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Abstract Although much attention has been given to statistical genetic
methods for the initial localization and fine mapping of quantitative trait loci
(QTLs), little methodological work has been done to date on the problem
of statistically identifying the most likely functional polymorphisms using
sequence data. In this paper we provide a general statistical genetic frame-
work, called Bayesian quantitative trait nucleotide (BQTN) analysis, for as-
sessing the likely functional status of genetic variants. The approach requires
the initial enumeration of all genetic variants in a set of resequenced individ-
uals. These polymorphisms are then typed in a large number of individuals
(potentially in families), and marker variation is related to quantitative phe-
notypic variation using Bayesian model selection and averaging. For each
sequence variant a posterior probability of effect is obtained and can be used
to prioritize additional molecular functional experiments. An example of this
quantitative nucleotide analysis is provided using the GAW12 simulated
data. The results show that the BQTN method may be useful for choosing
the most likely functional variants within a gene (or set of genes). We also
include instructions on how to use our computer program, SOLAR, for asso-
ciation analysis and BQTN analysis.

In this era of genomic science our current approach to understanding the genetic
architecture of a complex phenotype usually follows a specific trajectory. First,
the underlying quantitative trait locus (QTL) is localized using a genomic scan
of a potentially large chromosomal region. This localization frequently is accom-
plished either by linkage analysis using data on the cosegregation of phenotypes
and genetic markers in families or, less often, by genome-wide studies of pheno-
type–genetic marker association in sets of unrelated individuals. Second, the
chromosomal location is refined by saturating the positional candidate region
with additional genetic markers and simultaneously examining both linkage dis-
equilibrium (the effective signal of which spans a much smaller region than the
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linkage signal) and linkage to fine-map the QTL. Finally, if positional candidate
loci are revealed by this process (perhaps in tandem with bioinformatic data
mining) and appear to be in linkage disequilibrium with the putative alleles in-
fluencing the trait, we attempt to determine the actual functional variants that are
responsible for the observed linkage signal. This final activity takes us from the
QTL to the responsible nucleotide differences [the quantitative trait nucleotides
(QTNs) (Long et al. 1998; Phillips 1999)] influencing the phenotype. The main
corpus of extant statistical genetic methodology is largely focused on the first
two tasks, whereas molecular sequencing and functional genetic analyses are
traditionally relied on to pinpoint the actual genetic variants involved. In this
paper we propose to develop a general approach to statistical functional genomic
analysis that will bring rigorous statistical procedures to the final stage of identi-
fying the specific variants involved in determining variation in disease risk. We
anticipate that our statistical method will be used to prioritize variants for inten-
sive molecular functional analysis to identify the actual mechanism underlying a
variant’s effect on a given phenotype. An empirical example of this method that
examines functional variation in the Factor VII structural gene is provided in a
companion paper [Soria et al. 2005 (this issue)].

Quantitative Trait Nucleotide Analysis

Given complete sequence data for a gene harboring a functional site, we
can identify statistically which polymorphism, or polymorphisms, are most likely
to be affecting our phenotype. Although determination of the mechanism by
which a genetic variant leads to phenotypic variation will still require molecular
investigation, it is possible to formulate a first-line statistical genetic approach to
limit the number of genetic variants to be examined in the molecular laboratory
and to prioritize them in terms of their likely importance in the population.

This approach requires exhaustive enumeration of all polymorphisms
within the positional candidate loci and therefore requires initial resequencing of
a substantial number of individuals to establish which sites are polymorphic in
the population. The number of individuals to be sequenced can be established to
reliably detect polymorphisms of a given frequency. However, it is still unknown
whether common variants are of major importance as determinants of quantita-
tive trait variation. Given our knowledge of the ubiquity of rare variants in genes
and the large literature on multiple rare mutations in monogenic disease, it is
likely that rare variants will play a role. In addition, there is growing empirical
evidence to support the hypothesis that rare variants are important for human
quantitative variation (Blangero 2004). Thus the size of a resequencing sample
should be large enough to detect rare variants with a frequency of at least 0.05.
Efficient selection strategies for choosing individuals who are more likely to have
variant QTL alleles may help to reduce the amount of resequencing necessary
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for discovery of relevant single nucleotide polymorphisms (SNPs). Once all poly-
morphisms are found, they must be typed in a large number of individuals for
whom phenotypic information is available (e.g., the extended pedigree sample in
which we conducted our linkage analyses). New microarray technologies may
make this step much more efficient in the near future.

