PyMol, электронная плотность

Pymol

Для данного задания была дана структура 5REV. На картинке (Рис. 1) представлен лиганд ТЈ4, а также остатки, с которым он взаимодействует: водородная связь с азотом остова THR26, водородная связь с азотом остова GLY143, возможная водородная связь SER144 (однако скорее всего ее не будет, поскольку расстояние довольно большое), ковалентная связь с CYS145 (довольно странная между углеродом и серой, возможно, результат ошибки расшифровки).

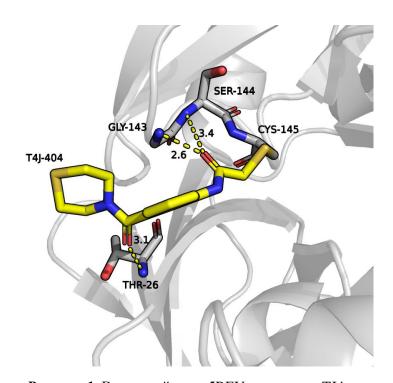
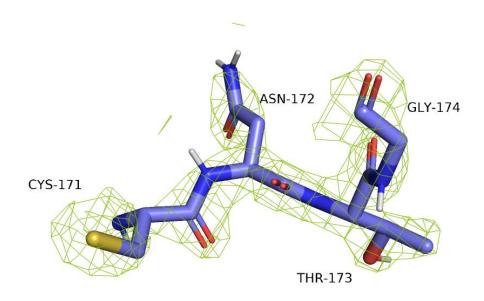
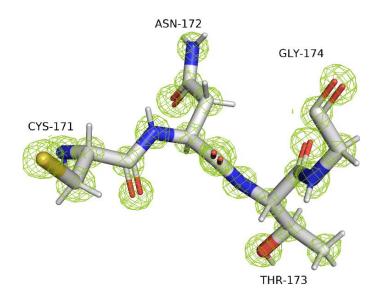


Рисунок 1. Взаимодействия 5REV с лигандом ТJ4.


Файл сессии находится по ссылке: сессия

ЭП: хорошая и плохая расшифровки


Для этого задания были даны структуры 3QPA и 1ОХМ. Первое, что бросается в глаза: у структуры 1ОХМ протонирована вода, но при этом ее довольно мало, что может намекать на плохое разрешение. Однако, обе структуры являются протонированными, что затрудняет определить структуру с более плохим разрешением. Если смотреть на электронную плотность, то разница в разрешении видна хорошо. Для сравнения взят участок 171-174 с уровнем обрезки 2.0 и саrve = 2 для 1ОХМ (Рис. 2) и 1.3 для 3QPA (Рис. 3).

Так, у структуры 1ОХМ ЭП похожа скорее на обертку: различить отдельные атомы довольно сложно, хотя направление в целом достаточно хорошо видно. ЭП 3QPA, с другой стороны, представлена в виде сфер, в которые хорошо ложатся отдельные атомы. Действительно, если посмотреть записи PDB, то разрешение структуры 10XM = 2.30 Å, а 3QPA = 0.85 Å.

К сожалению, у 1ОХМ представлено очень мало данных о проведении эксперимента, поэтому предположить причины такой разницы в разрешении довольно сложно.

Рисунок 2. Карта электронной плотности 1ОХМ, carve = 2.0.

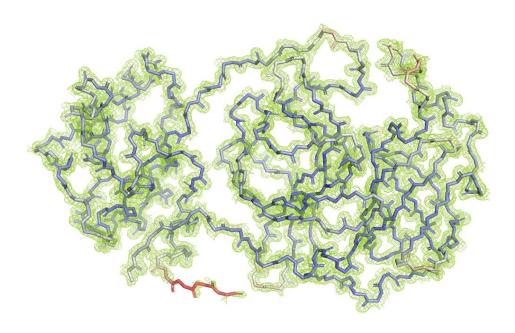
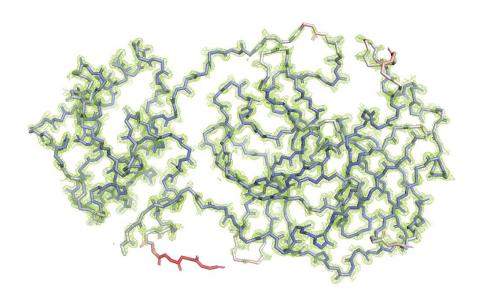


Рисунок 3. Карта электронной плотности 3QPA, carve = 1.3.


