevated in Alzheimer's disease, increasing the amount of BACE1 protein and, subsequently, the production of  $\beta$ -amyloid peptide.

### Non-coding RNAs in cancer



Alterations in the epigenetic regulation of the miR-200 family are involved in epithelial-to-mesenchymal transition in cancer. Specifically, CpG island hypermethylation-associated silencing of these miRNAs in human tumours causes an upregulation of the zinc finger E-box-binding homeobox (HOX) 1 (*ZEB1*) and *ZEB2* transcriptional repressors, which, in turn, leads to a downregulation of E-cadherin *CDH1* Esteller (2011) *Nat Rev Genet* 

# Epigenetic effects of smoking

From Wikipedia, the free encyclopedia

#### Contents [hide]

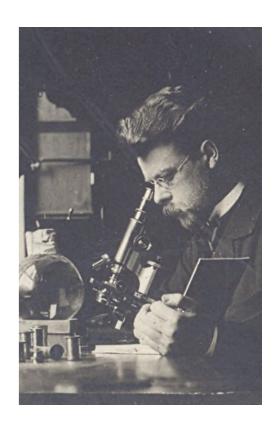
1 Health impact

2 Mechanisms for changes in DNA methylation

2.1 Damage to DNA

2.2 Effects on DNA methylating proteins

2.3 Effects on transcription factors


3 Consequences of altered DNA methylation

- 4 Effects on histone modifications
- 5 Effects on miRNA
- 6 See also
- 7 References

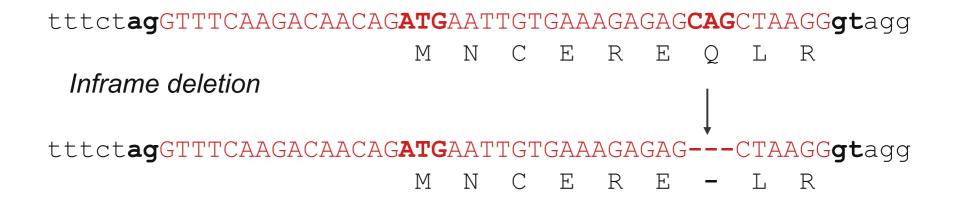


# Николай Конст. Кольцов (1872-1940)

- 1915: «Следует признать гены способными... к мутациям. Ведь во всяком органическом соединении атом водорода может быть скачкообразно заменен группой СН<sub>3</sub>»
  - 1927: Omnis molecula ex molecula: гипотеза о матричном воспроизведении молекул наследственности




Кольцов 1927 + 0

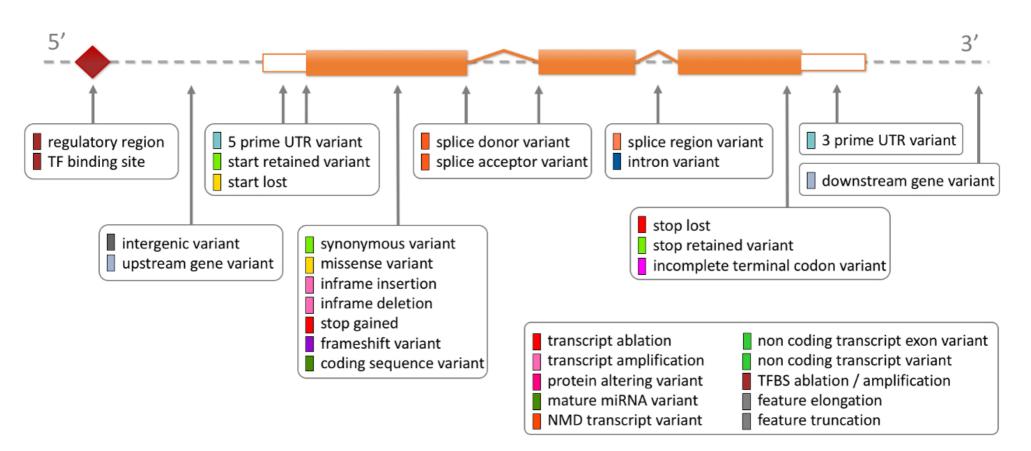

Тимофеев-Ресовский, Циммер, Дельбрюк, Шредингер — 1935-1945

Уотсон, Крик 1953

### Examples of coding changes in RBFOX1



## Examples of coding changes in RBFOX1




tttct**ag**GTTTCAAGACAACAG**ATG**A**AT**TGTGAAAGAGAG**CAG**CTAAGG**gt**agg Ν Е F М С R 0 Τ. R Frameshift deletion tttctagGTTTCAAGACAACAGATGA--TGTGAAAGAGAGCAGCTAAGGgtagg М М \* Κ R А Κ Α



#### Variation consequences

#### Promoter ♦ 5'-UTR ♦ Start (ATG) ♦ Donor(GT) ♦ Acceptor(AG) ♦ ... ♦ Stop(TAA,...) ♦ 3'-UTR



https://www.ensembl.org/info/genome/variation/prediction/predicted\_data.html#consequences 54



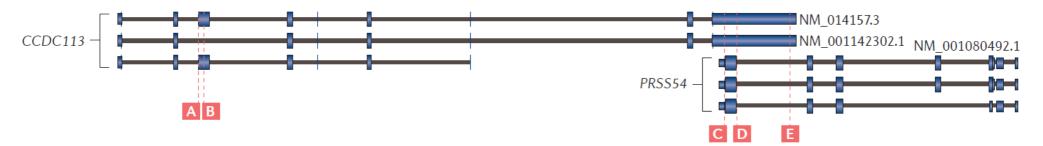
### **ENSEMBL** Variant Effect Predictor

#### Variation consequences and impact

|                                   | · · · · · ·                                                                                                                                                       |                     |                                      |          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|----------|
| * SO term                         | SO description                                                                                                                                                    | SO accession        | Display term                         | IMPACT   |
| transcript_ablation               | A feature ablation whereby the deleted region includes a transcript feature                                                                                       | <u>SO:0001893</u> & | Transcript ablation                  | HIGH     |
| splice_acceptor_variant           | A splice variant that changes the 2 base region at the 3' end of an intron                                                                                        | <u>SO:0001574</u> & | Splice acceptor variant              | HIGH     |
| splice_donor_variant              | A splice variant that changes the 2 base region at the 5' end of an intron                                                                                        | <u>SO:0001575</u> & | Splice donor variant                 | HIGH     |
| stop_gained                       | A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript                        | <u>SO:0001587</u> & | Stop gained                          | HIGH     |
| frameshift_variant                | A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three | <u>SO:0001589</u> & | Frameshift variant                   | HIGH     |
| stop_lost                         | A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript                                        | <u>SO:0001578</u> & | Stop lost                            | HIGH     |
| start_lost                        | A codon variant that changes at least one base of the canonical start codon                                                                                       | <u>SO:0002012</u> & | Start lost                           | HIGH     |
| transcript_amplification          | A feature amplification of a region containing a transcript                                                                                                       | <u>SO:0001889</u> & | Transcript amplification             | HIGH     |
| inframe_insertion                 | An inframe non synonymous variant that inserts bases into in the coding sequence                                                                                  | <u>SO:0001821</u> & | Inframe insertion                    | MODERATE |
| inframe_deletion                  | An inframe non synonymous variant that deletes bases from the coding sequence                                                                                     | <u>SO:0001822</u> & | Inframe deletion                     | MODERATE |
| missense_variant                  | A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved                                | <u>SO:0001583</u> & | Missense variant                     | MODERATE |
| protein_altering_variant          | A sequence_variant which is predicted to change the protein encoded in the coding sequence                                                                        | <u>SO:0001818</u> & | Protein altering variant             | MODERATE |
| splice_region_variant             | A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron            | <u>SO:0001630</u> & | Splice region variant                | LOW      |
| incomplete_terminal_codon_variant | A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed                                                  | <u>SO:0001626</u> & | Incomplete terminal<br>codon variant | LOW      |
| start_retained_variant            | A sequence variant where at least one base in the start codon is changed, but the start remains                                                                   | <u>SO:0002019</u> & | Start retained variant               | LOW      |
| stop_retained_variant             | A sequence variant where at least one base in the terminator codon is changed, but the terminator remains                                                         | <u>SO:0001567</u> & | Stop retained variant                | LOW      |
| synonymous variant                | A sequence variant where there is no resulting change to the encoded                                                                                              | ടറ-0001819ൽ         | Synonymous variant                   | ΙOW      |

https://www.ensembl.org/info/genome/variation/prediction/predicted\_data.html#consequences

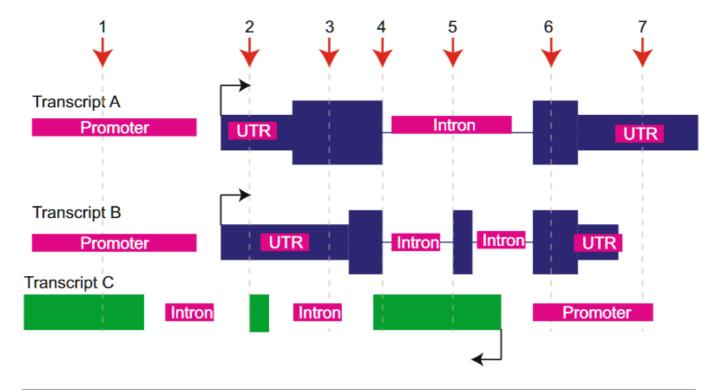



#### **ENSEMBL** Variant Effect Predictor

Variation consequences and impact

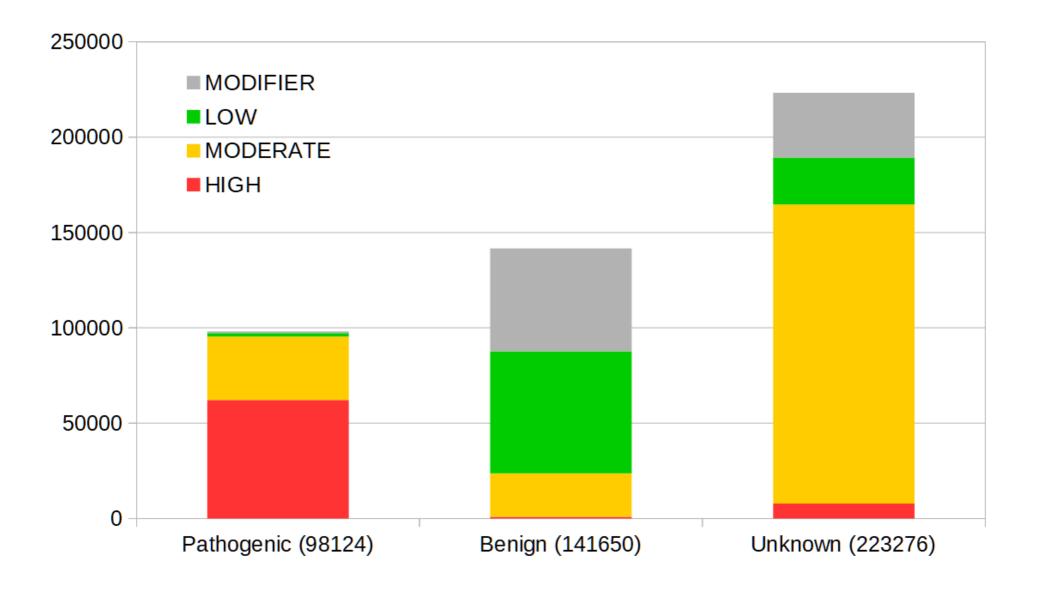
| IMPACT   | Consequence examples                                                                       | Description                                                                                                                                                                  |
|----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIGH     | splice_acceptor_variant,<br>splice_donor_variant,<br>stop_gained, stop_lost,<br>start_lost | The variant is assumed to have high<br>(disruptive) impact in the protein, probably<br>causing protein truncation, loss of function<br>or triggering nonsense mediated decay |
| MODERATE | inframe_insertion,<br>inframe_deletion,<br>missense_variant                                | A non-disruptive variant that might change protein effectiveness                                                                                                             |
| LOW      | splice_region_variant,<br>synonymous_variant                                               | A variant that is assumed to be mostly harmless or unlikely to change protein behaviour                                                                                      |
| MODIFIER | 5_prime_UTR_variant,<br>3_prime_UTR_variant,<br>intron_variant,<br>TFBS_ablation           | Usually non-coding variants or variants affecting non-coding genes, where predictions are difficult or there is no evidence of impact                                        |

https://www.ensembl.org/info/genome/variation/prediction/predicted\_data.html#consequences 56


#### Complexity of variant annotation



|               | Variant<br>allele | Gene    | Transcript<br>change | RefSeq         | Protein<br>change | Molecular<br>consequence |
|---------------|-------------------|---------|----------------------|----------------|-------------------|--------------------------|
| A rs765957496 | G                 | CCDC113 | c.228+1143A>G        | NM_001142302.1 | —                 | Intron variant           |
|               | G                 | CCDC113 | c.229•2A>G           | NM_014157.3    | —                 | Splice acceptor variant  |
| B rs775877153 | А                 | CCDC113 | c.228+1182T>A        | NM_001142302.1 | —                 | Intron variant           |
|               | А                 | CCDC113 | c.266T>A             | NM_014157.3    | Met89Lys          | Missense variant         |
| C rs780162055 | Т                 | PRSS54  | c.1135G>A            | NM_001080492.1 | Glu379Lys         | Missense variant         |
|               | Т                 | CCDC113 | c.*500C>T            | NM_001142302.1 | —                 | 3' UTR variant           |
| D rs776101237 | А                 | PRSS54  | c.655-2A>T           | NM_001080492.1 | —                 | Splice acceptor variant  |
|               | А                 | CCDC113 | c.*962T>A            | NM_001142302.1 | —                 | 3' UTR variant           |
| E rs745863465 | С                 | PRSS54  | c.655-18T>G          | NM_001080492.1 | —                 | Intron variant           |
|               | С                 | CCDC113 | c.*996A>C            | NM_001142302.1 | —                 | 3' UTR variant           |


A demonstration of the multiple possible effects of a single variant across transcripts and genes. The complexity of genomic annotation adds to the complexity of variant annotation. In this example, two genes, coiled-coil domain-containing 113 (*CCDC113*) and protease serine 54 (*PRSS54*) overlap on different strands of the genome, and both have multiple observed transcripts. Variants intersecting this extent of the genome show different effects depending on the gene and the transcript inspected.