The QTN Model

The QTN model that we have used represents a simple extension of the
classical variance component model. For example, assume that we have a candi-
date locus with m polymorphic nucleotide sites. Define a variate si for the ith
SNP that takes the values of 1, 0, and �1 for the marker genotypes AA, Aa, and
aa, respectively. In general, the additive genetic variance (�2

ai) associated with
the ith marker is Hi�

2
i , where Hi is the heterozygosity and �i is one-half the

displacement between the homozygous marker means. If the ith locus is nonfunc-
tional but is associated with the phenotype because of linkage disequilibrium
with the jth marker, which is a functional variant, then

� 2
ai � � 2

ij Hj�
2
j � � 2

ij �
2
aj, (1)

where � is the correlation between the variables si and sj. �ij is also the correlation
between the allelic values of the two loci and is thus one of the standard measures
of linkage disequilibrium. Note that �2

ai � �2
aj; that is, the variance associated

with a marker will generally be less than that resulting from the functional poly-
morphism unless the genotypes at the two loci are completely correlated. Using
this framework, we model the phenotype as a linear combination of fixed effects
and random variables:

p � � ��� isi ���l xl ��qk � g � e, (2)

where the �l are fixed-effect regression coefficients for any measured covariates
(xl) and the qk, g, and e are random effects representing other QTLs, residual
genetic effects, and random environmental effects, respectively. Estimation of
the various fixed effects and variance components associated with the random
effects can be performed using standard maximum-likelihood methods, such as
those implemented in our computer package, SOLAR (Almasy and Blangero
1998).

Model Selection Using the Bayesian Information Criterion

Once the extent of polymorphism within the gene is assayed, Bayesian
model averaging and model selection can be used to predict the most likely func-
tional polymorphisms. We first applied this powerful methodological framework
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to the study of multiple QTLs in linkage analyses (Blangero et al. 1999) to allow
for a simple statistical method to establish the number of likely QTLs influencing
a trait. Because the number of SNPs needed to evaluate a candidate gene may be
large, there can be many possible models of QTN action. If we consider only
additive QTN effects, there are 2m possible models. Our approach is to evaluate
all such models and to utilize Bayesian methods to estimate the probability that
each SNP is functional.

In a Bayesian framework two competing hypotheses can be compared by
evaluating the Bayes factor, which is the ratio of the integrated likelihoods of
the competing models (Kass and Raftery 1995). Bayes factors provide a direct
evaluation of the superiority of one model over another (Kass and Raftery 1995).
When the prior probabilities of the models are equal, the Bayes factor is equal to
the posterior odds. For the current exposition we assume equal prior probabilities
for models, but it is straightforward to use informative prior probabilities, such
as assuming a maximum number of functional sites and employing a truncated
Poisson distribution to obtain prior probabilities for models of a given dimension.

A number of approximations relating to the Bayes factor have been pro-
posed, of which the Bayesian information criterion (BIC) is both simple and
accurate when used with regular models (Schwarz 1978; Raftery 1995). The BIC
approximation is generally appropriate and (pseudo-) Bayesian inferences can be
made with no additional computational burden. For QTN analyses using this
approach the BIC is defined with reference to the null model. In the null model
there are no fixed QTN effects, but random genetic effects (such as polygenic
effects) are allowed to account for nonindependence within families. The BIC of
the kth QTN model is given by

BICk � ��k0 � dfk ln Ne, (3)

where �k0 is the likelihood ratio test statistic comparing the QTN model with the
null model, dfk is the degrees of freedom for the comparison, and Ne is the effec-
tive sample size. The effective sample size provides an estimate of the number
of independent observations and can be estimated as

Ne �
�̂ 2

p

2 var��̂p�
, (4)

where �̂p is the maximum-likelihood estimate (MLE) for the phenotypic standard
deviation in the null (i.e., polygenic) model. This formulation of the BIC is based
on a first-order approximation and has the benefit of computational simplicity.
However, more accurate approximations (entailing additional computational bur-
den) exist and could be substituted (Raftery 1996; Neath and Cavanaugh 1997).

The BIC can be used to assess whether the QTN model explains sufficient
variation in the phenotype to justify the number of parameters used. In general,
BIC differences greater than 2 units are indicative of positive evidence of support
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for one model over another with approximate posterior probabilities greater than
75% (Raftery 1995). Similarly, BIC differences of 6 units represent strong sup-
port favoring a model with 95% posterior probabilities. BIC differences greater
than 10 units are associated with posterior probabilities greater than 99% and
thus represent very strong support.

