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Quantitative geneticists have become interested in the

heritability of transcription and detection of expression

quantitative trait loci (eQTLs). Linkage mapping

methods have identified major-effect eQTLs for some

transcripts and have shown that regulatory polymorph-

isms in cis and in trans affect expression. It is also clear

that these mapping strategies have little power to

detect polygenic factors, and some new statistical

approaches are emerging that paint a more complex

picture of transcriptional heritability. Several studies

imply pervasive non-additivity of transcription, trans-

gressive segregation and epistasis, and future studies

will soon document the extent of genotype–environ-

ment interaction and population structure at the

transcriptional level. The implications of these findings

for genotype–phenotype mapping and modeling the

evolution of transcription are discussed.
Introduction

Microarray-based gene expression profiling has provided
a key with which quantitative geneticists can begin to
open up the ‘black box’ that lies between genotype and
phenotype. For almost a century, mathematical models of
inheritance have assumed a fairly simple mapping of
genetic onto phenotypic variation: allelic effects are
modeled as if they have small and similar effects and act
in a predominantly additive manner [1]. Although
mechanistic intuition and an increasingly large body of
empirical data [2] contradict these assumptions, there
have not been any genome-scale methods to test for the
prevalence of phenomena such as epistasis and genotype–
environment interaction. An emerging approach is to ask
whether the parameters of gene activity at the level of
transcription regarding additivity, heritability and com-
plexity parallel those of classical phenotypic traits.

The objectives of this research program are to apply
quantitative and population genetic methodologies to the
dissection of the genetic basis of disease and complex
traits, and to generate sophisticated models of the
evolution of transcription (and hence of morphological,
physiological and behavioral evolution). To date, much of
the literature, recently reviewed by Stamatoyannopoulos
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[3], has involved descriptive studies that apply standard
statistical procedures to new transcriptomic data sets. In
this review, we address three fundamental questions that
have arisen naturally: how heritable is transcription, is it
possible to identify genes that affect transcriptional
variation, and how is transcriptional variation structured
within populations? We then conclude with some obser-
vations on the potential impact of gene expression
profiling on disease mapping and understanding the
roles that drift and selection have in biological evolution.
The heritability of transcription

Estimates of genetic variance and heritability

Heritability refers to the proportion of the phenotypic
variance among individuals in a population that can be
attributed to genotypic (as opposed to environmental and
random) differences. It is most commonly measured either
by assessment of the resemblance among relatives, or by
comparison of the variance among individuals having
different genotypes with that observed among individuals
having the same genotype [1]. Soon after the development
of microarrays, studies of yeast [4,5], mice [6,7], flies
[8–10], fish [11,12] and humans [13,14] all suggested a
strong component of differential expression among geno-
types, but because of experimental shortfalls most of these
did not provide a direct estimate of heritability. Further-
more, any statement about the proportion of genes that
vary because of genotype is necessarily a function of the
statistical power of the experiment [7], in particular the
number of replicates of each class of individual. There is a
common misconception that the resolution of expression
profiling is limited by microarray technology – and that
verification techniques such as quantitative reverse
transcription-polymerase chain reaction (RT-PCR) are
more accurate – but actually the ability to detect small
differences in transcript abundance is a statistical issue.
Moderate replication can generally uncover differences as
small as 1.5-fold, but if the resources permit – say, ten
replicate measurements of several genotypes – there is no
reason why differences as small as 1.2-fold or less cannot
be attributed to the genotype. Nevertheless, there is now a
reasonable expectation that for any tissue from any
organism sampled under a particular set of environmental
conditions, 10%–50% of the transcripts will be found to
vary as a result of heritable differences [3].
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Several recent studies have turned to pedigree analysis
for the measurement of heritability, notably using the
Centre d’ Etude du Polymorphisme Humain (CEPH) panel
of transformed lymphoblasts [15]. Two different groups,
using Affymetrix short-oligonucleotide [16] (http://www.
affymetrix.com/index.affx) and Agilent long-oligonucleo-
tide [17] arrays (http://www.agilent.com), independently
concluded that a large proportion of the human lympho-
blastoid transcriptome varies between individuals. These
experiments used three-generation pedigrees consisting of
four grandparents, two parents and up to ten children.
Heritability of transcription for each gene can be
measured from parent–offspring regression between
each pair of generations, or using the complete data set
in a restricted maximum likelihood framework. Ideally,
heritability estimates computed independently for the
same trait in a similar sample of individuals should be
very similar. However, re-analysis of the CEPH data
suggests that this is not the case: heritability estimates for
all differentially expressed genes, inferred from grand-
parent to parent, parent to children, or across all three
generations, are not correlated (D. Nielsen, personal
communication). This means that sample sizes of the
order of 100 individuals are too small to support robust
estimates of heritability [18], or that there are unknown
sources of experimental artifact (perhaps relating to
sample processing in batches) that produce false positive
measures of genetic variance components, or that the
genetic components affecting transcription vary them-
selves from generation to generation as a result of the
complexity of the architecture of the variation. We suspect
that all three factors are operating, and although
cautioning against too literal an interpretation of
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heritability (and hence expression QTL) measurements,
note that these are early days and that much more robust
estimates of quantitative genetic parameters of transcrip-
tion are both needed and in progress.
Mutational variance