#### Complexity of variant annotation



| Variant | Transcript A    | Transcript B    | Transcript C      |
|---------|-----------------|-----------------|-------------------|
| 1       | Promoter        | Promoter        | Exon              |
| 2       | Non Coding Exon | Non Coding Exon | Non Coding Splice |
| 3       | Coding Exon     | Non Coding Exon | Intron            |
| 4       | Coding Splice   | Coding Splice   | Non Coding Exon   |
| 5       | Intron          | Coding Splice   | Non Coding Exon   |
| 6       | Coding Exon     | Coding Exon     | Promoter          |
| 7       | Non Coding Exon | Downstream      | Prompter          |

#### EnsemblVEP annotation for ClinVar variants



ClinVar (Oct. 2019), 498,742 variants annotated with Ensembl VEP

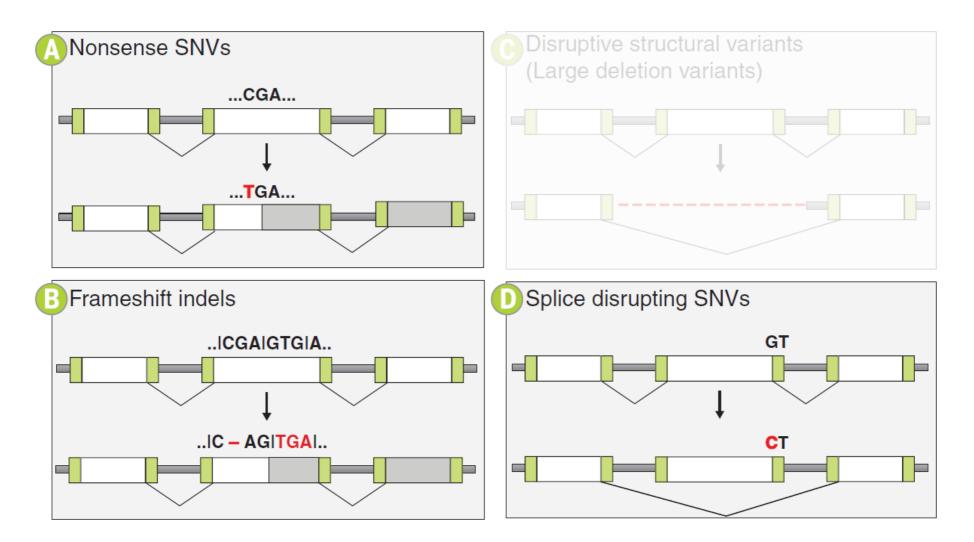
#### EnsemblVEP annotation for ClinVar variants



ClinVar (Oct. 2019), 498,742 variants annotated with Ensembl VEP

#### Pathogenic variants in ClinVar (Oct. 2019)

| Gene  | Frameshift | Stop gain or<br>loss | Splice site | Missense | Inframe | Synonymous | UTR | Intronic | Upstream | Start codon | Phenotype                                                                         |
|-------|------------|----------------------|-------------|----------|---------|------------|-----|----------|----------|-------------|-----------------------------------------------------------------------------------|
| HBB   | 30         | 14                   | 21          | 35       | 3       | 1          | 7   | 12       | 7        | 4           | Beta thalassemia                                                                  |
| LDLR  | 387        | 171                  | 51          | 77       | 9       | 3          | 7   | 6        | 0        | 2           | Familial hypercholesterolemia                                                     |
| CFTR  | 123        | 111                  | 70          | 105      | 5       | 3          | 0   | 20       | 0        | 4           | Cystic fibrosis                                                                   |
| GALT  | 21         | 15                   | 11          | 100      | 1       | 2          | 0   | 4        | 1        | 1           | Deficiency of UDPglucose-hexose-1-<br>phosphate uridylyltransferase               |
| KCNQ2 | 61         | 20                   | 20          | 102      | 7       | 2          | 0   | 1        | 1        | 1           | Benign familial neonatal seizures;<br>Early infantile epileptic<br>encephalopathy |
| MECP2 | 268        | 60                   | 12          | 27       | 12      | 2          | 0   | 1        | 0        | 3           | Mental retardation; Rett syndrome                                                 |
| MLH1  | 316        | 132                  | 76          | 69       | 4       | 6          | 1   | 11       | 0        | 10          | Hereditary nonpolyposis colon cancer;<br>Lynch syndrome                           |
| ОТС   | 22         | 32                   | 39          | 203      | 5       | 2          | 0   | 7        | 0        | 4           | Ornithine carbamoyltransferase<br>deficiency                                      |


#### Exercise

Use ClinVar (OMIM) to find and save one example of disease-associated pathogenic mutation for *each* annotation type:

- stop-gain
- synonymous
- missense
- splice-site
- frameshift indel

### PTVs and LoF variants

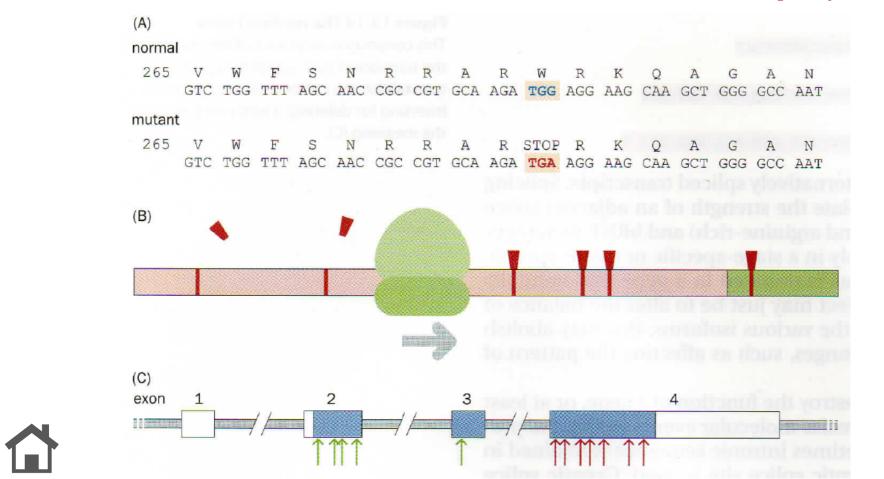
**Protein-truncating variants**: stop-gain, splice site, frameshift indels. VEP impact: HIGH.



### PTVs and LoF variants

**Protein-truncating variants**: stop-gain, splice site, frameshift indels. VEP impact: HIGH. *However, not all PTVs are loss-of-function* 

*LOFTEE* tool (K.Karczewski et al): filters and flags to predict pLoF (putative LoF) from candidate PTVs. <u>https://github.com/konradjk/loftee</u>


PTVs not predicted as pLoF, examples:

- Stop-gain and frameshift variants near the end of the transcript, based on the 50 bp rule
- Variants in an exon with non-canonical splice sites (GT, AG) around it
- Splice site variants rescued by nearby, in-frame splice site
- Variants in small introns

Flagged PTVs, examples:

- Variants in NAGNAG sites (acceptor sites rescued by in-frame acceptor site)
- Variants that fall in an intron with a non-canonical splice site

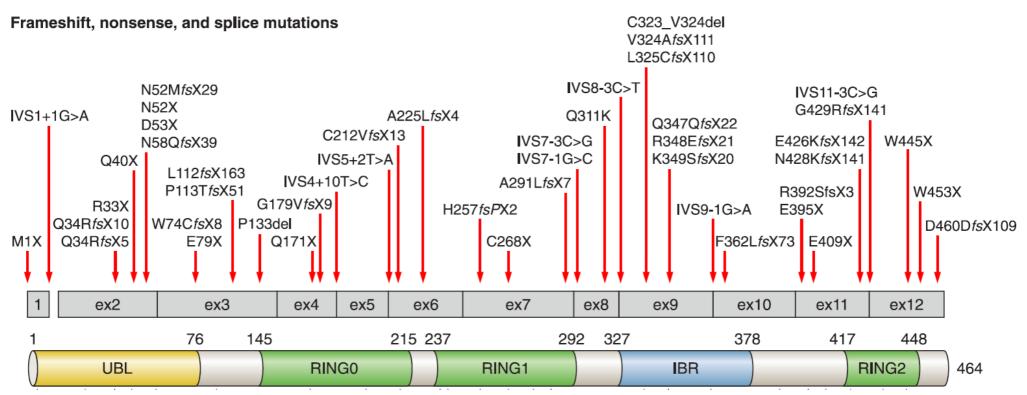
#### PTVs and nonsense-mediated decay (NMD)



(A) G>A change in exon 6 of the *PAX3* gene (B) Nonsense-mediated decay (NMD). Splice junctions (red bars) retain proteins of the exon junction complex (EJC, red triangles). Ribosome moves along the mRN A and displaces the EJC proteins. If it encounters a premature stop codon and detaches before displacing all EJCs, the mRNA is targeted for degradation. Stop codons in the last exon or less than 50 nucleotides upstream of the last splice junction (the green zone) do not trigger NMD. (C) Depending on whether or not a premature stop codon triggers NMD, the consequences of a nonsense mutation can be very different. 65

Strachan, Read – Human Molecular Genetics

### PTVs and nonsense-mediated decay (NMD)

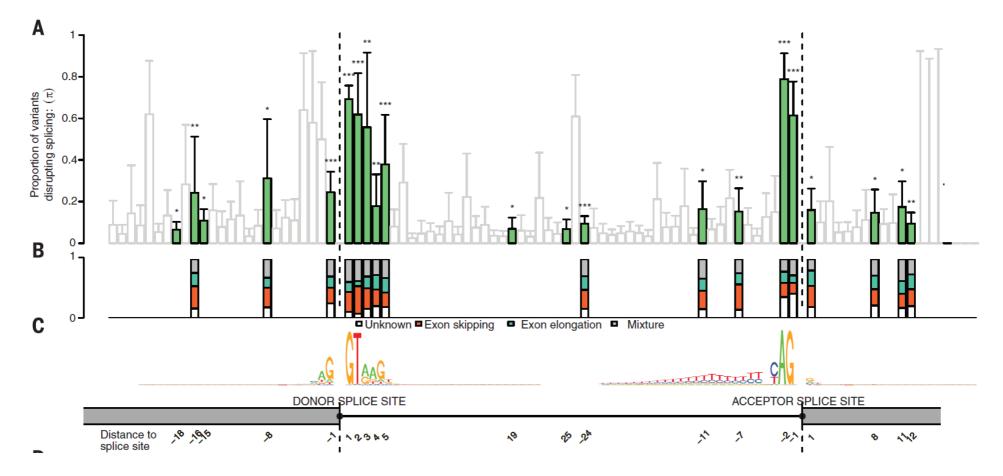

# Ideally: $PTV \rightarrow NMD \rightarrow Transcript \ level \rightarrow Protein \ level \rightarrow Cellular functions$

However, variation in mRNA and protein expression levels are often uncorrelated: the reduction in RNA levels may not reduce the protein level, and vice versa

Battle, A., Khan, Z., Wang, S.H., Mitrano, A., Ford, M.J., Pritchard, J.K., and Gilad, Y. (2015). Impact of Regulatory Variation from RNA to Protein. Science 347, 664–667.

Narasimhan VM, Xue Y, Tyler-Smith C. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? Trends in Molecular Medicine. 2016;22(4):341-351. doi:10.1016/j.molmed.2016.02.006.

Α




Mutations in the Parkin RBR E3 Ubiquitin Protein Ligase *PRKN* are the most frequent known cause of early-onset (40–50 yr) Parkinson's disease. PD is the second most common neurodegenerative disorder, after Alzheimer's disease, with prevalence in industrialized countries  $\sim 0.3\%$ .

| <b>PRKN</b> parkin RBR E3 u                     | biquitin protein li            | gase                    |                        | Dataset | gnomAD v2                       | 2.1.1 👻 gnomAI | ⊃ SVs v2.1 👻 | • 8       |
|-------------------------------------------------|--------------------------------|-------------------------|------------------------|---------|---------------------------------|----------------|--------------|-----------|
| ClinVar variants                                |                                |                         |                        |         |                                 |                |              |           |
| Pathogenic / likely pathogenic                  | only 🕑 Uncertain s             | significance / conflict | ing only               | Benig   | n / likely ben                  | ign only 🖌     | Other or     | nly 💡     |
| pLoF only Missense / Inframe in                 | del only Synonymous            | only Other only         | )                      |         |                                 |                | Collaps      | e to bins |
| $\Box$ Only show ClinVar variants that are in g | nomAD                          |                         |                        |         |                                 |                | Transformer  |           |
| -∗Frameshift ×Other pLoF ▲Missense /            | Inframe indel 🛛 🔶 Splice regio | n • Synonymous / non    | -coding                |         |                                 |                |              |           |
|                                                 |                                |                         |                        |         |                                 |                |              |           |
| Data displayed here is from ClinVar's March     | 2, 2021 release.               |                         |                        |         |                                 |                |              |           |
|                                                 |                                |                         |                        |         |                                 |                |              |           |
| Variant ID       Source                         | HGVS Consequence               | VEP Annotation          | <u>LoF</u><br>Curation |         | <u>Clinical</u><br>Significance | Flags          |              | Allel     |
| 6-162622230-CTT-C                               | p.Arg156SerfsTer29             | • frameshift            |                        |         |                                 |                |              |           |
| 6-162622236-CAG-C E                             | p.Cys154SerfsTer31             | frameshift              |                        |         |                                 |                |              |           |
| 6-162622280-AC-A E                              | p.Gly139ValfsTer38             | frameshift              |                        |         |                                 |                |              |           |
| 6-162622285-CT-C                                | c.413-2delA                    | splice acceptor         |                        |         |                                 | LC pLoF        | pLoF flag    |           |

Mutations in the Parkin RBR E3 Ubiquitin Protein Ligase *PRKN* are the most frequent known cause of early-onset (40–50 yr) Parkinson's disease. PD is the second most common neurodegenerative disorder, after Alzheimer's disease, with prevalence in industrialized countries ~0.3%.