ЭП и положение в структуре

В данном задании мы рассматриваем изменение ЭП структуры 5REV при изменении уровня подрезки (Рис. 4-6). Так, сначала исчезает ЭП самых подвижных объектов: петель,

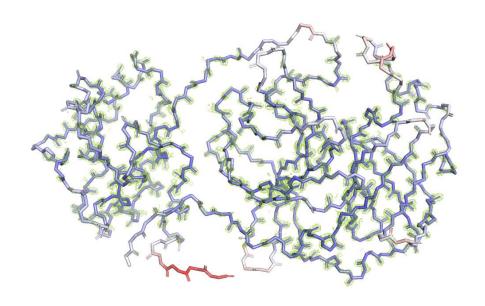

хвостов. Подвижность можно проверить с помощью покраски по В-фактору (самые подвижные структуры обозначены красным цветом).

Рисунок 4. Карта электронной плотности 5REV. Уровень подрезки 1.

Рисунок 5. Карта электронной плотности 5REV. Уровень подрезки 2.

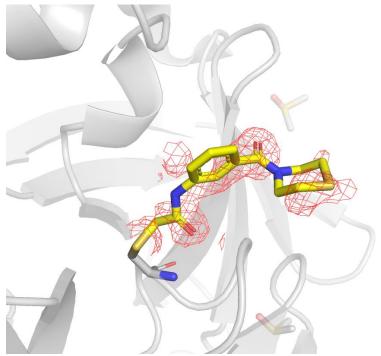
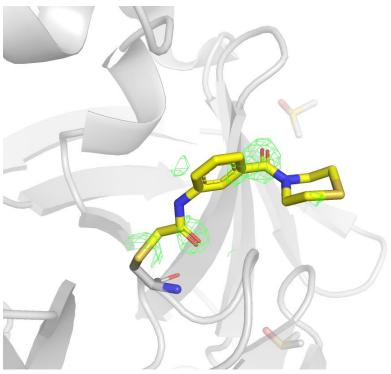
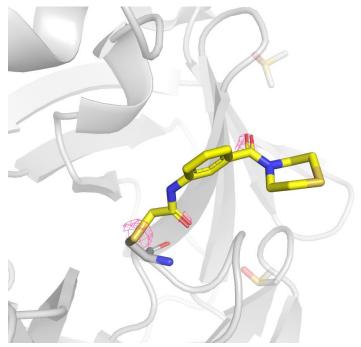


Рисунок 6. Карта электронной плотности 5REV. Уровень подрезки 3.


ЭП и типы атомов

Уровень подрезки	Видимые атомы
0.5	Большинство
1	SG, O2, S, C6 бензольного кольца
2	SG, O2
3	SG


Чем больше электронов у атома, тем большую электронную плотность он дает, что можно увидеть смотря на атомы серы, которые видно даже на уровне 3. Предположительно, двойные связи и другие структуры со скоплением электронов будут давать ЭП на больших уровнях подрезки. (Рис. 7-10)

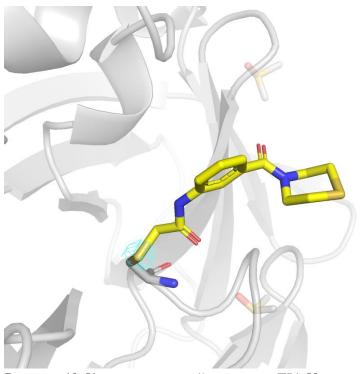

Рисунок 7. Карта электронной плотности ТЈ4. Уровень подрезки 0.5.

Рисунок 8. Карта электронной плотности ТЈ4. Уровень подрезки 1.

Рисунок 9. Карта электронной плотности ТJ4. Уровень подрезки 2.

Рисунок 10. Карта электронной плотности ТЈ4. Уровень подрезки 3.