Bayesian Model Averaging in QTN Analysis

The BIC can also be used to formulate a simple model-averaging approach
to estimation that explicitly allows for model uncertainty (Raftery 1995; Raftery
et al. 1997). Let Y indicate all the data, including both phenotypic and genotypic
information, and let Mk indicate the kth model. It can be shown that

p�Y � Mk� � exp��1
2
BICk�. (5)

Therefore the posterior probability of the model conditional on the data can be
approximated by

p�Mk � Y� �
exp��1

2
BICk�

�K

l�1
exp��1

2
BICl�. (6)

Using this relationship and placing it in the context of QTN analysis, we find that

the posterior probability that �i � 0 is given by �Ki
p�Mk � Y�, where Ki denotes

the set of models for which �i � 0. This is the posterior probability that the ith
SNP is functional (assuming that all genetic variation has been assayed within
the candidate locus) or highly correlated with an untyped functional effect. We
term this the posterior probability of effect (PPE). The posterior mean �i is given
by

E ��i � Y,�i � 0� ��
Ki

�̂i p�Mk � Y� , (7)

and the posterior standard deviation is given by

Var��i � Y,�i � 0� ��
Ki

�Var��̂i� � ��̂i�
2� p�Mk � Y� � E ��i � Y,�i � 0�2. (8)

The main utility of this approach is that it directly takes into account model
uncertainty and provides an estimate of our faith that a given SNP is itself func-
tional or in high linkage disequilibrium with a variant not currently assayed.
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Application

To evaluate the Bayesian model selection approach to QTN analysis, we
analyzed simulated data that we generated as part of GAW12 (Almasy et al.
2001). We simulated 24 pedigrees containing 1,000 phenotyped individuals, STR
markers, and approximately 12 kb of sequence data at a positional candidate
gene. There was a single functional site at sequence position 5782, which ac-
counted for 24% of the phenotypic variance in the simulated quantitative trait.
Our challenge was to see whether we could accurately determine the true func-
tional polymorphism and estimate its effect size. We focused on the quantitative
trait, Q1, and one of the actual QTLs (GENE6) that influence it. Comprehensive
sequence data were available for this gene. Because of the computational burden
involved, we present the results from a first replicate of the GAW12 simulation.
All analyses were performed using SOLAR, which now incorporates Bayesian
model selection of QTN models. These analyses used all 1,000 phenotyped mem-
bers of the pedigrees and the pedigree information (see appendix).

Results

We selected all SNPs whose less common allele had a frequency of 0.03
or greater. With this criterion we identified 23 polymorphic nucleotide sites. Fig-
ure 1 shows the general pattern of disequilibria among all pairs of markers. There
are several block-type structures in this simulated data, generating regions of
high linkage disequilibrium. The magnitude of disequilibrium was rather high,
with an average of 0.36 and a standard deviation of 0.32. Further analysis of the
correlation matrix among SNP genotypes allowed us to estimate the effective
number of SNPs using the method of Cheverud (2001). From this analysis we
estimated the effective number of independent SNPs to be 10.55, which is 45.9%
of the total. This number can be used to provide a multiple test correction for
standard marginal association tests. Using this approach, we would require a p
value of 0.00487 to maintain an experiment-wide Type I error rate of 0.05.

Table 1 shows the positions of each polymorphism, the frequencies of the
minor alleles, their heterozygosities, the disequilibrium correlation of each with
the functional site, and their distance (in bp) from the functional site. The mean
disequilibrium correlation between the SNPs and the functional SNP was a very
high 0.51, with a standard deviation of 0.39. Because of this high disequilibrium
with the functional variant, 13 of the SNPs (including the functional variant)
showed significant evidence of a marginal association with the Q1 phenotypes
after controlling for the multiple tests (shown in Figure 2 as signals above the
dashed line). Figure 2 also shows the results obtained for the widely used quanti-
tative trait transmission disequilibrium test (QTDT) (Abecasis et al. 2000). Simi-
larly, Table 1 shows the estimated relative variance (h2

m) associated with each
marker. Clearly, it would be easy to detect an association of this candidate gene
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Figure 1. Linkage disequilibrium within GENE6.

with the putative QTL. The power to detect even an association that leads to less
than 1% of the phenotypic variation with the marker is high in this data set.

As is evidenced by some of the repeated entries in this table, there were
several highly correlated blocks of polymorphisms. The examination of the pair-
wise disequilibrium correlation matrix revealed the following sets of markers that
showed near unit correlation. For such a marker sets it is statistically impossible
to discriminate among members of the set with regard to the identification of
functional effects. We term such sets of markers isocorrelated redundant variant
(IRV) sets. In the current large sample we have set a linkage disequilibrium
correlation cutoff of 0.975 to define the IRV sets within this gene. For smaller
sample sizes it may be necessary to use a lower correlation (say, 0.90) to define
such sets because the statistical resolution needed to separate such non-unit-cor-
related effects is a function of sample size. Using this definition, we enumerated
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Table 1. Summary Statistics and Initial Marginal Tests of Association