**Protein-truncating variants**: stop-gain, splice site, frameshift indels. VEP impact: HIGH.

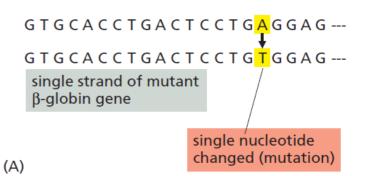


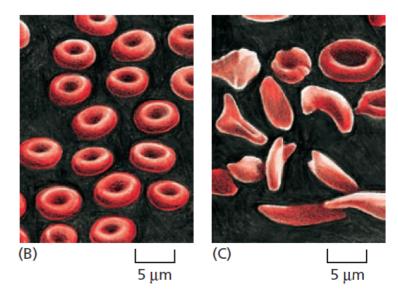
**Fig. 3. Splicing disruption.** (A) Proportion of variants disrupting splicing at each distance +/-25 bp from donor and acceptor site (B) Classification of splice disruption events: exon skipping, exon elongation and mixture (C) Diagram of donor and acceptor splice junctions and sequence logo of represented sequences. Rivas (2015) *Science* 

1. Narasimhan VM, Xue Y, Tyler-Smith C. (2016) Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? *Trends Mol Med* 22:341-351.

- A knockout of the immune gene *IRF7* was shown to confer **susceptibility to flu viruses**, leading to life-threatening influenza in an otherwise healthy child (Ciancanelli 2015 *Science*)
- Instances where a naturally-occurring LoF variant proves beneficial to health. These discoveries have stimulated drug development:
  - lowering LDL levels: PCSK9
  - decreasing susceptibility to HIV: CCR5
  - increasing endurance: ACTN3
  - increasing sepsis resistance: *CASP12*
  - reduced triglyceride levels in humans: APOC3
- 2. DeBoever, C., Tanigawa, Y., Lindholm, M.E., et al. (2018). Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. *Nat Commun* 9, 1–10.
- 18,228 PTVs × 135 phenotypes; find **27 associations between medical phenotypes and PTVs** in genes outside the MHC

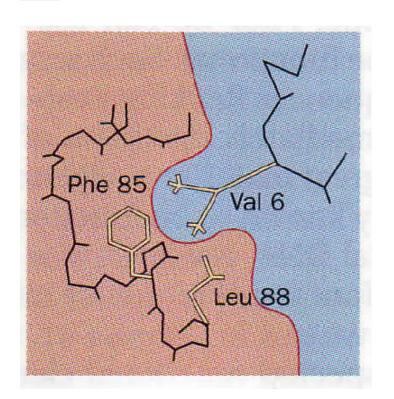
1. The stop-gain variant in *GNAS* (MIM:139320) is present in the highly variable **first exon** of the gene and is likely to result in nonsense-mediated RNA decay; in contrast, pathogenic *GNAS* variants that cause Albright hereditary osteodystrophy (MIM:103580) are located in **later**, highly constrained exons.


2. Similarly, the stop-gain variant in *TGIF1* (MIM:602630) is located in the **first exon**, where multiple PTVs in gnomAD are also located, but *TGIF1* pathogenic variants causing holoprosencephaly are located in the **final exons**, where they affect DNA binding affinity.

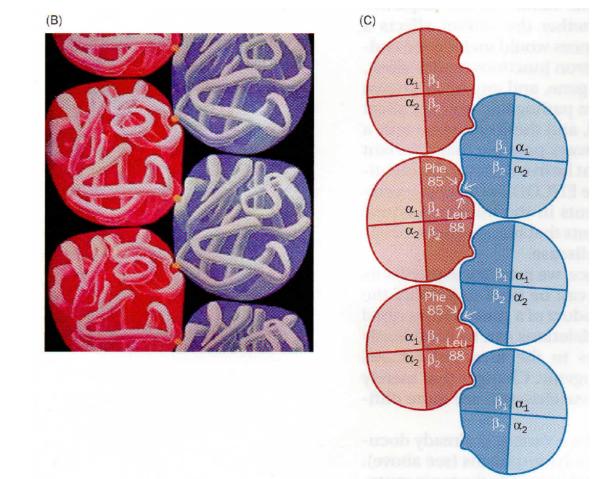

3. Finally, a frameshift deletion in *HIST1H1E* (MIM:142220) is located near **the start** of the single exon of this gene; however, pathogenic *HIST1H1E* frameshift deletions that cause child overgrowth and intellectual disability are located near **the end** of the exon, where they result in a truncated histone protein with lower net charge that is less effective at binding DNA.

We believe that these three rare PTVs are benign because of their locations, despite the fact that they occur in genes that cause dominant DD via haploinsufficiency. Wright (2019) Am J Hum Genet

# Missense variant, classic example


Figure 6-19 A single nucleotide change causes the disease sickle**cell anemia.** (A)  $\beta$ -globin is one of the two types of subunit that form hemoglobin (see Figure 4–20). A single nucleotide change (mutation) in the  $\beta$ -globin gene produces a  $\beta$ -globin subunit that differs from normal  $\beta$ -globin only by a change from glutamic acid to valine at the sixth amino acid position. (Only a small portion of the gene is shown here; the  $\beta$ -globin subunit contains a total of 146 amino acids.) Humans carry two copies of each gene (one inherited from each parent); a sickle-cell mutation in one of the two  $\beta$ -globin genes generally causes no harm to the individual, as it is compensated for by the normal gene. However, an individual who inherits two copies of the mutant  $\beta$ -globin gene displays the symptoms of sickle-cell anemia. Normal red blood cells are shown in (B), and those from an individual suffering from sickle-cell anemia in (C). Although sickle-cell anemia can be a life-threatening disease, the mutation responsible can also be beneficial. People with the disease, or those who carry one normal gene and one sickle-cell gene, are more resistant to malaria than unaffected individuals, because the parasite that causes malaria grows poorly in red blood cells that contain the sickle-cell form of hemoglobin.






HBB.Glu7Val Sickle cell anemia [MIM:603903]: Characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood 72 supply to nearby tissues // www.genecards.org Alberts - Essential Cell Biology

# Missense variant, classic example



73



The sickle cell mutation. An A>T mutation in the  $\beta$ -globin *(HBB)* gene causes an amino acid change in the  $\beta$ -globin protein. The mutation replaces glutamic acid, a hydrophilic charged amino acid, with valine, a hydrophobic nonpolar amino acid. This change on the surface of the globin protein allows adhesive interactions between hemoglobin molecules.

Strachan, Read – Human Molecular Genetics

s held in the PDB are shown here at a magnification of about ented as a small sphere. The enormous range of molecular sizes is ie (H2O) with only three atoms (shown at the left) to the ribosomal toms.

 Succinate Dehydrogenase (Complex II) Inek
 Al NADH-Quinone Oxidoreductase (Complex I) 3m9s, 3rko
 ATP Synthase 1e79, 1c17, 112p, 2a7u
 Myoglobin 1mbd

(Complex III) 1bgy

Storage: containing nutrients

for future consumption 38. Ferritin Thrs

37. Hemoglobin 4hhb

Enzymes: cutting and joining the molecules of life

 Fatty Acid Synthase 2uvb, 2uvc
 RubisCo: Ribulose Bisphosphate Carboxylase/Oxygenase 1rcx
 Green Huorescent Protein 1gll
 Lucoferase 2d1s
 Glutamine Synthetase 2gls
 Acholo Dehydrogenase 2ohx
 Dihydrofolate Reductase 1dhf
 Nitrogenase 1n2c
 Leucine Aminopeptidase 1lap
 Beta-Lactamase 4blm
 Catalase 1qqw
 Thymidylate Synthase 2tsc
 Thyptophan Synthase 1tsc
 Aspatate Carbamoyfranderase 4at1 te molecules of life 53. Heokinase 1dgk 55 54. Phosphoflucose komerase 1hox 55. Phosphofluctokinase 4ptk 56. Aldolase 4ad 57. Triosephosphate komerase 2ypi

2ypi 57

58. Clyceraldehyde-3-phosphate Dehydrogenase 3gpd 59. Phosphoglycerate Kinase 3pgk 60. Phospoglycerate Mutase 3pgm

61. Enolase Senil 62. Pyruvate Kinase 1a3w

3 3 0 0



**BRAF** inhibitors

**MEK** inhibitors

ERK

GDP

RAS/GTP

BRAF

MEK

mTOR inhibitor

GRR7

79. Preiokan Tox 79. Chaperonin GroEL/ES Iaon 80. Proline ciş/tarıs Isomerase 2**cpi** 81. Heat Shock Protein Hsp90 2**cg**9 82. Proteasome 4b4t 83. Ubiquitin Tubq

RTK antibody

PIP3

**RAF** inhibitors

aroa

AKT

NFkB

GSK38

Vogelstein (2013) Science

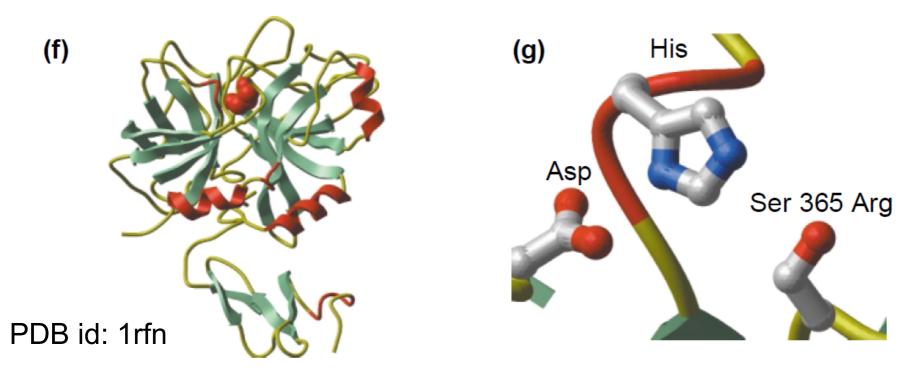
Protein Data Bank rcsb.org

RAF1

mTOR

TSC2

inhibitors


PTEN

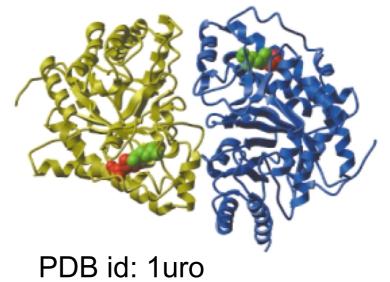
PDK1

FKHR

MDM2

BAD




**Factor IX** *F9* is a serine protease with Ser-His-Asp catalytic triade that participates in the intrinsic pathway of blood coagulation by converting factor X to its active form Xa. Disease mutations in *F9* are associated with the X-linked recessive bleeding disorder haemophilia B (OMIM:306900). **Disruption of catalytic residues**. Mutations of the catalytic serine residue to an arginine results in the loss of enzyme activity and a severe haemophilia phenotype.

**Introduction of buried charged residues**:

Met165Arg  $\Rightarrow$  arginine sidechain cannot be accommodated in a hydrophobic pocket  $\Rightarrow$  no soluble protein.

#### Size changes in the hydrophobic core:

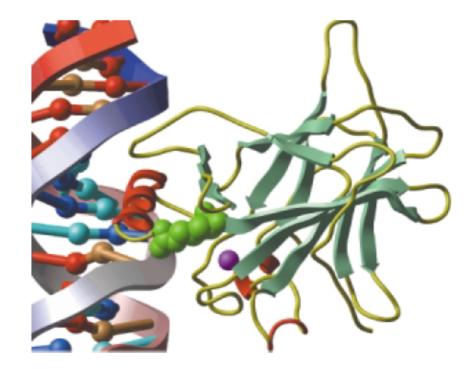
Leu195Phe  $\Rightarrow$  rearrangement of surrounding side-chains  $\Rightarrow$  30% of the wild-type activity.



Mutations in the uroporphyrinogen decarboxylase *UROD* are associated with Porphyria cutanea tarda (OMIM:176100), accumulation of uroporphyrins in the liver and plasma, leading to skin fragility and photosensitive dermatitis.

#### **Disruption of protein-protein interactions:**

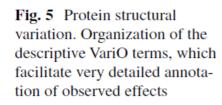
Tyr98His destroys binding between HIF and VHL  $\Rightarrow$  HIF not degraded  $\Rightarrow$  over-expression of angiogenic growth factors  $\Rightarrow$  local proliferation of blood vessels.




Von Hippel-Lindau syndrome (OMIM:193300) is an inherited predisposition to a variety of cancers. Von Hippel-Lindau disease tumor suppressor *VHL* codes for a protein with two structural domains. The  $\beta$ -domain of VHL binds to hypoxia-inducible transcription factor HIF, ultimately leading to HIF degradation.

Steward (2003) Trends Genet

#### **Disruption of DNA binding**


Arg273 contacts the DNA phosphate backbone with its charged sidechain. Arg273His is associated with low p53 DNA-binding and Li-Fraumeni syndrome.