A complementary approach to demonstrating heritability
is to monitor the divergence among replicate lines derived
from an isogenic strain as they accumulate mutations over
the course of several hundred generations [19]. This
approach has been taken recently in studies of flies
(S. Rifkin, personal communication) and nematodes [20],
both of which arrived at two robust conclusions. First,
genes are affected by mutations that alter transcript
abundance considerably more rapidly than they accumu-
late changes in the DNA sequence. This observation is
simply attributed to the likelihood that mutations in
numerous genes can affect the transcription of any one
locus, and that single transcription factors regulate
numerous target genes. It implies that a new mutation is
likely to be predominantly trans acting, a fact that is
particularly intriguing in light of the finding (using a clever
pyrosequencing assay) that transcriptional differentiation
between species is at least as likely to be caused by cis- as
trans-acting polymorphisms [21]. Second, mutation
accumulation lines diverge at least an order of magnitude
more rapidly than would be expected on the basis of
observed levels of divergence among natural isolates. This
is strong evidence that stabilizing selection is a potent force
constraining divergence at the transcriptional level.
Similar observations have been made regarding isolated
morphological phenotypes, but this is a striking result
applied to tens of thousands of expression phenotypes.
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Clearly, mutation is not a limiting factor with regards to the
production of variation for transcript abundance.
Non-additivity of transcription

The next question we can ask is whether transcriptional
variation is largely additive or not. That is, if expression
differs between two lines, and these are crossed, do the
progeny show an intermediate level of mRNA? The first
transcriptome-wide assessment of this question was
conducted by Wayne, Nuzhdin and colleagues in a study
of the reciprocal F1 of two isogenic strains of Drosophila
[22]. Remarkably, twice as many genes differentiated
either F1 from the parents as differentiated the two
parental lines, and more detailed analysis of the modes of
inheritance implied pervasive non-additivity. Numerous
examples were observed of over- and under-dominance (F1
with higher or lower expression respectively than either
parent), parent-of-origin, maternal and reciprocal F1
effects, indicating an unexpected complexity to the
mapping of genotype onto transcriptional phenotype.
Similar results have been observed in studies targeting
specific candidate genes in maize [23] and wheat [24], in a
massively parallel signature sequencing (MPSS) analysis
of hybrid oysters [25] (D. Hedgecock, personal communi-
cation), and appear in another species of Drosophila [26]
as well as in re-analysis of the aforementioned CEPH
pedigrees (G. Gibson, unpublished data).

It is tempting to relate such non-additivity of transcrip-
tion to phenomena such as heterosis and hybrid invia-
bility, but it is not clear that this is appropriate. Maize and
oyster breeding both rely on hybrid vigor to increase yield
and so there is great interest in detecting genes that are
differentially expressed in hybrids, but there is no
evidence that this expression is responsible for phenotypic
differentiation – particularly in regard to economically
important traits. In fact, traditional models of heterosis
assume either masking of deleterious recessive alleles in
(a) (b)
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heterozygotes, or summation of the effects of a series of
dominant alleles, neither of which need be reflected at the
transcriptional level. There is, however, a pressing need
for studies that explicitly relate transcriptional variation
among genotypes to phenotypic variation [27].
Relationship to phenotypic heritability

A basic question in this regard is whether the heritability
of transcription for genes that regulate a trait is greater or
less than the heritability of the trait itself. Several
possible scenarios are diagrammed in Figure 1; unfortu-
nately no data sets that we are aware of address this
fundamental problem. Given two regulatory polymorph-
isms that affect both transcription and a visible pheno-
type, it should be possible to measure both the mean and
the variance of the phenotypes of each two-locus genotype.
Transcriptional heritability might be relatively low either
because small transcriptional differences are amplified
into large phenotypic differences through later develop-
mental processes, or because transcription is inherently
‘noisy’. Conversely, transcriptional heritability might be
relatively high either because later development tends to
buffer large differences in transcript abundance, or
because control of transcription is tight and additional
noise is introduced post-transcriptionally.