SNP Frequency H � Distance (bp) h2
m

993 0.1958 0.3149 0.6955 4789 0.145
1748 0.1958 0.3149 0.7009 4034 0.145
1987 0.1958 0.3149 0.7009 3795 0.145
4411 0.1937 0.3124 0.7047 1371 0.151
4848 0.3676 0.4649 0.2202 934 0.013
5007 0.1027 0.1843 0.9941 775 0.281
5782 0.1041 0.1865 1.0000 0 0.281
6805 0.1027 0.1843 0.9980 1023 0.281
7073 0.1027 0.1843 0.9980 1291 0.281
7332 0.1027 0.1843 0.9980 1550 0.281
8067 0.1027 0.1843 0.9980 2285 0.281
8226 0.1041 0.1865 0.9961 2444 0.279
9616 0.2317 0.3560 0.1789 3834 0.005
10054 0.2332 0.3576 0.1795 4272 0.005
10955 0.2254 0.3492 0.1847 5173 0.006
11146 0.0384 0.0738 0.0707 5364 0.000
11782 0.2965 0.4172 0.2250 6000 0.015
11981 0.1311 0.2277 0.1489 6199 0.006
12408 0.0695 0.1292 0.0701 6626 0.000
12716 0.0691 0.1286 0.1128 6934 0.008
13869 0.2965 0.4172 0.2237 8087 0.015
14425 0.0622 0.1167 0.1302 8643 0.003
14544 0.0839 0.1537 0.0840 8762 0.002

the following four IRV sets: {993, 1748, 1987, 4411}, {5007, 5782, 6805, 7073,
7332, 8067, 8226}, {9616, 10054, 10955}, and {11782, 13869}. By using only
a single representative marker from each of these IRV sets, we effectively re-
duced the number of SNPs to be evaluated to 11.

The 11 SNPs were then used in the Bayesian model selection procedure. A
total of 211 � 2,048 models of QTN action were evaluated. This is a substantial
reduction from the 223 � 8,388,608 possible models before the establishment of
the IRV sets. Table 2 shows the results of the BQTN analysis. Only the IRV sets
containing the true causal polymorphic variant at site 5782 show strong evidence
of being functional, as reflected by the posterior probability. Because the variant
at site 5782 is the true functional variant, the Bayesian QTN analysis has been
successful for this replicate. Table 2 also shows the estimates of the �i for a
number of models, including a saturated model, and the results from Bayesian
model averaging. Given the true generating value of 3.67, the Bayesian model-
averaging procedure provides the most accurate estimate of effect size.

Figure 3 shows the results of the quantitative trait linkage analysis for this
trait with a LOD score over 6 positioned at 42 cM. Obviously, there is very
strong evidence for a QTL in this simulated example. More important, after
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Figure 2. SNP association plot (QTNM plot). Marginal association analysis of simulated SNPs in
simulation replicate 1. Circles, measured-genotype analysis; squares, QTDT analysis. Dotted line:
p � 0.00487 (significance threshold with correction for multiple tests).

Table 2. Results of Bayesian QTN Analysis

�̂

Bayesian Model Posterior
SNP Saturated Averaging Probability

993, 1748, 1987, 4411 1.882 0 0
4848 0.023 0 0
5007, 5782, 6805, 7073, 7332, 8467, 8226 2.254 4.073 �0.9999
9616, 10054, 10955 0.483 0 0
11146 0.189 0 0
11782, 13869 �0.445 0 0
11981 �0.167 0 0
12408 0.229 0 0
12716 0.352 0 0
14425 0.174 0 0
14544 �1.705 0 0
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Figure 3. Quantitative trait linkage analyses of the original Q1 phenotype and Q1 conditional on
the putative functional polymorphism as determined by BQTN analysis.

choosing the putative functional site using BQTN analysis, we can perform con-
ditional linkage analyses to see whether the linkage signal is eliminated (Sun et
al. 2002; Almasy and Blangero 2004). Figure 3 also shows the conditional LOD
function when the variant at site 5782 is controlled for. In this case the LOD is
completely abolished, suggesting that we have successfully captured all the al-
lelic variation determining the QTL.

Discussion

In this paper we have presented a general method for identifying the most
likely functional polymorphisms in positional candidate genes. Although the
Bayesian QTN method can be computationally intensive, it appears to have the
ability to objectively prioritize variants for more costly molecular functional
characterization. For the example, we used complete enumeration of all additive
models of gene action. However, for large numbers of variants this approach is
intractable. Luckily, there are computationally efficient algorithms to reduce the
model search space to those most likely to be important. For most such cases we
advocate and use the Up algorithm proposed by Madigan and Raftery (1994).
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However, Monte Carlo Markov chain methods also exist to sample the appro-
priate model space (Raftery et al. 1997).

Although we have shown only simulation-based results for a gene with a
single functional site, the BQTN method can be used to accurately identify (or,
more accurately, prioritize) multiple likely functional polymorphisms within
genes. For example, in a companion paper [Soria et al. 2005 (this issue)], we
dissect the effects of multiple variants in the Factor VII structural gene on Factor
VII clotting levels. The BQTN method also has been recently used to identify
the novel gene SELS (selenoprotein S) as a major player in the mediation of
plasma cytokine variation (Curran et al. 2005). In that study, after exhaustive
resequencing, we identified a promoter variant that has a high likelihood of being
functional. Subsequent gold-standard molecular characterization strongly sup-
ported our purely statistical prediction (Curran et al. 2005).