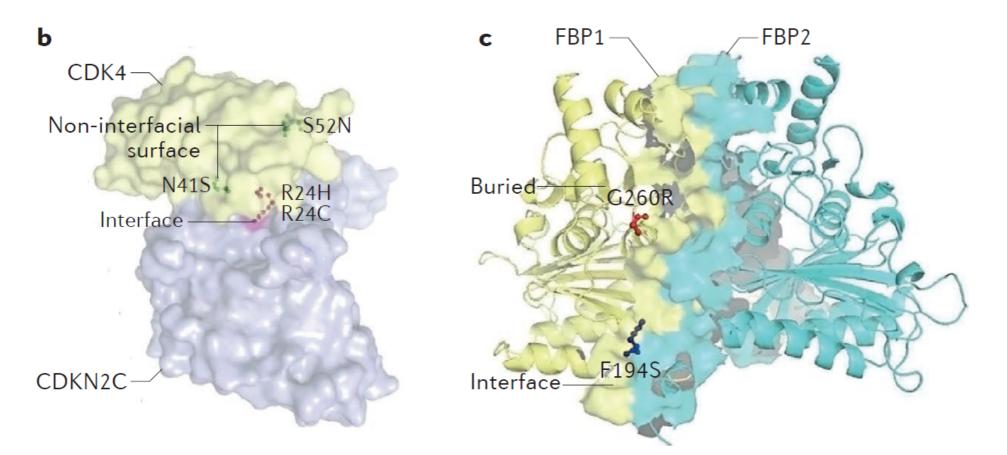
PDB id: 1tsr

Li-Fraumeni syndrome (OMIM 191170), a predisposition to a broad spectrum of cancers at an early age. Cellular tumor antigen p53 (*TP53*) is a tumor suppressor in many tumor types, induces growth arrest or apoptosis. Three functional domains: an N-terminal transcription factor domain, a DNA-binding core domain, and a Cterminal homooligomerization domain. Steward (2003) *Trends Genet* 





VariO: Variant effect on protein...

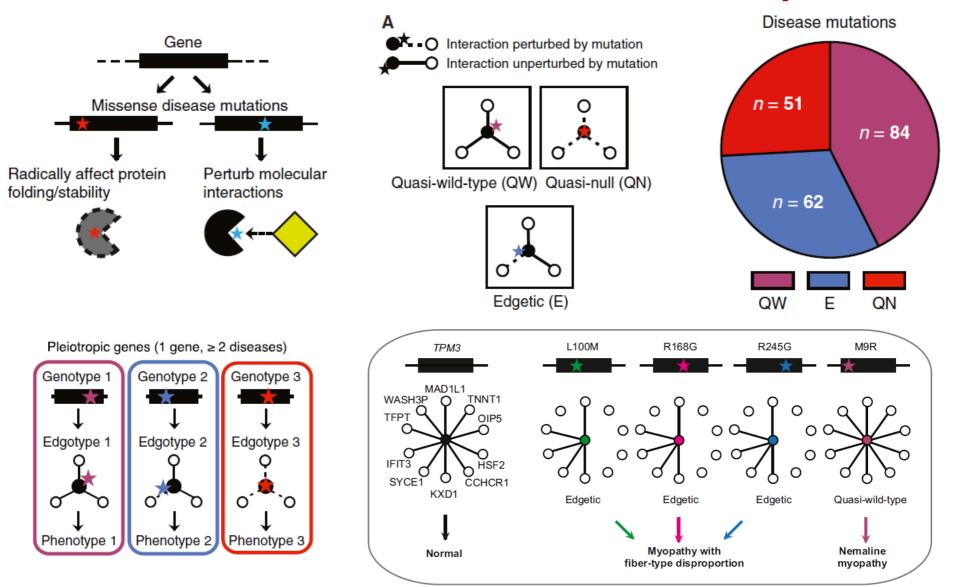

- Dynamics
- Quaternary structure
- Amino acid size
- Folding rate
- Interactions
- Post-translational modification
- Secondary structural element
- Fold
- Epigenetic modification
- Abundance
- Accessibility
- Activity
- Charge
- Degradation
- Solubility
- Stability
- Subcellular localization

•...

www.variationontology.org

Vihinen (2015) Human Genet

# Missense disease mutations: stability or PPI?




**b** | Locations of residues affected by mutations are highlighted on the cyclindependent kinase 4 (CDK4) structure based on homology modelling (PDB: 1bi7). CDKN2C, CDK inhibitor 2C. **c** | Locations of residues affected by mutations are highlighted on the fructose bisphosphatase 1 (FBP1) structure (PDB: 1fpi).

# Missense disease mutations: stability or PPI?

| Table 1   Human diseases caused by defects in protein folding, stability and aggregation |                                                                     |                                                                                                                                                                     |            |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Disease                                                                                  | Protein affected                                                    | Description                                                                                                                                                         | References |  |  |  |
| Cystic fibrosis                                                                          | Cystic fibrosis<br>transmembrane<br>conductance regulator<br>(CFTR) | The $\Delta$ Phe508 mutant has wild-type activity, but impaired folding in the endoplasmic reticulum leads to degradation.                                          | 97         |  |  |  |
| α1 Antitrypsin<br>deficiency                                                             | α1 Antitrypsin (also<br>known as SERPINA1)                          | 80% of Glu342Lys mutants misfold and are degraded.<br>Pathology is due to aggregation in patients with a<br>reduced degradation rate.                               | 97         |  |  |  |
| SCAD<br>deficiency                                                                       | Short-chain acyl-CoA<br>dehydrogenase (SCAD)                        | Impaired folding of Arg22Trp mutants leads to rapid degradation.                                                                                                    | 98         |  |  |  |
| Alzheimer<br>disease                                                                     | Presenilin, γ-secretase                                             | Mutations cause incorrect cleavage by the $\gamma$ -secretase protease to produce the amyloid $\beta$ -peptide; this aggregates into extracellular amyloid plaques. | 99,100     |  |  |  |
| Parkinson<br>disease                                                                     | α-Synuclein                                                         | Oxidative damage causes misfolding and aggregation.<br>Hereditary forms are linked to deficiency in<br>ubiquitin-mediated degradation.                              | 101        |  |  |  |
| Huntington<br>disease                                                                    | Huntingtin                                                          | CAG expansions in the Huntingtin gene lead to an abundance of polyglutamine fragments that aggregate and associate non-specifically with other cellular proteins.   | 101,102    |  |  |  |
| Sickle cell<br>anaemia                                                                   | Haemoglobin                                                         | The Glu6Val mutation leads to aggregation in red blood cells.                                                                                                       | 103        |  |  |  |

## Missense disease mutations: stability or PPI?



The effects of missense disease mutations on molecular interactions could range from no apparent detectable change in interactions (**quasi-WT**), to specific loss of some interactions 82 (**edgetic**), to an apparent complete loss of interactions (**quasinull**) Sahni (2015) *Cell* 

#### Applications

- Disease gene discovery
- Clinical sequencing // ~11,000 nsSNVs per individual, including rare
- Evolutionary, population genetics
- Protein design

Missense effect is diverse; experiment is not feasible. **What experiment?** *In vivo:* 

- Clinical impact // rare, context-dependent, inheritance mode
- Model organisms // applicability?

In vitro:

• Functional assay // applicability?

#### *In silico:* Damaging | Tolerated, Benign

- Data sources and features
- Prediction methods
- Evaluation

#### **Data sources**

• Papers, Protein Mutant Database

• Papers, MAVEdb

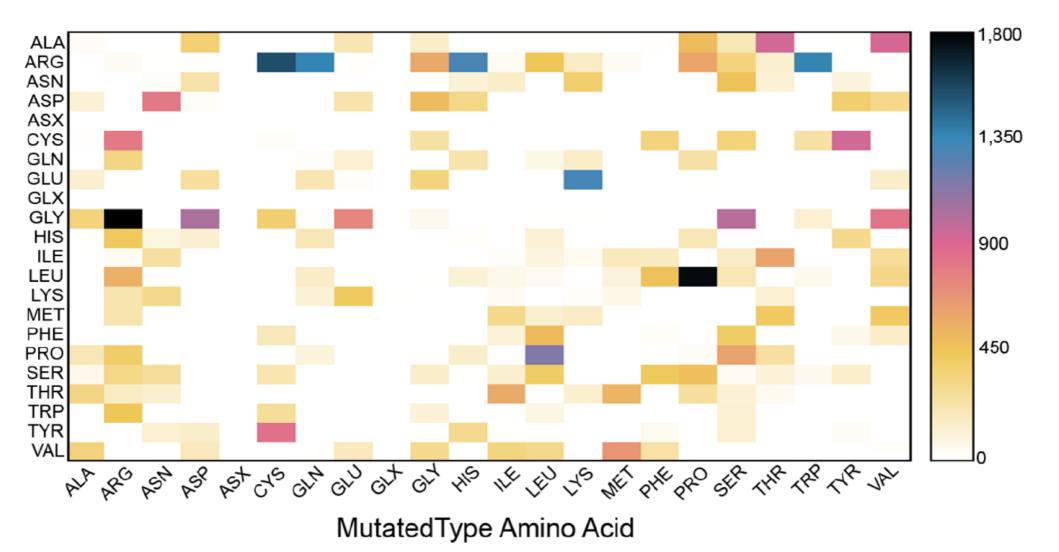
• dbSNP, ExAC/gnomAD, other species

• NCBI nr, UniPto UCSC MultiZ

#### **Features**

#### 1. Substitution

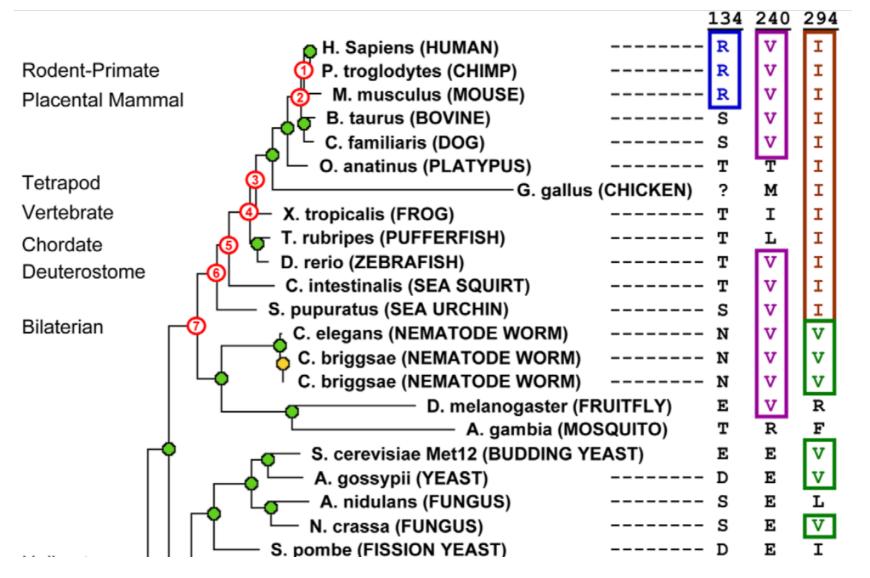
- Conservative / radical (BLOSUM, Grantham score)
- Volume, hydrophobicity change


#### 2. Site

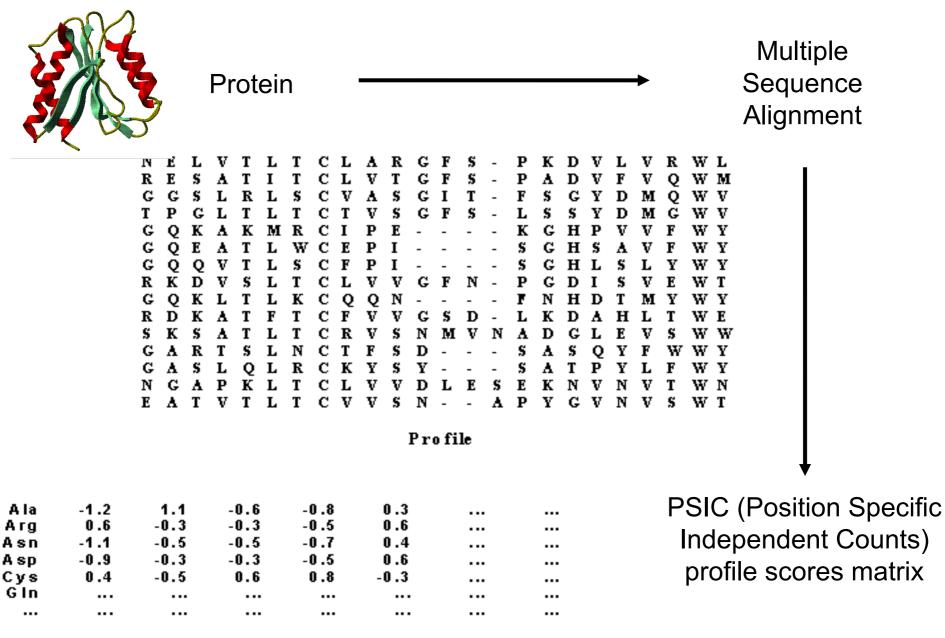
- Conservation
- Location: core / surface (Relative Surface Area)
- Contacts: protein, ligand, DNA/RNA
- Secondary structure, disorder
- B-factor

#### 3. Protein

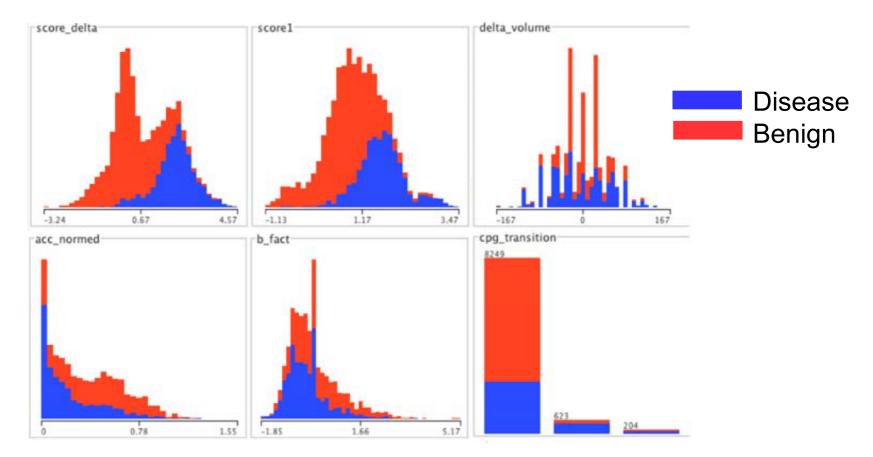
- Number of interactions
- Number of PubMed references