The precision of the mapping of genotype onto
phenotype will be strongly affected by the nature of the
relative magnitudes of transcriptional and phenotypic
heritability. Furthermore, it cannot be assumed that
additive effects at the phenotypic level reflect additive
contributions at the transcriptional level. A radical
prospect, at least in light of classical quantitative genetic
theory, is that epistasis for transcription is rampant, and
that relatively chaotic gene expression is buffered at the
level of translation, protein function and cellular inter-
action, producing an apparently more orderly phenotypic
output. On this view, genetic additivity is more
TRENDS in Genetics 
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appropriately viewed as an averaging over thousands of
possible transcriptional states than a reflection of precise
mapping of genotype onto transcript abundance and in
turn onto phenotype. Assessment of the quantitative
relationship between these levels of variation is thus
fundamental. It will also be fascinating to ask how
often the variability of transcription measured across
individuals is increased under perturbed circum-
stances, as it appears to be in a mouse model of
Down syndrome [28], implying decanalization at the
level of gene expression [29].
The genetic architecture of transcription

Expression QTL designs

Expression quantitative trait loci, or eQTLs, are peaks of
statistical significance in a genome-wide scan for linkage
between genetic markers and transcript abundance
[30,31]. The basic experimental design of eQTL studies
(Figure 2) is identical to that of classical F2 or
recombinant inbred line linkage mapping for visible
quantitative traits, except that tens of thousands of
phenotypes (individual gene expression levels) are eval-
uated simultaneously. Studies have been reported to date
for yeast [32,33], eucalyptus [34], mice [35–37], rats [38],
maize [35] and humans [16,17,35]. In the rodent
examples, eQTLs have been evaluated jointly with QTLs
for obesity or other physiological traits, leading to novel
insights that will not be discussed here. An example of a
practical outcome has been the identification of a major-
effect gene for lignin biosynthesis in forest trees [34].

The most notable conclusion from all of these studies is
the ease with which at least one QTL can be identified for a
majority of all transcripts that show heritable variation.
Whereas visible trait variation is often described by
several QTLs that collectively account for up to half of
the genetic variance and individually rarely O20% of it,
the summary in Table 1 shows that eQTLs accounting for
25%–50% of transcriptional variation are prevalent.
These measures are likely to be overestimates of the
magnitude of effect as a result of sampling biases in
exploratory studies (Beavis effects [39]), and should not be
extrapolated to the conclusion that single genes explain
this proportion of the variation in a population. However,
Table 1. Summary of eQTL studies

Tissue n Platform Genes on

array

Differentially

expressed genes

Mouse liver 111 Agilent 23 574 7861

Maize 76 Agilent 24 473 18 805

Yeast 86 Custom open

reading frames

6200 2294

Eucalyptus 91 cDNA 2608 12d

Human

CEPH

112 Affymetrix 8500 3554

Human

CEPH

167 Agilent 23 499 2499

Rat kidney 30 Affymetrix 15 923 1553

Rat fat body 30 Affymetrix 15 923 2046

Mouse HSC 30 Affymetrix 12 422 Not applicable

Mouse brain 35 Affymetrix 12 422 608
aSome studies report number of markers, whereas others report approximate marker d
bReported significance threshold: gwp, genome-wide P value; fdr, false discovery rate;
cThe proportion of eQTLs that map to the same interval as the transcript (this proportio
dThese authors only reported eQTL analysis for a subset of enzymes involved in lignin
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it is clear that major-effect QTLs are more prevalent than
many investigators would have expected.
Cis- and trans-acting eQTLs

A second major conclusion is that up to one-third of eQTLs
are cis acting, as summarized in Table 1. This means that
the eQTL maps to the same genomic location as the gene
whose variation it explains, at least within the limits of
mapping resolution. In most of these cases, intuition
suggests that the eQTL effect is likely to be caused by
polymorphism in the regulatory region of the gene,
namely sequence variation in the binding sites for
transcription factors. Proof that this is the case requires
either transgenic assays that demonstrate differential
gene expression from constructs containing two different
regulatory alleles, or demonstration of an association
between a regulatory polymorphism and transcript
abundance in a separate sample of individuals. Examples
of the latter were provided by Morley et al. [16], who
demonstrated that for several cis-acting eQTLs identified
by linkage mapping between parents and offspring in the
CEPH pedigrees, promoter polymorphisms showed associ-
ation with transcript abundance in the grandparents.