With the dramatic improvements in resequencing technologies, it is likely
that in the future most studies will routinely resequence a large number of indi-
viduals from the linkage sample to identify all polymorphisms within a positional
candidate region. If we have prior evidence for particular candidate genes in
a linkage region, we may pursue these candidates first in the sequencing and
polymorphism discovery effort. Similarly, standard candidate gene studies in sets
of unrelated individuals will move toward comprehensive resequencing. The
BQTN method will be of great use in both of these situations. By using this
approach, statistical prioritization of putative functional variants can lead to sub-
stantial cost savings by minimizing the classical wet laboratory analyses required
to establish the molecular mechanism of associated DNA variants.

Finally, we have used this paper to provide information on how our com-
puter program, SOLAR, can be used for quantitative trait association analysis,
including BQTN and QTDT analyses. All the procedures (including the various
plots) are available in SOLAR (see appendix). These techniques can be used in
a wide range of study designs, from studies of unrelated individuals to studies of
extended pedigrees of arbitrary size and complexity.
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Appendix: SNP Processing and Analysis in SOLAR

The genetic analysis package SOLAR has been extended to include a set
of commands for processing and analyzing SNP genotype data. In this appendix
we show the commands that were used in the preparation of this paper.
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Genotype Loading. The first step in SOLAR SNP processing is to read in the
genotype data and the SNP locations. The simulated GAW12 data analyzed in
this paper are free of genotyping errors, and the pedigree data are accurate. In
actual studies pedigree and genotype cleaning procedures should be carried out
before SOLAR SNP processing. The following command was used to load the
GAW12 SNP data:

solar� load snp gaw12-snps.1 gaw12-snps.map

where ‘‘gaw12-snps.1’’ is a SOLAR marker file containing the GAW12 simulated
SNP genotypes, and ‘‘gaw12-snps.map’’ is a SOLAR map file in which the SNP
locations are given in base pairs.

Allele-Frequency Estimation. SOLAR computes estimates of the SNP allele
frequencies as part of the genotype loading process. If the data set includes re-
lated individuals, these estimates should be refined using the ‘‘freq mle -hwe’’
command, which computes maximum-likelihood estimates of the frequencies,
taking relatedness into account. This command also tests whether the alleles at
each SNP are in Hardy-Weinberg equilibrium.

solar� freq mle -hwe
Running allfreq for marker 993 ... iter 6 delta loglike � 0.0584
Running genfreq for marker 993 ... iter 8 delta loglike � 0.7915
Running allfreq for marker 1748 ... iter 6 delta loglike � 0.0584
Running genfreq for marker 1748 ... iter 8 delta loglike � 0.7915
...

The ‘‘snp show’’ command displays a summary of the SNP data.

solar� snp show
genotype file: gaw12-snps.1
location file: gaw12-snps.map

snp locn(bp) �typed %typed alleles SE(freq) HWE p-val

993 993 1000 66.8 1 0.8042 2 0.1958 0.015142 0.2259552
1748 1748 1000 66.8 1 0.8042 2 0.1958 0.015142 0.2259552
1987 1987 1000 66.8 2 0.8042 1 0.1958 0.015213 0.2259552
4411 4411 1000 66.8 2 0.8063 1 0.1937 0.015106 0.2115923
4848 4848 1000 66.8 1 0.6324 2 0.3676 0.018655 0.3707339
5007 5007 1000 66.8 1 0.8973 2 0.1027 0.011433 0.0588408
5782 5782 1000 66.8 1 0.8959 2 0.1041 0.011472 0.0518458
6805 6805 1000 66.8 1 0.8973 2 0.1027 0.011433 0.0588408
7073 7073 1000 66.8 1 0.8973 2 0.1027 0.011433 0.0588408
7332 7332 1000 66.8 1 0.8973 2 0.1027 0.011433 0.0588408
8067 8067 1000 66.8 1 0.8973 2 0.1027 0.011433 0.0588408
8226 8226 1000 66.8 2 0.8959 1 0.1041 0.011666 0.0518458
9616 9616 1000 66.8 2 0.7683 1 0.2317 0.015964 0.4589104
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10054 10054 1000 66.8 2 0.7668 1 0.2332 0.015902 0.5165546
10955 10955 1000 66.8 2 0.7746 1 0.2254 0.015884 0.4838533
11146 11146 1000 66.8 1 0.9616 2 0.0384 0.007233 0.3697457
11782 11782 1000 66.8 2 0.7035 1 0.2965 0.017275 0.3287377
11981 11981 1000 66.8 1 0.8689 2 0.1311 0.012873 0.0925272
12408 12408 1000 66.8 1 0.9305 2 0.0695 0.009592 0.9919025
12716 12716 1000 66.8 1 0.9309 2 0.0691 0.009544 0.1791409
13869 13869 1000 66.8 2 0.7035 1 0.2965 0.017275 0.3287377
14425 14425 1000 66.8 1 0.9378 2 0.0622 0.008977 0.1463692
14544 14544 1000 66.8 1 0.9161 2 0.0839 0.010438 0.8477422