#### Missense variants in human disease



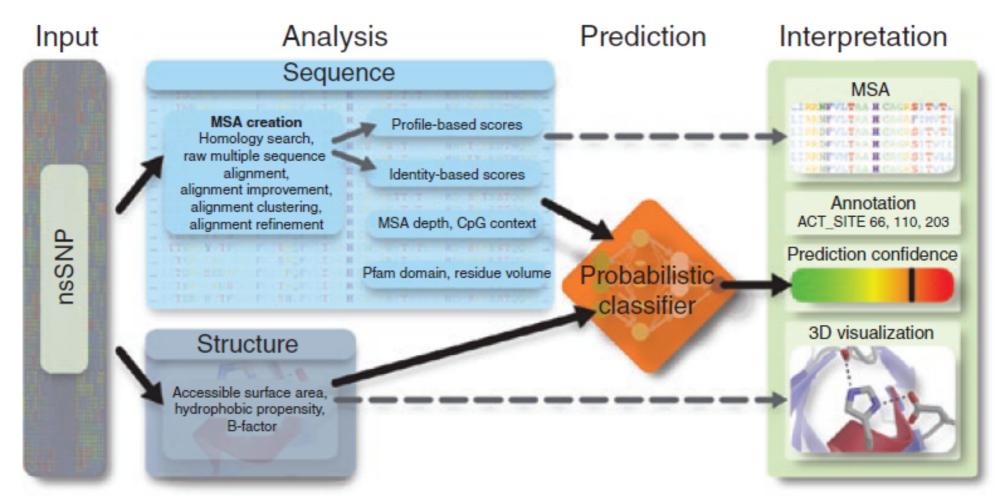

*Exercise:* list top 10 most frequent disease-causing missense variants

Peterson (2013) J Mol Biol


#### **Multiple Sequence Alignment: evolutionary record**



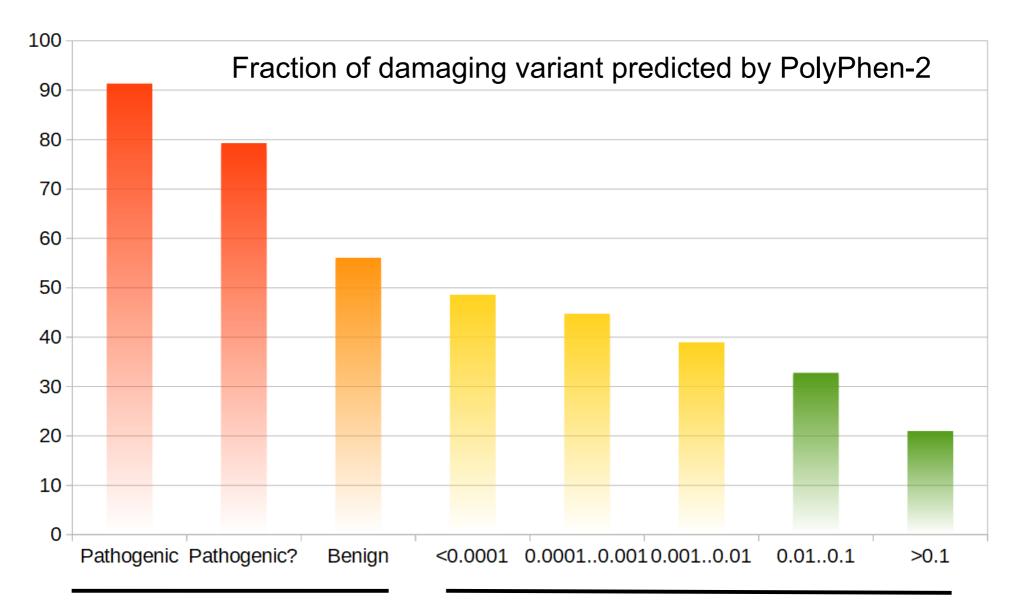
Marini (2010) PLOS Genet




Sunyaev (1999) Protein Eng

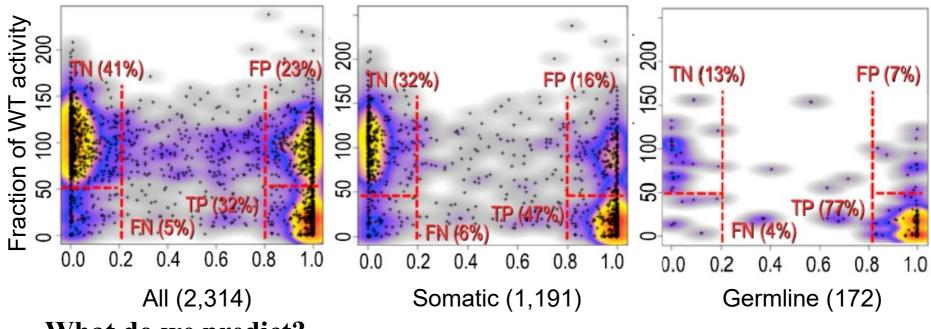


#### **Examples of predictive features used by PolyPhen-2**


score\_delta:PSIC(AA1)-PSIC(AA2)score1:PSIC(AA1)delta\_volume:change in side chain volumecpg\_transition:CpG context (0:no, 1: removes CpG, 2:creates)acc\_normed\*:normalized accessible surface area // if 3D structure availableb\_fact\*:average temperature factorAdzhubei (2010) Nat Methods



#### **PolyPhen-2 prediction pipeline**


Training set (HumDiv): 3,155 disease mutations, 6,321 human-ortholog substPerformance:FPR=10%, TPR=77%; FPR=20%, TPR=92%

Adzhubei (2010) Nat Methods



ClinVar: disease mutations

ExAC: population variants by AAF



#### What do we predict?

- Experiment: *in vitro* activity of TP53 compared with predictions by PolyPhen-2, threshold: 50% of WT activity
- Low false negative prediction rate, but
- 42% of mutations predicted by PolyPhen2 to be damaging had little measurable consequence for TP53-promoted transcription
- The predictions do not effectively differentiate between mutations that are immediately clinically relevant (ablate or markedly reduce function), and those that are nearly neutral (decrease the function of the corresponding protein by 10%) Miosge (2015) *PNAS*

#### Damaging, deleterious, pathogenic, detrimental

The effect of a missense mutation on an organism is always multifaceted and can be considered from multiple perspectives—**biochemical, medical, and evolutionary**. The relationship between the effects of amino acid substitution on protein activity, human health, and an individual's evolutionary fitness is not trivial.

A mutation that damages protein structure does not necessarily lead to a detectable human-disease phenotype, and a mutation that predisposes an individual toward a disease is not necessarily evolutionarily deleterious. <...> Substitutions leading to abnormal hemoglobin function that cause sickle-cell anemia are apparently negative from both biochemical and medical points of view. Nevertheless, they cannot be considered negative from an evolutionary point of view, because balancing selection has brought them to high frequency in many parts of the world as a result of malaria resistance in heterozygotes.

To clearly distinguish different aspects of negative mutations, we use the term **damaging** to refer to a mutation that decreases protein activity, the term **detrimental** to refer to a mutation that predisposes an individual toward a disease, and the term **deleterious** to refer to a mutation that has been subject to purifying selection. Kryukov (2007) Am J Hum Genet



https://genomeinterpretation.org/vipdb

- **Predictions for the whole proteome**: dbNSFP, 84 mln missense and splicing site SNVs
- Ensemble (meta-) predictors: MetaSVM, MetaLR, ReVel, M-CAP, etc
- Neural networks and other ML techniques: PrimateAI, ~380,000 common missense variants from humans and primates, gradient boosting tree classifier
- **Covariation**: EVmutation accounts for epistasis by explicitly modeling interactions between all the pairs of residues
- **Prediction of quantitative effect**: Envision 21,026 variant effect measurements from 9 large-scale experimental mutagenesis datasets
- **Clinical applicability**: M-CAP, 9 tools, 7 conservation scores, 298 features derived from MSA, gradient boosting tree classifier

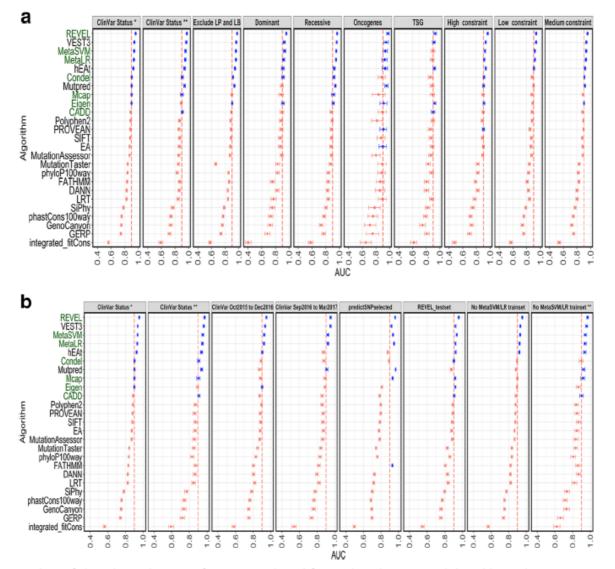
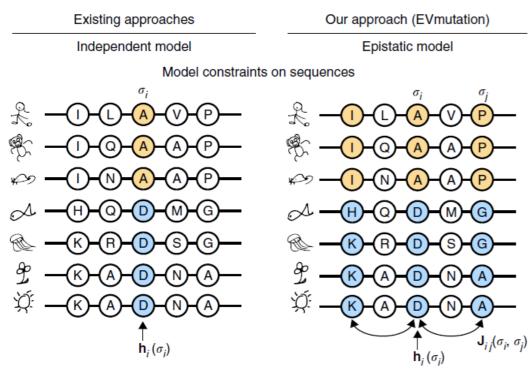
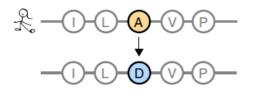
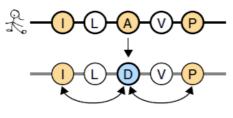
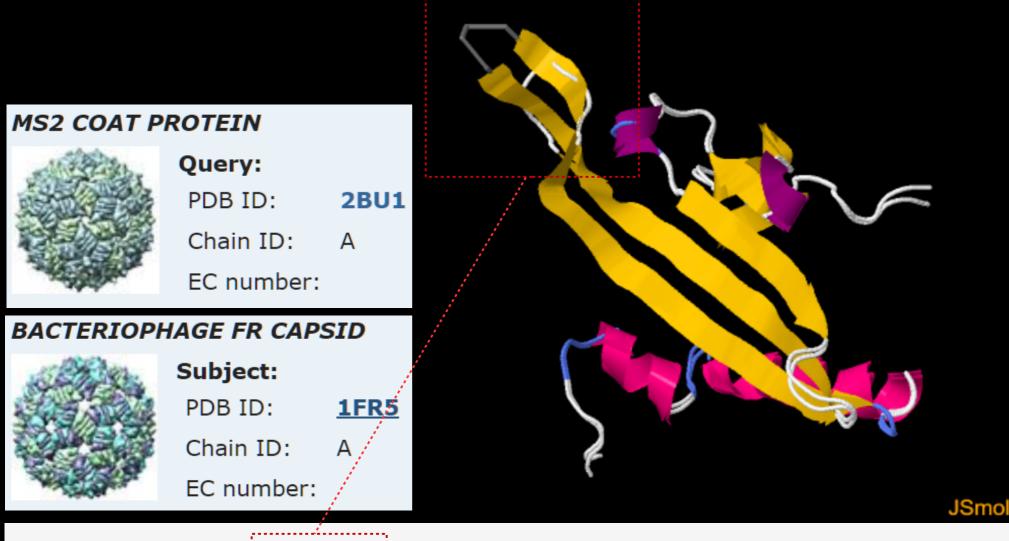





Fig. 3 Performance analysis of algorithms. The AUC of a ROC are plotted for 25 algorithms. *Vertical dotted line* indicates an AUC of 0.9 and 99% confidence intervals for each AUC are shown. *Blue dots* indicate AUC > 0.89. **a** AUCs of the algorithms across different datasets shown in the panels and described in text. **b** AUCs of the algorithms across different datasets (represented in panels) to address type I circularity as described in text. The same plots for ClinVar Status \* and ClinVar Status \*\* as in Fig. 3a are used in 3b for comparison. Any instance of \*\* represents variants with ClinVar review status of two stars or above. Ensemble predictors are indicated by *dark green labels* on the *y-axis* 


#### Ghosh (2017) Genome Biol



Predict effects of mutations




 $X \stackrel{A \to D \text{ wrongly predicted neutral}}{\text{ignoring sequence context}}$ 



✓ A → D correctly predicted damaging needs couplings to other sites Inferring context-dependent effects of mutations from sequences. Evolution has generated diverse families of proteins and RNAs with varied sequences that perform a common function. An unsupervised probabilistic model trained to generate the natural diversity in a multiple sequence alignment of a family can be used to predict the relative favorability of unseen mutations. Existing models describe functional constraints on each position *i* in a sequence  $\sigma$  independently, averaging over the effect of background positions *j*. This can lead to incorrect predictions of neutrality. Our approach infers a global probability model with pairwise interactions between positions *i* and *j* ( $J_{ii}$ ) as well as background biases at single positions  $(h_i)$ .