Remarkably, several of these instances suggest that the
regulatory polymorphism accounts for O50% of the
transcriptional variance, resulting in P values for
the test statistic !10K10, despite sample sizes of !50
individuals. This result might not be surprising to
experimentalists who are familiar with cellular transfec-
tion studies, which often demonstrate that a regulatory
polymorphism has a measurable impact on transcription.
From a quantitative genetic standpoint, though, magni-
tudes of effect this large can rarely be attributed to single
QTLs associated with directly observable phenotypes.
Data such as this support the view that transcriptional
heritability is likely to be higher than phenotypic
heritability, at least in some circumstances.

Equally impressively, most of these studies also detect
eQTL ‘hotspots’ that explain variation for multiple
transcripts. The straightforward interpretation of these
cases is that the eQTL identifies a regulatory gene that
coregulates as many as 25 downstream targets (but see
Refs [18,40] for a more critical interpretation).
Markersa eQTL (threshold)b cis eQTLsc Refs

13 cM 4339 (gwp 0.05) 34% [35]

12 cM 7372 (LOD 3.0) Not applicable [35]

3114 1011 (P!0.000 04) 25% [33]

10 cM 9 (gwp 0.05) 22% [34]

1 cM 142 (gwp 0.001) 19% [16]

4 cM 132 (P!0.0005) 19% [16]

1011 2490 (gwp 0.05) 30% [38]

1011 2118 (gwp 0.05) 35% [38]

779 352 (gwp 0.01) 33% [36]

779 88 (fdr 0.10) 92% [37]

ensity in cM.

LOD, likelihood cutoff.

n is also affected by statistical thresholds).

biosynthesis.
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Permutation methods are used to define the maximum
number of transcripts expected to map to one genomic
interval given the number of observed linkage peaks. By
relaxing stringency to adjust the balance between false
positive and false negative detection of eQTLs, more
hotspots can be identified, in the hope that key candidate
genes can be located for more detailed evaluation.
Although many of the pleiotropic eQTLs probably encode
transcription factors, the analysis of the yeast data set
that has the highest density of genotype markers [33] led
to the confident conclusion that many of them also encode
a range of different types of regulatory gene that could
have indirect effects on transcription of the target gene.

It should also be noted that the proportion of eQTLs
that are found to be trans acting tends to drop as the
stringency for eQTL detection is increased [41]. Several of
the studies suggest that cis-acting eQTLs typically have
larger effects on transcription, and so tend to be associated
with smaller P values. Indeed, the last study reported in
Table 1 adopted a very stringent statistical cutoff, and
perhaps as a consequence found that the majority of
eQTLs were cis acting. A further concern relates to the
possible impact of sequence polymorphism on estimation
of transcript abundance in microarray studies, which will
also tend to elevate the number of cis-acting eQTLs
detected. Some of these could be false positives as a result
of linkage disequilibrium between regulatory and coding
single nucleotide polymorphisms (SNPs) [41].

Transcriptional variation is probably highly polygenic

It is important to recognize that even in the cases where a
major-effect eQTL explains half of the genetic variance for
transcript abundance, the other half remains to be
accounted for, and in most cases will be caused by
undetected loci. Because conservative thresholds of
detection are required to adjust for the extraordinarily
large number of comparisons involved in a genome-wide
linkage scan for several thousand transcripts (the so-
called ‘multiple comparison problem’), most true eQTLs
remain undetected. Only relatively few of the transcripts
in the aforementioned studies are associated with
multiple eQTLs, generally because the main effects of
secondary eQTLs (those that explain !20% of the
variance) are below the detection threshold. Again, this
is an experimental design and/or statistical problem, not a
technical issue related to the use of microarrays. A
rigorous method for detecting two-locus effects and
interactions has just been introduced [42], and several
groups are working on new strategies employing multiple
interval mapping methods [43], or comprehensive model
comparisons, in an attempt to gradually increase the
resolution of eQTL mapping. Adoption of false discovery
rates [44] will probably be crucial to this endeavor, but for
the time being it is unlikely that epistatic interactions
involving loci other than those that contribute major
effects will be detected routinely. Impressive as they have
been, eQTL approaches are also undoubtedly giving a
biased view tending towards an oversimplified view of
transcriptional regulation.