Conversion of Genotypes to Phenotypes. Before performing the BQTN
analysis, the SNP genotypes must be recoded as covariates with the ‘‘snp covar’’
command. These covariates are written to the file ‘‘snp.genocov.’’ By default,
missing genotypes are inferred from the results of a previously conducted haplo-
type analysis (this action can be turned off with the ‘‘-nohaplos’’ option). Cur-
rently, SOLAR supports haplotyping using either SimWalk2 (Sobel and Lange
1996) or Merlin (Abecasis et al. 2002).

For this paper the input files needed for a SimWalk2 haplotype analysis
were created with the ‘‘snphap prep sw2’’ command. The output of the haplotype
analysis was collected into a single file, ‘‘swhaplos.out,’’ which was then post-
processed with the ‘‘snphap import sw2 -f swhaplos.out’’ command to create the
file ‘‘snp.haplotypes.’’

Haplotype frequencies can be estimated either by simple counting using
the ‘‘snphap count’’ command or by using the E-M algorithm in the program
SNPHAP (Clayton 2000). In the latter case the SNPHAP input file is created by
the ‘‘snphap freq prep’’ command, and the SNPHAP output is post-processed
with the ‘‘snphap freq’’ import command. The haplotype frequencies are stored
in the file ‘‘snp.haplofreqs.’’ For this paper we used the simple counting method.

The ‘‘snphap show’’ command displays a summary of the SNP haplotypes.

solar� snphap show

Total �Haplotypes: 82
Haplotype Diversity: 0.891504

Per Cent Coverage: 80% 90% 95% 99%
�Haplotypes Needed: 8 11 25 63

91144556778891111111111
97948078030260011122344
34814080736210917947845
8718725327665548801624

Frequency Cum.Freq. 4562186954
0.199353 0.199353 11111111111111111111111
0.177443 0.376796 11112111111122212111211
0.098060 0.474856 22221222222211111111111
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0.085129 0.559986 11111111111111111211111
0.076149 0.636135 22221111111111111111112
0.072198 0.708333 11112111111111111111111
0.049569 0.757902 11111111111111112112211
0.048851 0.806753 11112111111111111121111
0.046336 0.853089 11111111111111121211111
0.045977 0.899066 11111111111111111111121
0.008980 0.908046 11111111111122212111211
. . .

A different covariates file, ‘‘snp.qtldcov,’’ must be generated before performing
the quantitative trait linkage disequilibrium (QTLD) association test procedure,
described later. This file is created with the ‘‘snp qtld’’ command and contains
the results of allelic transmission scoring algorithms, described by Havill et al.
(2005).

Preliminary Analysis. The ‘‘snp ld’’ command calculates an estimate of pair-
wise correlations (linkage disequilibrium) among the SNPs. Two files are created,
‘‘snp.ld.pos’’ and ‘‘snp.ld.dat,’’ which contain the SNP base-pair locations and
pairwise correlations, respectively. The first few lines of the ‘‘snp.ld.dat’’ file for
the GAW12 data are shown here:

M1 M2 DISEQ
1 1 1.000000
1 2 0.989622
1 3 0.991929
1 4 0.974673
1 5 0.286414
1 6 0.691418
1 7 0.695463
1 8 0.697454
1 9 0.697454

The ‘‘-plot’’ option produces a PostScript plot of these correlations (see Figure
1). Isocorrelated redundant variant sets can be identified by inspection from the
output of this procedure.

Initial Association Tests. The QTLD test procedure (Havill et al. 2005) esti-
mates SNP association by means of established techniques [measured genotype
analysis, quantitative trait transmission disequilibrium test (QTDT) (Abecasis et
al. 2000)] plus a modification of QTDT that draws information from founders
when population stratification is absent. Before the QTLD test procedure is run,
a previously maximized model that includes the focal trait must be loaded as the
base model. It is recommended that this model include a linkage component [see
Havill et al. (2005) for a discussion]. In addition to the trait of interest, the pheno-
types that are loaded must include the QTLD covariates generated by the ‘‘snp
qtld’’ command. The QTLD test procedure is then invoked with the command
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‘‘qtld.’’ For this paper we loaded the trait data and QTLD covariates with the
following command:

solar� load phenotypes gpheno.1 snp.qtldcov
gpheno.1: ID ALIVE AGE HHID EF1 EF2 AFFECT AGEON Q1 Q2 Q3 Q4 Q5

snp.qtldcov: FAMID ID b_993 b_1748 b_1987 b_4411 b_4848 b_5007...

where ‘‘gpheno.1’’ is a SOLAR phenotypes file containing the GAW12 simulated
trait data and ‘‘snp.qtldcov’’ is the name of the file created by ‘‘snp qtld.’’