Hopf (2017) Nat Biotech



|                               | Insertions,<br>duplications | Deletions |
|-------------------------------|-----------------------------|-----------|
| ClinVar, 21 Oct 2019 (hg38)   |                             |           |
| Pathogenic, Likely pathogenic | 303                         | 1,193     |
| Benign, Likely benign         | 306                         | 483       |
| Other                         | 1,291                       | 3,566     |
| GnomAD 2.1.1 (hg38)           |                             |           |
| AF_POPMAX<1%                  | 30,489                      | 79,023    |
| AF_POPMAX≥1%                  | 742                         | 1,517     |
| Unknown                       | 7,389                       | 10,640    |
| Individual exome (GiaB)       | 228                         | 275       |

Q: what is the most "famous" disease-causing inframe indel?

| Gene                                                                    | ClinVar                                     | gnomAD                          |
|-------------------------------------------------------------------------|---------------------------------------------|---------------------------------|
| <i>KCNH2</i><br>Potassium Voltage-Gated Channel<br>Subfamily H Member 2 | Pathogenic (4)<br>Unknown (8)               | Rare (11)                       |
| <b>PHOX2B</b><br>Paired Like Homeobox 2B                                | Benign (7)<br>Pathogenic (4)<br>Unknown (2) | Common (2)<br>Rare/Unknown (14) |
| <b>CACNA1A</b><br>Calcium Voltage-Gated Channel<br>Subunit Alpha1 A     | Benign (5)<br>Pathogenic (2)                | Common (4)<br>Rare/Unknown (42) |
| <b>FOXC1</b><br>Forkhead Box C1                                         | Benign (5)<br>Pathogenic (3)<br>Unknown (4) | Common (2)<br>Rare/Unknown (49) |

| Method        | Genome<br>version | Coordinates | Implemen<br>-tation | Publi-<br>cation | Last<br>update |
|---------------|-------------------|-------------|---------------------|------------------|----------------|
| VEST-Indel    | 37, 38            | Genome      | Web /<br>Local      | 2016             | 2019           |
| CADD          | 37, 38            | Genome      | Web /<br>Local      | 2013             | 2019           |
| SIFT Indel    | 37, 38            | Genome      | Web /<br>Local      | 2013             | 2016           |
| MutPred-Indel | 37 ?              | Protein     | Web /<br>Local      | 2019             | -              |
| DDIG-in       | 37                | Genome      | Web                 | 2013             | 2017           |
| PROVEAN       | 37                | Genome      | Web /<br>Local      | 2012             | 2015           |

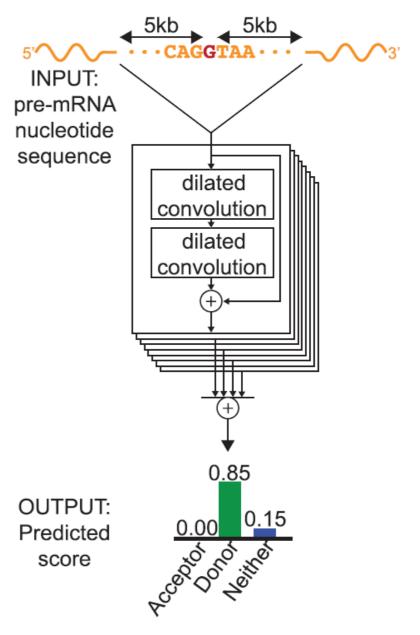
| Method            | ML                | Best features                                                                                                                               |
|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| VEST-Indel        | Random<br>forest  | Log10 of count of publications in PubMed where gene<br>name is mentioned, Exon Conservation, protein<br>local regional sequence composition |
| CADD              | SVM               | cDNApos, ProtPos, PolyPhenVal, SIFTVal, Relative position in coding sequence                                                                |
| SIFT Indel        | Decision<br>tree  | Repeat, DNA Conservation score, Protein disorder<br>region, Fraction of all Pfam domains affected due to<br>indel                           |
| MutPred-<br>Indel | Neural<br>Network | PSSM*, sequence conservation indices, number of<br>homologs in the human and mouse genomes, relative<br>position in protein                 |
| DDIG-in           | SVM               | Disorder, ASA*, DNA Conservation,<br>Neff*, Probabylity of sheet                                                                            |
|                   | -                 | PROVEAN score<br>scoring matrix, ASA - solvent accessible surface area, Neff                                                                |

103 - number of effective homologous sequences aligned to residues

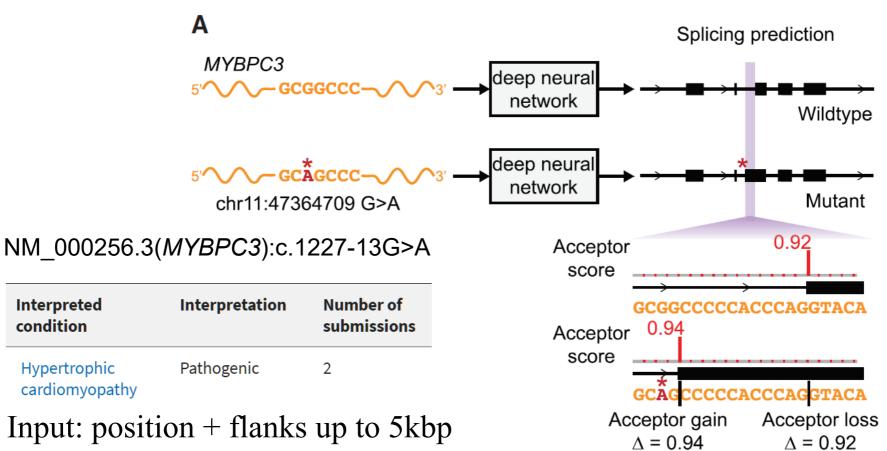
#### Meta-Predictors that Combine Classifications of Multiple Methods

In these Boolean expressions, each method is represented by a variable  $X_i$ , which is set to TRUE when the method classifies an example as pathogenic and FALSE when the method classifies an example as benign. For combinations of two methods, candidate metapredictors were  $(X_1 \text{ and } X_2)$  and  $(X_1 \text{ or } X_2)$ . For combinations of three methods, candidate meta-predictors  $(X_1 \text{ and } X_2 \text{ and } X_3)$ ,  $(X_1 \text{ or } X_2 \text{ or } X_3), (X_1 \text{ or } X_2 \text{ or } X_3), ((X_1 \text{ and } X_2) \text{ or } X_3), ((X_1 \text{ or } X_2) \text{ and } X_2), ((X_1 \text{ or } X_3) \text{ and } X_2), ((X_2 \text{ and } X_3) \text{ or } X_1), ((X_2 \text{ or } X_3) \text{ and } X_1)$ . For combinations of four methods, there are 64 possible combinations (Supp. Table S4). We used a brute-force approach and limited the number of methods in the meta-predictor to a maximum of four to avoid a combinatorial explosion. All possible four-way combinations of the five methods were explored.

| Sensitivity | Specificity                                                          | Balanced Accuracy                                                                                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.930       | 0.974                                                                | 0.952                                                                                                                                                                                                                                                                                                           |
| 0.947       | 0.955                                                                | 0.951                                                                                                                                                                                                                                                                                                           |
| 0.947       | 0.949                                                                | 0.948                                                                                                                                                                                                                                                                                                           |
| 0.930       | 0.955                                                                | 0.942                                                                                                                                                                                                                                                                                                           |
| 0.930       | 0.949                                                                | 0.939                                                                                                                                                                                                                                                                                                           |
| 0.930       | 0.949                                                                | 0.939                                                                                                                                                                                                                                                                                                           |
| 0.947       | 0.929                                                                | 0.938                                                                                                                                                                                                                                                                                                           |
| 0.930       | 0.942                                                                | 0.936                                                                                                                                                                                                                                                                                                           |
|             | 0.930<br>0.947<br>0.947<br>0.930<br>0.930<br>0.930<br>0.930<br>0.947 | 0.930       0.974         0.947       0.955         0.947       0.949         0.930       0.955         0.930       0.955         0.930       0.949         0.930       0.949         0.930       0.949         0.930       0.949         0.930       0.949         0.930       0.949         0.930       0.949 |

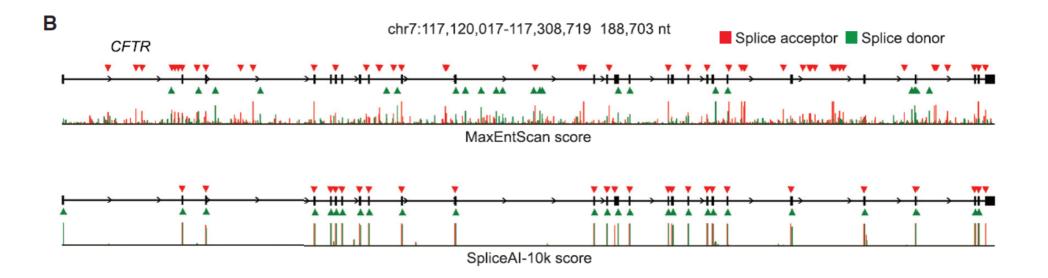

#### Douville (2016) Hum Mutation

|                         | 410         | 420       | 430          | 44   | 0 450          | 460                              | 470        | 48             |
|-------------------------|-------------|-----------|--------------|------|----------------|----------------------------------|------------|----------------|
| NP 000229               | -GRAKTFRLKI | .PA-LLALI | ARESSVRSGGA  | GAG  | APGAVVVDVDLTP. | A-APSSESLA                       | LDEV       | /T             |
| XP 0140459              | -KRRNRFRLPS | SIL-VRPLS | RSKQSLENDTE  | LGHÇ | -RDLL          | ALGHESVALKK                      | LLSLPERQR- |                |
|                         |             |           |              |      | EFDGVAIDYG     |                                  | 30.07      |                |
|                         |             |           |              |      | DPDAVMVDSPRH-  |                                  |            |                |
| <i>XP 0148101</i> NLSSG |             |           | 920 920      |      |                |                                  |            | 980            |
| XP 0032662              | NRKFFGFKF   | PG-LRVLI  | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0083230              | -RKGKFFRFRF | PS-LPLPG  | JINKQSLPQ    | E    | DPDAVMVDSPRH-  | SDGSAA                           | THDY       | 'QLPA'         |
| XP 0140072              | -RKGRLFCFRI | PA-LHLLO  | JSKQSLPQ     | Ç    | DPDAVMIDSPRR-  | SEESVA                           | TRDE       | 'QSLP'         |
| XP 0127794              | -GRPRGFKLRI | LPL-LRSLS | NSKASLDD-AEA | AGHI | -PTATPVSLHP    | EDHRSPESLGLGE                    | FLPLPPLPP- |                |
| XP 0213842              | RRLFGFRI    | LPG-LRLLI | YRKQSLPQ     | E    | DPDAVIIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0206682              | NRRLFGFKI   | PR-MSLLE  | YRKQSLPQ     | E    | DPDAVIVDSSKH-  | SDDSMA                           | MKHE       | KSP-           |
| XP 0048359              | NRKLFGFKF   | PG-LRVLS  | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0160019              | NRKLFGFKF   | PG-LRVLI  | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0079633              | NRKFFGFKF   | PG-LRVLI  | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0146844              |             |           |              |      |                |                                  |            |                |
| XP 0126918              | REFFRFRI    | PS-LNLLO  | SSKQSLPQ     | E    | DPDTVMIDSPKE-  | SNDSVA                           | MRDE       | 'R-SP          |
| XP 0126714              |             |           |              |      |                |                                  |            |                |
| XP 0013669              | NRKLFGFKI   | LPG-LRLLI | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0153491              | -GRAKTFRLKI | PA-LLALI  | TRESAGRPGSA  | SAG  | APGAVVVDVDLTP. | A-APSSESLA                       | LDEV       | /S             |
| XP 0126416              | -GRAKTFRLKI | PA-LLALI  | ARESSVREGGA  | GAG  | TPGAVVVDVDLTP. | A-APSSQSLA                       | LDEV       | /T             |
| XP 0193133              | NRKLFGFKF   | PG-LRVLI  | YRKQSLPQ     | E    | DPDVVVIDSSKH-  | SDDSVA                           | MKHE       | 'KSP-'         |
| XP 0141959              | -WKGRFFRFRI | LPA-LPLLG | JSKQSLPQ     | E    | DPDAVMVDSPRY-  | SDGSVA                           | TRDY       | 'QLPT'         |
|                         |             |           |              |      | APGAVVVDVDLTP. |                                  |            |                |
| XP 0057472              | -GRPRGFKLRI | PL-LRSLS  | NSKASLDD-AEA | AGHI | -PTATPVSLHP    | EDHRSPESLGLGE                    | FLPLPPLPP- | an na na na na |
| XP 0204954              |             |           |              |      |                |                                  |            |                |
|                         |             |           |              |      |                |                                  |            |                |
| nservation              |             |           |              |      |                |                                  |            |                |
|                         | 03010111    | 20-20010  | 01203200     | 0    | -002311100     | 100120                           | 1001       | .1             |
| Consensus               |             |           | SIPe         | Ē    | PD V Dese      | S <sub>FE</sub> S <sub>V</sub> A |            |                |
|                         | SGRRRLFGFRI | PGSLRLLI  | YRKQSLPQGGE  | G+E  | DPDAVVVDSSKHP. | APAPSDDSVALGE                    | FLPLPPMKHE | KSPP           |
|                         |             |           |              |      |                |                                  |            |                |
| Occupancy               |             |           | and a second |      |                |                                  |            |                |


**Essential splice variants** disrupt canonical splice sites (GT, AG) **Cryptic splice variants**: noncoding (intronic, synonymous) variants *outside* the canonical splice sites that disrupt the normal pattern of mRNA splicing

*SpliceAI*: a 32-layer deep neural network that accurately predicts splice junctions from an arbitrary pre-mRNA transcript sequence

Training set: pre-mRNA transcripts; algorithm learns the context of actual splicing sites




Jaganathan (2019) Cell



Output: P(acceptor), P(donor), P(neither)

SpliceAI-10k predicts acceptor and donor scores at each position in the premRNA sequence of the gene with and without the mutation, as shown here for rs397515893, a pathogenic cryptic splice variant in the MYBPC3 intron associated with cardiomyopathy. The D score value for the mutation is the largest change in splice prediction scores within 50 nt from the variant.



The full pre-mRNA transcript for the *CFTR* gene scored using MaxEntScan (top) and SpliceAI-10k (bottom) is shown, along with predicted acceptor (red arrows) and donor (green arrows) sites and the actual positions of the exons (black boxes). For each method, we applied the threshold that made the number of predicted sites equal to the total number of actual sites.



(A) Predicted cryptic splice de novo mutations per person for patients from the Deciphering Developmental Disorders cohort (DDD), individuals with autism spectrum disorders (ASDs) from the Simons Simplex Collection and the Autism Sequencing Consortium, as well as healthy controls.