For this reason, Brem and Kruglyak recently turned
the problem on its head [45], and instead of focusing on
www.sciencedirect.com
identifying eQTLs asked whether increasingly polygenic
models explained more of the variance for transcription in
the yeast data set. Their major conclusion is that
transcription is more often likely to be highly polygenic
than monogenic: only 3% of highly heritable transcripts
are consistent with single locus inheritance, 18% suggest
control by two loci, and O50% require at least five loci
under an additive model (Figure 3). They also argue that
more than half of all transcripts show transgressive
segregation (transcript abundance in F2 progeny falls
outside the range of both grandparents) and that O15%
are better explained by models that include epistatic
interaction. Clearly, the landscape of gene expression in
yeast is genetically complex, and it is difficult to imagine
that it will be anything but more complex in higher
eukaryotes.
The population structure of transcription: transcrip-

tional frequency classes and cliques

QTL mapping necessarily provides only a partial picture
of the architecture of genetic variation, because it is
restricted to analysis of the variation segregating in a
cross between two strains. The most important question it
leaves unanswered concerns the frequency distribution of
QTL effects in natural populations: are the frequencies of
the two eQTL alleles more often equally common, skewed
towards one major allele, or are eQTL effects more often
the result of rare alleles? Unfortunately, resolution of this
issue requires dissection of the eQTL to the nucleotide
level, and there are no high-throughput methods yet

http://www.sciencedirect.com
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available for this. With respect to transcription, though,
we also need to address the distribution of transcript
abundance across the transcriptome, as well as the
covariance of transcript classes. Although a few studies
have sampled dozens of individuals, none has yet
addressed the statistical issues involved in defining the
frequency distribution of transcript abundance. The core
issues are schematized in Figure 4, which introduces the
concept of ‘transcriptional frequency classes’ (TFCs),
namely classes of transcript abundance among individ-
uals in a population that can be distinguished from one
another.

If major-effect eQTLs are indeed common, then it
should be expected that gene expression will often depart
from a normal frequency distribution. A dominant cis-
acting regulatory polymorphism segregating at an allele
frequency of 0.3, for example, might give rise to a bimodal
transcript distribution with approximately equal pro-
portions in each class. Large additive effects might even
give rise to trimodal distributions. Unlike genotype
frequencies, for which a large body of theory predicts
expected distributions with the majority of minor allele
frequencies !5%, there is no theory predicting the
distribution of transcriptional frequencies, because these
will generally be influenced by both cis- and trans-acting
loci. The detection of TFCs is complicated by the fact that
departures from normality caused by skew and/or a small
fraction of outliers are not easy to support statistically,
and technical measurement error is likely to be high
relative to genotypic differences when just one or two
microarrays are performed per sample. Nevertheless, we
have fitted mixture models [46] to data from 58 lines of
Drosophila and using a Bayesian information criterion
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found evidence for a slight excess of multimodal transcript
distributions suggesting that at least 5% of the tran-
scriptome could show distinguishable frequency classes of
transcription (W. Hsieh et al., unpublished data).

If major-effect eQTLs are trans acting and regulate
several target transcripts in a similar manner, it might be
further predicted that suites of transcripts are coregulated
so that the frequency classes fall into clusters. We call
these clusters ‘transcriptional cliques’, and note that the
clustering is not the result of linkage and so might only
weakly carry across generations. If a high degree of
transcriptional clique structure is prevalent within
populations, it would have profound implications for
understanding the molecular basis of phenotypic covari-
ance, evolutionary constraint, disease mapping and
modeling transcriptional divergence. Measurement of
the population structure of transcription is treated in
more detail in Box 1.
Concluding remarks: towards models of the evolution of

transcription

Quantitative characterization of transcript abundance
within and among populations has several practical
applications in biomedical and agricultural research, as
well as evolutionary biology. These include scanning for
transcripts whose abundance correlates with a quantitat-
ive phenotype, searching for functional associations
among genes that fall into transcriptional cliques (genes
that are coregulated often function together), and control-
ling for population structure in the search for transcripts
that are associated with disease. Just as differences in
allele and disease frequency between populations can lead
to false positive attribution of genetic susceptibility to
TRENDS in Genetics 
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Box 1. Measures of population structure

As argued in the main text, it is likely that there is considerable

population structure to the distribution of transcript abundance.