In the simulated data, trait Q1 is influenced by a QTL located approxi-
mately 42 cM from pter on chromosome 19. Therefore we included in our base
model the estimated multipoint identical-by-descent allele-sharing matrix for that
location. The base model and the output of the QTLD procedure are as follows:

solar� load model q1/null1
solar� model
solarmodel 4.0.0
matrix load/data/GAW12/sim/MIBD/GEN1/mibd.19.42.gzmibd1
trait q1
parameter mean � 16.90497367 Lower 6.69 Upper 30.41
parameter sd � 3.268729144 Lower 0 Upper 18.98184286
parameter e2 � 0.3499080734 Lower 0.2563065695 Upper 0.4563065695
parameter h2r � 0.2846801239 Lower 0 Upper 0.7080627736
parameter bsex � 1.855859361 Lower -29.65 Upper 29.65
parameter bage � 0.09887866095 Lower -0.4706349206 Upper 0.4706349206
parameter bef1 � -0.000740045234 Lower -0.02210064178 Upper 0.02210064178
parameter h2q1 � 0.3654118028 Lower 0.2991015983 Upper 0.3985030963
covariate sex
covariate age
covariate ef1
constraint e2 � h2r � h2q1 � 1
omega � pvar*(phi2*h2r � I*e2 � mibd1*h2q1)
� mu � \{Mean�bsex*Female�bage*(age-x_age)�bef1*(ef1-x eef1)\}
option StandErr 0
loglike set -1594.645259
solar� qtld

P-values

Stratifi- Measured
Trait SNP cation Genotype QTDT QTLD

q1 993 0.115896 6.3567e-30 8.7837e-22 6.4389e-29
q1 1748 0.106483 6.3567e-30 7.9620e-22 6.1535e-29
q1 1987 0.106483 6.3567e-30 7.9620e-22 6.1535e-29
q1 4411 0.197117 2.7526e-30 3.9751e-21 4.6748e-29
q1 4848 0.485439 0.001113 0.044249 0.007125
q1 5007 0.254774 1.6141e-62 1.7729e-44 2.2583e-62
q1 5782 0.251496 3.6050e-63 4.5082e-45 3.2526e-63
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q1 6805 0.254774 1.6141e-62 1.7729e-44 2.2583e-62
q1 7073 0.254774 1.6141e-62 1.7729e-44 2.2583e-62
q1 7332 0.254774 1.6141e-62 1.7729e-44 2.2583e-62
q1 8067 0.254774 1.6141e-62 1.7729e-44 2.2583e-62
q1 8226 0.216691 4.4402e-62 1.5589e-44 5.1816e-62
q1 9616 0.567318 0.018749 0.163450 0.040319
q1 10054 0.454980 0.024002 0.222060 0.049912
q1 10955 0.483963 0.011313 0.142698 0.027056
q1 11146 0.972205 0.750437 0.780974 0.900958
q1 11782 0.260246 0.000731 0.075211 0.005884
q1 11981 0.609274 0.026093 0.041067 0.059178
q1 12408 0.959506 0.682042 0.779453 0.880560
q1 12716 0.076701 0.047557 0.884763 0.160196
q1 13869 0.217205 0.000731 0.087687 0.006407
q1 14425 0.601825 0.184919 0.184518 0.293773
q1 14544 0.226891 0.129311 0.052552 0.172736

Bayesian QTN Analysis. Before the BQTN analysis is performed, both the
focal trait and the covariates generated by the ‘‘snp covar’’ command must be
loaded as phenotypes. For this paper, we used the command

solar� load phenotypes gpheno.1 snp.genocov
gpheno.1: ID ALIVE AGE HHID EF1 EF2 AFFECT AGEON Q1 Q2 Q3 Q4 Q5

snp.genocov: id famid nGTypes snp_993 snp_1748 snp_1987 snp_4411 ...

where ‘‘gpheno.1’’ is the GAW12 phenotypes file and ‘‘snp.genocov’’ is the name
of the file created by ‘‘snp covar.’’ After the phenotype files are loaded, the com-
mand ‘‘allsnp’’ adds as covariates any fields bearing the ‘‘snp_’’ prefix, ignoring
other fields in the phenotype files (covariates already in the base model will be
retained). If not all SNPs are to be included in the analysis, an alternative ap-
proach is to add the ‘‘-list snp_list_filename’’ option to the ‘‘bayesavg’’ com-
mand. The list file should have each desired SNP name on a separate line.

