
Изоляция процессов и виртуализация

FBB-AI/Linux/9 26/11/2025

Изоляция процессов

1 / 20

Назначение изоляции

Совместное выполнение групп процессов:
▶ предотвращение коллизий;
▶ настройка специфического окружения;
▶ распределение ресурсов;
▶ контроль доступа и безопасность.

2 / 20

Средства изоляции Linux

chroot – системный вызов, позволяющий изменить корневую папку для процесса и его
потомков.

namespaces – механизм ядра, позволяющий запускать процессы в выделенных пространствах
имен разных типов:
clone позволяет создать новые пространства имен для дочернего процесса

(флаги CLONE_NEW*);
unshare – создать новые пространства имен для процесса;
setns – переместить процесс в существующее пространство имен.

3 / 20

Chroot jail

Изменение корневой папки процесса и его потомков.

▶ Процесс не может обратиться к файлам за пределами нового корня.
▶ Необходимые системные папки можно сделать доступными с помощью bind mount.
▶ Часто применяется для запуска потенциально уязвимых сетевых демонов.
▶ Существуют средства, облегчающие создание chroot jail с необходимым наборов пакетов
(makejail, debootstrap, ...).

4 / 20

Linux namespaces

Пространства имен процесса доступны в виде символических ссылок в директории
/proc/[pid]/ns/ .

$ TIME_STYLE='+%D' ls -lon /proc/$$/ns
total 0
lrwxrwxrwx 1 1000 0 04/08/24 cgroup -> 'cgroup:[4026531835]'
lrwxrwxrwx 1 1000 0 04/08/24 ipc -> 'ipc:[4026531839]'
lrwxrwxrwx 1 1000 0 04/08/24 mnt -> 'mnt:[4026531840]'
lrwxrwxrwx 1 1000 0 04/08/24 net -> 'net:[4026531992]'
lrwxrwxrwx 1 1000 0 04/08/24 pid -> 'pid:[4026531836]'
lrwxrwxrwx 1 1000 0 04/08/24 pid_for_children -> 'pid:[4026531836]'
lrwxrwxrwx 1 1000 0 04/08/24 user -> 'user:[4026531837]'
lrwxrwxrwx 1 1000 0 04/08/24 uts -> 'uts:[4026531838]'

5 / 20

Linux namespaces

Виды пространств имен:
PID – процессы в новом пространстве получают дополнительные PID и не видят

процессов из других PID-пространств, кроме вложенных;
mount – пространство точек монтирования;
network – сетевое пространство – отдельные сетевые интерфейсы и таблицы

маршрутизации;
user – отдельные uid и gid, например, обычный пользователь может иметь uid 0 внутри

нового пространства имен;
cgroups – отдельная иерархия cgroups;

UTS – изоляция имени хоста и доменного имени;
IPC – изоляция объектов System V IPC и POSIX message queue;
time – изоляция монотонного времени (со сдвигом), сложная процедура присоединения

процессов.

6 / 20

unshare, nsenter

Утилиты, позволяющие запустить процесс в другом пространстве имен.

$ unshare --user --map-root-user id
uid=0(root) gid=0(root) groups=0(root),65534(nogroup)

unshare --pid --fork --mount-proc readlink /proc/self
1

hostname
laptop
touch /root/new-ns
unshare --uts=/root/new-ns hostname WALL-E
nsenter --uts=/root/new-ns hostname
WALL-E
mount | grep new-ns
nsfs on /root/new-ns type nsfs (rw)
umount /root/new-ns
rm /root/new-ns

7 / 20

cgroups

Система ядра Linux для контроля потребления ресурсов.
▶ Иерархические группы процессов, для которых осуществляется контроль и ограничение
ресурсов.

▶ Файловая система cgroup2 /sys/fs/cgroup.
▶ Каждый процесс принадлежит одному из листьев дерева групп (v2).
▶ Принадлежность к группе отражена в файле /proc/[pid]/cgroup.

8 / 20

Контейнеры Linux

Механизм виртуализации уровня ОС, в основе которого лежат Linux cgroups и Linux namespaces.

Основные реализации:
▶ OpenVZ
▶ LXC
▶ Docker
▶ Singularity
▶ systemd-nspawn
▶ . . .

OCI (Open Container Initiative) – проект разработки стандартов виртуализации уровня ОС.