Aside from a handful of studies documenting differential expression

between populations or species, theoretical and statistical treatment

of this topic is lacking. We envisage two complementary approaches

to robust definition of population structure, employing modified FST

and QST statistics [48,49]. Assuming that bimodal or even multi-

modal transcript frequency classes can be detected, as suggested in

Figure 4, expression in each individual can be assigned to a

particular TFC (transcript frequency class), and the frequency

distribution of these compared across populations. A quantitative

analog of this approach known as QST analysis seeks to determine to

what degree continuous frequency distributions vary among

populations.

Comparison of transcriptional QST (tQST) and genotypic FST

statistics is a promising approach to detection of selection on

transcript abundance, as first suggested by Lewontin [50], discussed

in Refs [51–53], recently reviewed in Ref. [54] and implemented in

relation to human disease in Refs [55,56]. The logic of the approach

rests on the realization that FST serves both as a measure of

population differentiation and as a measure of relationship within

populations. For allele frequencies, the between-population variance

component is proportional to FST statistics, whereas for a quantitat-

ive trait FST determines the covariance of trait values for pairs of

individuals in the same population. For a haploid organism and a

trait with additive genetic variance s2
A and non-genetic variance s2

e ,

the trait value variance components within and between populations

are vw Z ð1KFSTÞs
2
A Cs2

e

� �
and vb Z FSTs2

A Cs2
e

� �
respectively. The

quantity defined as QST for quantitative traits, vb/(vbCvw), is then

algebraically equivalent to h2FST, the product of heritability and FST.

Consequently, the degree of divergence among populations in

transcript abundance measured by tQST is expected to be

proportional to the narrow-sense heritability of transcription, and

the inference of selection based on transcriptional divergence

requires detailed knowledge of the genetic variance components

underlying gene expression.
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disease, the use of transcript abundance to define
disease must be considered in the context of population
variation [47].

The linkage between population genetic variation and
divergence among species requires precise study of
mutational, genetic and environmental variance com-
ponents, all of which are now achievable at the gene
expression level. However, technical and experimental
design issues need to be addressed to handle the large data
sets that are being generated, and new statistical tools are
still being evaluated. Furthermore, novel population
genetic theory will be required to deal with the covariance
structure and potential non-additivity of transcript
abundance. New data sets are needed that explicitly
address the degree of family and population structure for
gene expression and, where possible, evaluate gene
expression simultaneously with visible phenotypic trait
variation that is expected to be regulated by the
transcripts being measured. It will be exciting to track
the impact of this new transcriptional perspective on our
basic understanding of biological evolution.
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54 Merilä, J. and Crnokrak, P. (2001) Comparison of genetic differen-
tiation at marker loci and quantitative traits. J. Evol. Biol. 14,
892–903

55 Rockman, M.V. et al. (2003) Positive selection on a human-specific
transcription factor binding site regulating IL4 expression. Curr. Biol.

13, 2118–2123
56 Rockman, M.V. et al. (2004) Positive selection on MMP3 regulation has

shaped heart disease risk. Curr. Biol. 14, 1531–1539
anniversaries with

n the developing world

ss in the Netherlands, publishing works by scholars such as John

eorge Robbers founded the modern Elsevier company intending,

classics for the edification of others who shared his passion, other

k, visually stamping the new Elsevier products with a classic old

ar. Elsevier has since become a leader in the dissemination of

tation for excellence in publishing, new product innovation and

anniversary of the modern Elsevier company, Elsevier will donate

k in Your Name’, each of the 6 700 Elsevier employees worldwide

book donated by Elsevier. The core gift collection contains the

ding Gray’s Anatomy, Dorland’s Illustrated Medical Dictionary,

edical, Nursing and Allied Health Dictionary, The Vaccine Book,

sia. They include the Library of the Sciences of the University of

Sciences of the University of Dar es Salaam, Tanzania; the library

ies of the University of Zambia, Universite du Mali, Universidade

versidad San Francisco de Quito, Ecuador; Universidad Francisco

chnological Information (NACESTI), Vietnam.

mately 700 books at a retail value of approximately 1 million US

sit www.elsevier.com

http://www.sciencedirect.com

	The quantitative genetics of transcription
	Introduction
	The heritability of transcription
	Estimates of genetic variance and heritability
	Mutational variance
	Non-additivity of transcription
	Relationship to phenotypic heritability

	The genetic architecture of transcription
	Expression QTL designs
	Cis- and trans-acting eQTLs

	Transcriptional variation is probably highly polygenic
	The population structure of transcription: transcriptional frequency classes and cliques
	Concluding remarks: towards models of the evolution of transcription
	Acknowledgement
	References