The BQTN analysis itself is started with the ‘‘bayesavg -qtn’’ command
(plus the ‘‘-list snp_list_filename’’ option, if desired, to restrict the set of SNPs
included in the analysis). The partial output from an analysis of the GAW12 data
is as follows:

solar� load model q1/null1
solar� bayesavg -qtn -nostop -list snp-list
*** Testing covariates: snp_993 snp_4848 snp_5007 snp_9616 ...

*** N is 11
*** Number of models is 2048

*** Maximizing base model cov0 (unsaturated)
*** Loglikelihood of cov0 is -1594.645259

*** Samplesize is 1000
*** Estimated log(n) is 6.9077553
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Model BIC Loglike H2r H2r SE bsnp_993 ...
...

cov0 0.0000 -1594.645 0.2846802 0 0 ...
*** Best BIC in degree 0 is 0.0 for model cov.base
cov1 -122.2208 -1530.081 0.4367194 0 2.3394365 ...
cov2 -3.7212 -1589.331 0.2769106 0 0 ...
. . .
cov2_3_4_5_6_7_8_9_10_11 -212.4575 -1453.878 0.60881 0 ...
*** Best BIC in degree 10 is -216.0017232 for model
cov1_3_4_5_6_7_8_9_10_11
cov1_2_3_4_5_6_7_8_9_10_11 -209.1007 -1452.102 0.6180175 0 ...

*** Sorting output file
*** Maximizing cov3 for standard errors
*** log(n) calculated from cov3 is 6.6341545
*** Re-sorting output file with changed BIC’s
*** Number of Models in Window: 1
*** Window: cov3

Component Average Std Error Probability

H2r 0.60521 0.062889046 1
snp_993 0 0 0
snp_4848 0 0 0
snp_5007 4.0728172 0.2162492 1
snp_9616 0 0 0
snp_11146 0 0 0
snp_11782 0 0 0
snp_11981 0 0 0
snp_12408 0 0 0
snp_12716 0 0 0
snp_14425 0 0 0
snp_14544 0 0 0

*** Averages written to q1/bayesavg_cov.avg
*** Model results written to q1/bayesavg_cov.out
*** Messages written to q1/bayesavg_cov.history
*** Model with best BIC loaded: cov3

As indicated at the end of this output, a number of output files were written
to the trait directory using the ‘‘bayesavg’’ command. These include the file
‘‘bayesavg_cov.history,’’ which is shown here:

*** Testing covariates: snp_993 snp_4848 snp_5007 snp_9616 ...

*** N is 11
*** Number of models is 2048

*** Maximizing base model cov0 (unsaturated)
*** Loglikelihood of cov0 is -1608.800021
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*** Samplesize is 1000
*** Estimated log(n) is 6.9077553

*** Best BIC in degree 0 is 0.0 for model cov.base
*** Best BIC in degree 1 is -299.87672072 for model cov3
*** Best BIC in degree 2 is -294.29644544 for model cov3_8
*** Best BIC in degree 3 is -290.23809016 for model cov1_3_11

*** No models with degree 3 were in window
*** Best BIC in degree 4 is -284.27019488 for model cov1_3_8_11

*** No models with degree 4 were in window
*** Best BIC in degree 5 is -277.77713160 for model cov1_3_7_8_11

*** No models with degree 5 were in window
*** Best BIC in degree 6 is -271.21666432 for model cov1_3_4_8_10_11

*** No models with degree 6 were in window
*** Best BIC in degree 7 is -264.45432904 for model cov1_3_4_7_8_10_11

*** No models with degree 7 were in window
*** Best BIC in degree 8 is -257.78160376 for model cov1_3_4_5_7_8_10_11

*** No models with degree 8 were in window
*** Best BIC in degree 9 is -251.07810248 for model
cov1_3_4_5_6_7_8_10_11

*** No models with degree 9 were in window
*** Best BIC in degree 10 is -244.31124721 for model
cov1_3_4_5_6_7_8_9_10_11

*** No models with degree 10 were in window

*** Sorting output file
*** Maximizing cov3 for standard errors
*** log(n) calculated from cov3 is 6.6341544
*** Re-sorting output file with changed BIC’s

*** Averages written to q1/bayesavg_cov.avg
*** Model results written to q1/bayesavg_cov.out
*** Model with best BIC loaded: cov3

Marginal tests for the Bayesian QTN analysis are performed using the
‘‘qtnm’’ command. Both tabular and graphical output are generated with this
command (see Figure 2).

Bayesian QTN analysis can also be conducted for the SNP haplotypes. As
with the SNP genotypes, the haplotypes are recoded as covariates and read in by
the ‘‘load phenotypes’’ command. The haplotype recoding is performed using the
‘‘snphap covar’’ command.
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