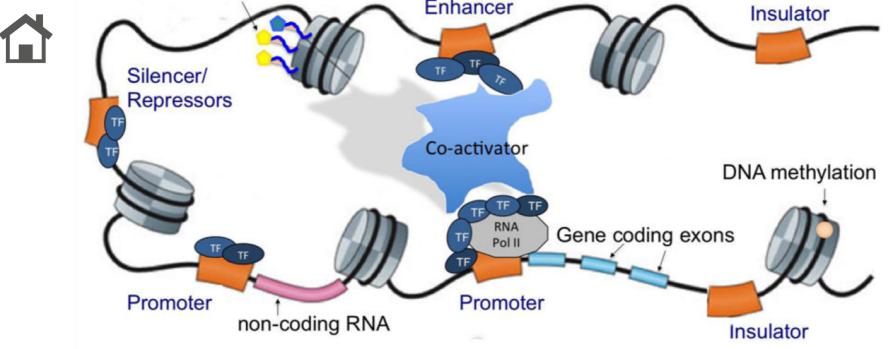
(B) Estimated proportion of pathogenic de novo mutations by functional category for the DDD and ASD cohorts, based on comparison to controls.

Cryptic splicing may yield up to 10% of pathogenic variants in neurodevelopmental disorders Jaganathan (2019) Cell

## Regulatory elements in the human genome

**Promoter**: region (100-1000 bp) at the 5' end of genes where transcription factors and RNA polymerase bind to initiate transcription.

- Proximal promoters typically contain a CpG island
- Methylation of CpG islands silences genes

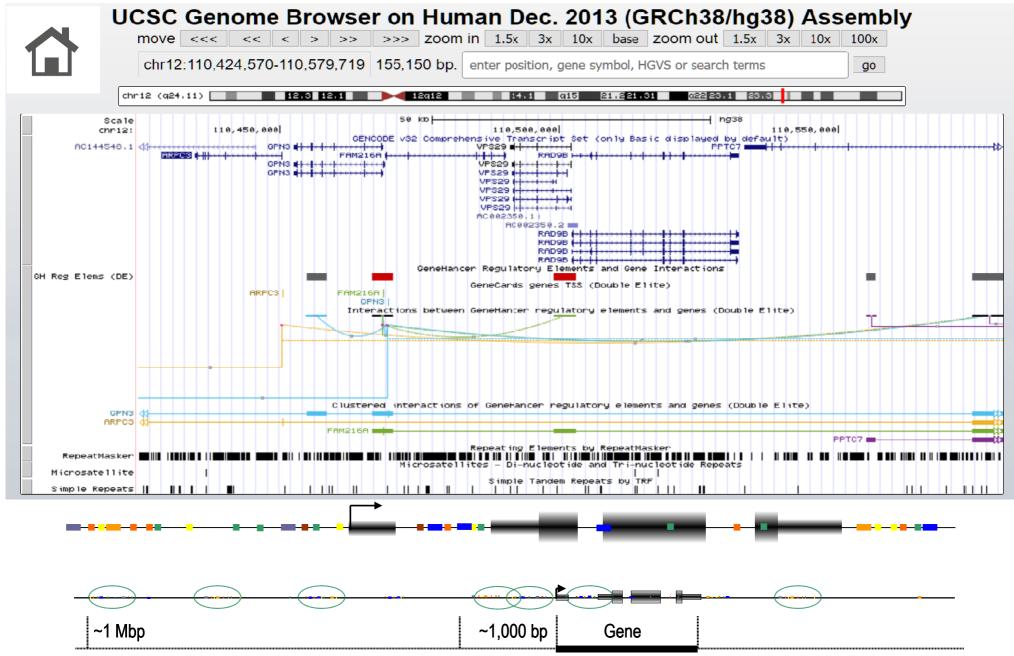

**Enhancer**: region (50-1500 bp) that binds transcription factors and interact with promoters to stimulate transcription of distant genes (<1Mbp)

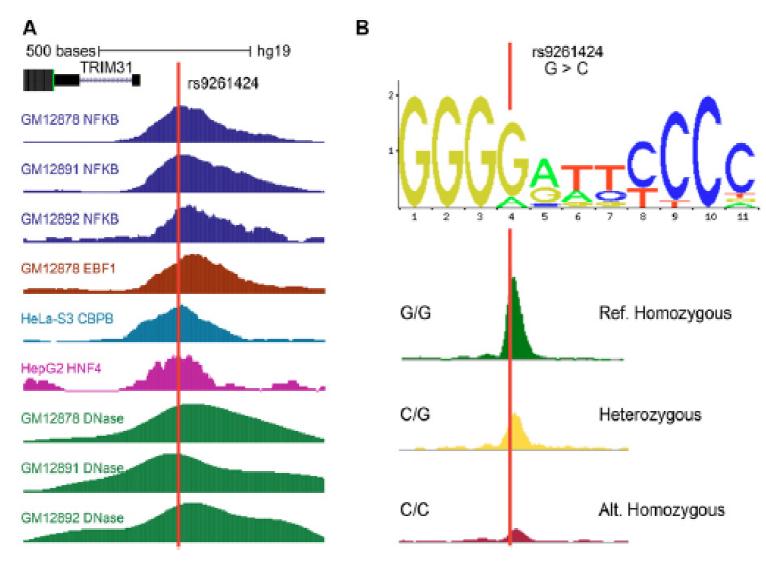
- $\sim 10^5$  in the human genome (Penacchio 2013 *Nat Rev Genet*)
- Tissue-, time- or cell-specific
- Highly variable location (e.g., intron of an other distant gene)

**Transcription factor binding motif/site**: short genomic sequence that is known to bind to a particular transcription factor

- 1000-2000 TFs in the human genome
- 400-800 TFBS models (HOCOMOCO v.11)

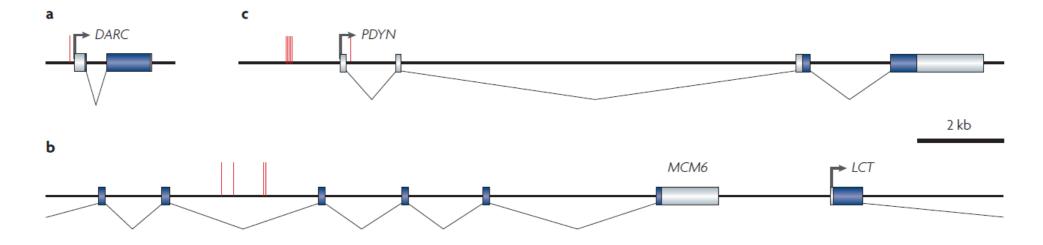
#### Regulatory elements in the human genome Histone modification Enhancer Insulator





<u>Cis-regulatory elements</u>: promoters (100–1000bp) initiate the transcription of a target gene and are located immediately upstream of transcription start sites.

Distal DNA regulatory elements: Enhancers (50–1500bp), silencers, and insulators are DNA regulatory sequences, where transcription factors can bind and regulate expression rates of target genes. A complex of transcription factor and co-activators, mediated by enhancers, induce a conformational change of the chromatin structure, allowing the rapid production of specific genes depending on tissue/ cell-type and development-specific contexts. This lies in contrast to co-repressors, which serve to reduce gene expression by attaching to silencers. Insulators (300-2000bp) establish boundaries of gene expression by mediating loop formation and nucleosome modifications and thus prevent unneeded interactions of both enhancers and silencers with promoters Lee (2018) Hum Genet

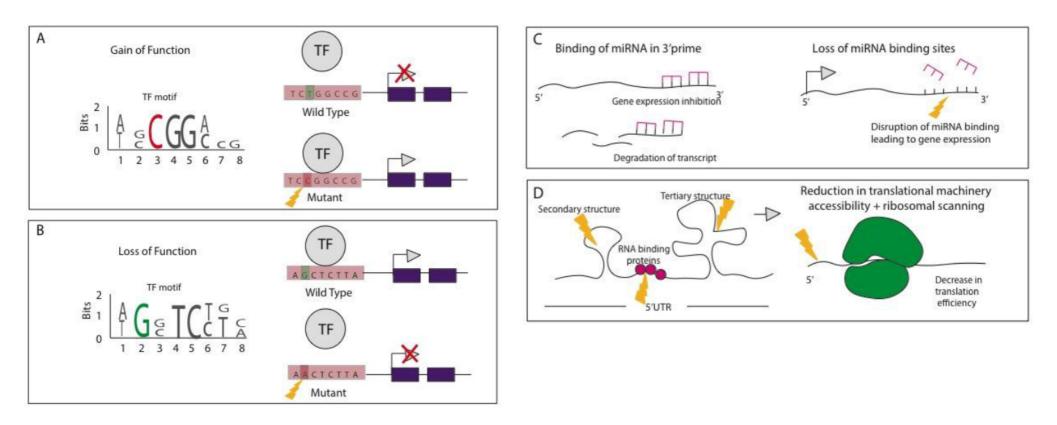
111


## Regulatory elements in the human genome





**Figure 1.** A SNV (rs9261424) overlapping many regulatory features. (*A*) This SNV falls within peak regions for many ChIP-seq factors as well as DNase-seq peaks from multiple cell lines. (*B*) The same SNV overlaps a motif match to the NFKB motif and has been shown to alter binding. The signal tracks represent ChIP-seq peaks of NFKB at the SNV site for three individuals: homozygous to reference allele (*G*), heterozygous, and homozygous to alternate allele (*C*) (Kasowski et al. 2010).


#### Boyle (2012) Genome Res



(a) Atypical chemokine receptor 1 *ACKR1 (DARC)*: mutations disrupt *GATA1* binding site  $\Rightarrow$  no expression in erythrocytes  $\Rightarrow$  no point of entry for the malarial parasite *Plasmodium vivax* 

(b) Lactase *LCT*: mutations in *MCM6* intron elevate *LCT* transcription, allowing digestion of lactose

(c) Prodynorphin *PDYN*: precursor of neuropeptide dynorphin, implicated in SCZ, BP, temporal lobe epilepsy. Human-branch specific mutations (5+1) regulate constitutive and induced expression, respectively



(A) Mutations within promoter (e.g., *TERT*) and enhancer regions (*TAL1*) can create transcription factor (TF) binding motifs in a gain-of-function manner allowing the binding of transcriptional activators (**B**) Alternatively, mutations within regulatory regions can create the loss of transcription factor binding sites, leading to transcriptional repression (**C**) miRNA binding within the 3' UTR control gene expression, by inhibiting translation or marking transcripts for degradation. Mutations that disrupt these binding sites can lead to over-expression (*NFKBIE* and *NOTCH1* genes in cancer) (**D**) Mutations within the 5' UTR can alter the secondary and tertiary structures, as well as trans-acting RNA binding protein sites. These alterations can affect translation efficiency and mRNA stability (*BRCA1* and **PGDKN2A** genes) Patel (2018) *High-Throughput* 

The *NOS1AP* gene on human chromosome 1q has been long known to be associated with variability of **QT interval and cardiac repolarization**, whereas the underlying mechanism was unclear. A recent study utilized high-coverage resequencing and regional association for fine mapping in the GWAS locus for QT interval variation, which identified **210 common non-coding risk variants**. Further enhancer/suppressor analysis of 12 selected variants located in cardiac phenotype associated DNaseI hypersensitivity sites assisted in the identification of an upstream enhancer variant (rs7539120) associated with QT interval. This variant can affect cardiac function by increasing *NOS1AP* transcript expression in cardiomyocyte-intercalated discs and increase risk of cardiac arrhythmias.

Similar evidence for functional enhancer SNPs has also been observed at many other loci, including the intronic enhancer SNPs at the *MEIS1* gene associated with **restless legs syndrome** and at the *BCL11A* gene associated with fetal hemoglobin levels, the intergenic enhancer SNP upstream to the *MYB* gene that is a critical regulator of erythroid development and fetal hemoglobin levels, and the recessive mutations in a distal enhancer located 25 kb downstream of *PTF1A* that is associated with **isolated pancreatic agenesis**.



Zhang (2015) Hum Mol Genet

A recent study on the **schizophrenia**-associated locus at 1p21.3 identified a rare enhancer SNP (chr1:98515539A>T, hg19) with increased risk. The chromatin conformation capture assay showed that this risk allele has no obvious influence on the neighboring genes such as *DPYD*, but can reduce the expression of non-coding genes MIR137/MIR2682.

In some instances, such functional variants are located in either the 5' or 3' untranslated region (UTR) of the disease-associated genes. A recent study identified the association of rs11603334 (a SNP located in the 5' UTR of *ARAP1*) with **fasting proinsulin and type 2 diabetes**. The allele-specific expression assay in human pancreatic islet samples showed that the risk allele of rs11603334 can upregulate gene expression of *ARAP1* by 2-fold, which is also supported by the observation of decreased binding of pancreatic beta cell transcriptional regulators *PAX6* and *PAX4* to the rs11603334 risk allele and its corresponding increased promoter activity.