Все контейнеры взаимодействуют с одним ядром Linux, загруженным при старте компьютера.

9 / 20

Docker

Контейнер Docker – это (Linux) контейнер на базе образа файловой системы, поддерживающей
union mount (например, overlayfs).
Docker включает в себя:
▶ dockerd – системный демон для запуска и контроля за контейнерами;
▶ docker – консольное приложение, CLI для взаимодействия с демоном;
▶ набор локальных образов и контейнеров, запущенных на их основе;
▶ удаленный репозиторий (registry) образов, например Docker Hub;
▶ набор програмных средств для дополнительных операций с образами и контейнерами.

10 / 20

OverlayFS

Каждый слой (кроме верхнего) может использоваться в разных образах.

Файл 1 Папка 1Файл 2 Файл 1 Папка 2

Папка 1Файл 2 Файл 3

Папка 1Файл 3 Файл 1 Папка 3Папка 2

Файл 1 Папка 1Файл 2 Файл 1 Папка 3

Слой 1 (только чтение)

Слой 2 (только чтение)

Слой 3 (чтение и запись)

Объединение слоев

11 / 20

Виртуализация

12 / 20

Виды виртуализации

▶ Platform – виртуализация оборудования (виртуальные машины, эмуляторы).
▶ Desktop – рабочего окружения (разные протоколы удаленного рабочего стола).
▶ Software – программ, сервисов и т.д.
▶ Memory – виртуальная память.
▶ Network – виртуальные сети, виртуализация протоколов.
▶ Storage – системы хранения (в том числе, виртуальные ФС).
▶ Data – абстрактное представление данных.
▶ . . .

13 / 20

Паравиртуализация и эмуляция

Паравиртуализация – виртуализация, требующая модификации гостевой ОС. Другими словами,
гостевая ОС должна иметь средства взаимодействия с гипервизором, позволяющие добиться
более высокой производительности.

Эмуляция – имитация платформы, устройства или окружения (API), позволяющая гостевой ОС (или
отдельной программе) взаимодействовать с эмулятором как с оригинальной платформой,
устройством или окружением.

Виртуализация не обязательно предполагает эмуляцию. Например, многие гипервизоры не могут
эмулировать архитектуру процессора или переферийные устройства.

14 / 20

Виртуальные машины

HYPER
VISOR

HARD
WARE

OSOS OS

OS

OSOSOS

HYPER
VISOR

OS OSOS

HYPER
VISOR

OS OS

HARD
WARE

TYPE 1
native

TYPE 2
hosted

https://en.wikipedia.org/wiki/Hypervisor

15 / 20

Xen

▶ Гипервизор типа 1 с возможностью паравиртуализации.
▶ Запускается загрузчиком (например, grub).
▶ Запускает единственную привилегированную виртуальную машину dom0.
▶ Из dom0 возможна конфигурация гипервизора и запуск других виртуальных машин.
▶ В dom0 обычно загружается измененная версия Linux или BSD (паравиртуализация).
▶ В настоящий момент поддерживается Linux Foundation.

16 / 20

KVM (Kernel-based Virtual Machine)

▶ Гипервизор типа 1.
▶ Встроен в Linux в виде подключаемых модулей ядра.
▶ Требует процессор с поддержкой аппаратной виртуализации.
▶ Не эмулирует оборудование (использует для этого QEMU).

17 / 20

QEMU

▶ Гипервизор типа 2.
▶ Для эмуляции процессора с другой архитектурой использует динамическую перекомпиляцию.
▶ Может использоваться в сочетании с гипервизорами типа 1 (KVM, Xem и др.) в качестве
фронтенда.

18 / 20

VirtualBox

▶ Кроссплатформенный гипервизор типа 2.
▶ Открытое ПО, за исключением пакета расширений.
▶ Использует аппаратные средства виртуализации процессора.
▶ Удобен для персонального использования – простая настройка, GUI, эмуляция
переферических устройств.

19 / 20

libvirt

Библиотека, реализующая стандартный API пользовательского взаимодействия с гипервизором.

KVM

virsh virt-manager OpenStack

VIRTUALIZATION API

LXC OpenVZ UML ESXXen другие

oVirt

https://ru.wikipedia.org/wiki/Libvirt

20 / 20

	Изоляция процессов
	Виртуализация