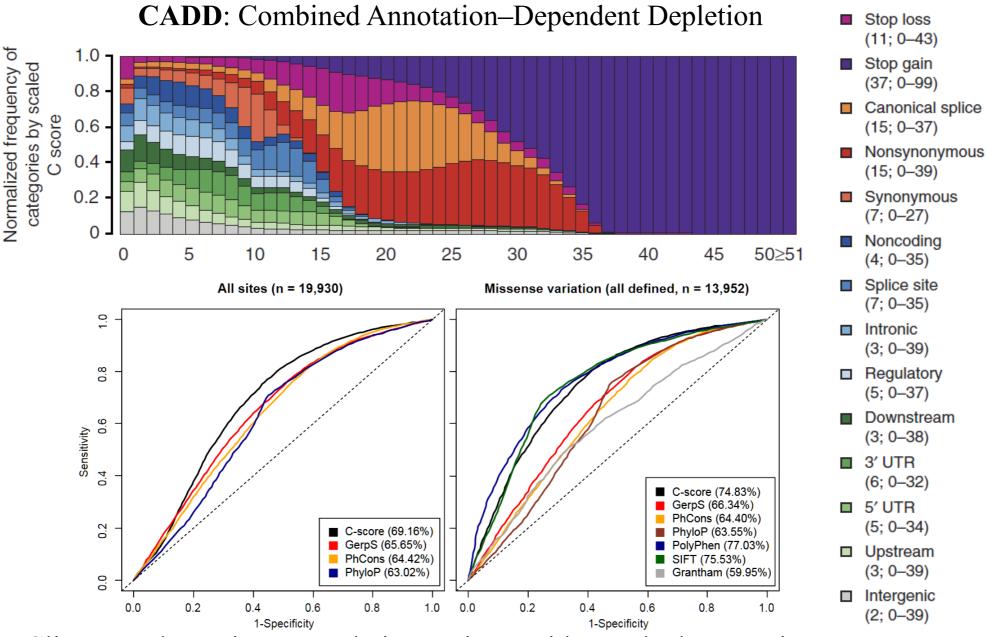
In the case of **hypertriglyceridemia**-associated *APOA5*, the 3' UTR SNP rs2266788 was predicted to create a potential miRNA binding site for liver-expressed miR-485-5p. Luciferase reporter assays in both HEK293T cells with a miR485-5p precursor and in HuH-7 cells with endogenously expressed miR-485-5p suggested that the mutant allele of rs2266788 is involved in the miR-485-5p-mediated downregulation of *APOA5*.



Zhang (2015) *Hum Mol Genet* 

**CADD**: Combined Annotation–Dependent Depletion integrates diverse genome annotations and scores *any possible* human single-nucleotide variant (SNV) or small insertion-deletion (indel) event

«Deleterious variants—that is, variants that reduce organismal fitness—are depleted by natural selection in fixed but not simulated variation»


**Observed variants** (15 mln SNVs, 0.63 mln insertions and 1.1 mln deletions):

- human-chimp differences; SNPs with MAF>5% excluded
- SNPs with DAF (derived allele frequency) > 95% (<5% of total)

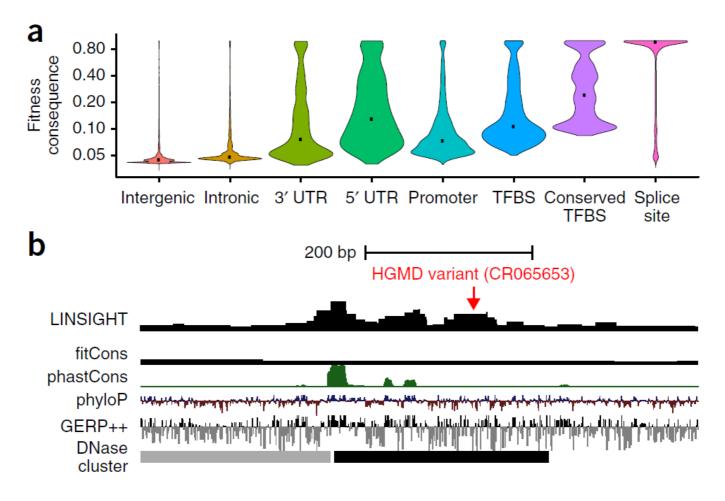
Simulated variants (44 mln SNVs, 2.1 mln insertions and 3.1 mln deletions): – a fully empirical model of sequence evolution with a separate rate for CpG dinucleotides and local adjustment of mutation rates

**Features**: VEP annotation, SIFT, PolyPhen-2, conservation scores, ENCODE methylation and histone modification annotation in various cell/tissue types, TF binding sites, etc.

**Output**: C-scores that measure deleteriousness for 8.6×10<sup>9</sup> variants Kircher (2014) *Nat Genet* 

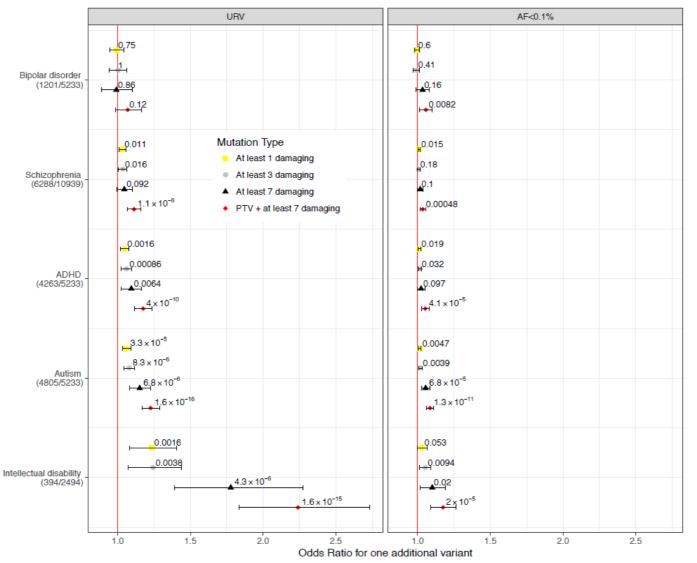


ClinVar pathogenic vs population variants with matched annotation Kircher (2014) Nat Genet


119

| Score    | Data sources                                                                                                                                                                                                                         | Approach                                                                                                                                       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Eigen    | <ul> <li>Uses data from the ENCODE and Roadmap<br/>Epigenomics projects</li> </ul>                                                                                                                                                   | <ul> <li>Weighted linear combination of individual<br/>annotations</li> <li>Unsupervised learning method</li> </ul>                            |
| FunSeq2  | <ul> <li>Inter- and Intra-species conservation</li> <li>Loss- and gain-of-function events for transcription factor binding</li> <li>Enhancer-gene linkage</li> </ul>                                                                 | <ul> <li>Weighted scoring system</li> </ul>                                                                                                    |
| LINSIGHT | <ul> <li>Conservation scores (phastCons, phylopP),<br/>predicted binding sites (TFBS, RNA), regional<br/>annotations (ChIP-seq, RNA-seq)</li> </ul>                                                                                  | <ul> <li>Graphical model</li> <li>Selection parameter fitting using general-<br/>ized linear model based on 48 genomic<br/>features</li> </ul> |
| CADD     | <ul> <li>Ensembl variant effect predictor</li> <li>Protein-level scores: Grantham, SIFT, PolyPhen</li> <li>DNase hypersensitivity, TFBS, transcript<br/>information</li> <li>GC content, CpG content, histone methylation</li> </ul> | • Support vector machine                                                                                                                       |
| FATHMM   | <ul> <li>46-way sequence conservation</li> <li>ChIP-seq, TFBS, DNase-seq</li> <li>FAIRE, footprints, GC content</li> </ul>                                                                                                           | <ul> <li>Hidden Markov models</li> </ul>                                                                                                       |
| ReMM     | <ul> <li>Predict potential of non-coding variant to cause a<br/>Mendelian disease if mutated</li> <li>26 features: PhastCons, PhyloP, CpG, GC, regula-<br/>tion annotations</li> </ul>                                               | <ul> <li>Random forest classifier</li> </ul>                                                                                                   |
| Orion    | <ul> <li>Predict potential of non-coding variant to cause a<br/>Mendelian disease if mutated</li> <li>Independent from annotation and features</li> </ul>                                                                            | • Expected and observed site-frequency spectrum of a given stretch of sequence                                                                 |
| CDTS     | <ul> <li>Identify constrained non-coding regions in the<br/>human genome and deleteriousness of variants</li> <li>Independent from annotation and features. Uses<br/>k-mers</li> </ul>                                               | • Expected and observed site-frequency spectrum of a given heptamer                                                                            |

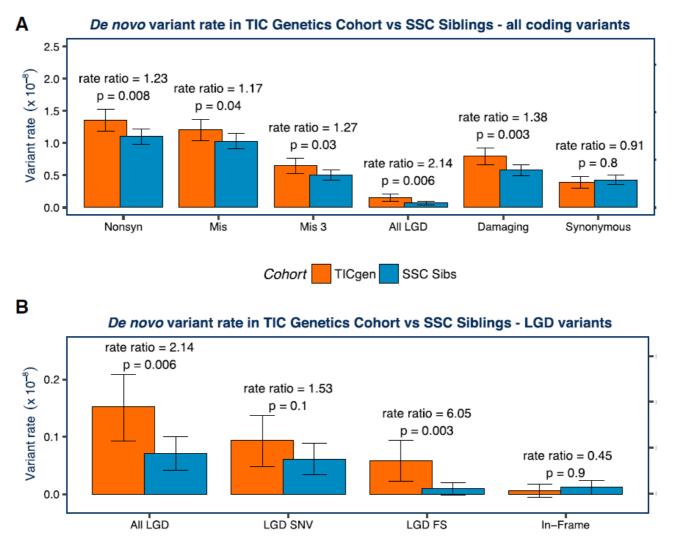
| Class               | Genomic feature <sup>a</sup>          | Spatial resolution |
|---------------------|---------------------------------------|--------------------|
| Conservation        | phyloP score                          | High               |
|                     | phastCons element                     | High               |
|                     | SiPhy element                         | High               |
|                     | CEGA element                          | High               |
| Binding site        | Conserved TFBS                        | High               |
|                     | rVISTA TFBS                           | High               |
|                     | SwissRegulon TFBS                     | High               |
|                     | Predicted TFBS within ChIP-seq peak   | High               |
|                     | Conserved miRNA binding site          | High               |
|                     | Splicing site predicted by SPIDEX     | High               |
| Regional annotation | ChIP-seq peak of transcription factor | Low                |
|                     | DNase-I hypersensitive site           | Low                |
|                     | UCSC FAIRE peak                       | Low                |
|                     | RNA-seq signal                        | Low                |
|                     | Histone modification peak             | Low                |
|                     | FANTOM5 enhancer                      | Low                |
|                     | Predicted distal regulatory module    | Low                |
|                     | Distance to nearest TSS               | Low                |


<sup>a</sup>Each 'genomic feature' listed here may actually correspond to multiple features in the model. For example, four features are derived from phyloP scores: two from the mammalian phyloP scores and two from the vertebrate phyloP scores. See **Supplementary Table 3** for complete details.

LINSIGHT integrates functional genomic data together with conservation scores and other features to provide a high-powered, high-resolution measure of potential function. Huang (2017) *Nat Genet* 



(a) Distributions of LINSIGHT scores for various genomic regions. Intergenic regions, intronic regions, UTRs, and 1-kb promoters: GENCODE 19; TFBSs: ChIP-seq peaks (Ensembl Regulatory Build); conserved TFBSs: UCSC Genome Browser. (b) LINSIGHT is the only method to highlight a variant from HGMD (CR065653) that is associated with upregulation of the *TERT* gene.


#### Variant effect and association with phenotypes



Meta-analyzed association between ultra-rare and rare damaging missense variants in PTV-intolerant genes and 5 diseases. The strength of the association increases as function of the number of algorithms and is particularly strong among ultrarare variants Ganna (2018) Am J Hum Genet

123

#### Variant effect and association with phenotypes



All classes of *de novo* non-synonymous variants show a higher mutation rate in Tourette disorder probands (orange) versus SSC siblings (controls, blue). LGD: likely gene disrupting variants: insertion of premature stop codon, frameshift, or canonical splice-site variant; FS: frameshift indels; Damaging: variants predicted by 124 PolyPhen2; Mis3: LGD or damaging; Nonsyn: missense or nonsenseWillsey (2017) *Neuron* 

# Summary

- Human genome sequence is still being updated. We may soon switch from a single reference sequence to multiple ones
- Protein-coding genes represent only a minor fraction of all human genes and a tiny fraction of the genome
- Roughly one half of human genome are repetitive sequences
- Human gene structure and processing is quite diverse and complicated
- There are multiple sequence regions that assist in gene splicing: exonic and intronic splicing enhancers and silencers. A significant fraction of human disease mutations are believed to be splicingrelated
- Epigenetics provide heritable phenotype changes that do not involve alterations in the DNA sequence: DNA methylation at CpG nucleotides, covalen modification of histone proteins. Noncoding RNAs are considered as part of epigenetic machinery.

# Summary

- Approximately 100 genes on various chromosomes are subject to chromosomal imprinting
- Variant annotation is a procedure that determines variant consequence for a gene/protein based on its location relative to the gene sequence. It is governed and complicated by transcript structure complexity.
- Variant effect prediction determines potential functional impact of a particular variant based on its features.
- There are numerous prediction algorithms for major types of variants. Their performance and domain of applicability is a debated question, however, phenotype-associated variants are typically enriched with functional predictions.

## Further reading

- Strachan, Read Human Molecular Genetics, Chapter 13
- Rivas, M.A., Pirinen, M., Conrad, D.F., Lek, M., et al. (2015). Effect of predicted protein-truncating genetic variants on the human transcriptome. *Science* 348, 666–669.
- Saleheen, D., Natarajan, P., et al. (2017). Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. *Nature* 544, 235–239
- Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., et al. (2019). Predicting Splicing from Primary Sequence with Deep Learning. *Cell* 176, 535-548.e24.
- Niroula, A., and Vihinen, M. (2016). Variation Interpretation Predictors: Principles, Types, Performance, and Choice. *Human Mutation* 37, 579–597.

#### Further reading

- Li, J., Zhao, T., Zhang, Y., Zhang, K., Shi, L., Chen, Y., Wang, X., and Sun, Z. (2018). Performance evaluation of pathogenicity-computation methods for missense variants. *Nucleic Acids Res* 46, 7793–7804.
- DePristo, M.A., Weinreich, D.M., and Hartl, D.L. (2005). Missense meanderings in sequence space: a biophysical view of protein evolution. *Nat. Rev. Genet* 6, 678–687.
- Park, E., Pan, Z., Zhang, Z., Lin, L., and Xing, Y. (2018). The Expanding Landscape of Alternative Splicing Variation in Human Populations. *Am. J. Hum. Genet.* 102, 11–26.
- Lee, P., Lee, C., Li, X., Wee, B., Dwivedi, T., and Daly, M. (2018). Principles and methods of in-silico prioritization of non-coding regulatory variants. *Hum Genet* 137, 15–30.
- Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant prioritization and Mendelian disease. *Nature Reviews Genetics* 18, 599.