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Abstract-Protein sequences contain surprisingly many local regions of low compositional complexity. 
These include different types of residue clusters, some of which contain homopolymers, short period 
repeats or aperiodic mosaics of a few residue types. Several different formal definitions of local complexity 
and probability are presented here and are compared for their utility in algorithms for localization of such 
regions in amino acid sequences and sequence databases. The definitions are:--(l) those derived from 
enumeration (I priori by a treatment analogous to statistical mechanics, (2) a log likelihood definition of 
complexity analogous to informational entropy, (3) multinomial probabilities of observed compositions, 
(4) an approximation resembling the x2 statistic and (5) a modification of the coefficient of divergence. 
These measures, together with a method based on similarity scores of &f-aligned sequences at different 
offsets, are shown to be broadly similar for first-pass, approximate localization of low-complexity regions 
in protein sequences, but they give significantly different results when applied in optimal segmentation 
algorithms. These comparisons underpin the choice of robust optimization heuristics in an algorithm, 
SEG, designed to segment amino acid sequences fully automatically into subsequences of contrasting 
complexity. After the abundant low-complexity segments have been partitioned from the Swissprot 
database, the remaining high-complexity sequence set is adequately approximated by a first-order random 
model. 

1. INTRODUCTION 

Natural protein sequences are very different from 
random strings of 20 amino acids. In recent years an 
increasing proportion of polypeptide sequences trans- 
lated from cloned genes or cDNAs have revealed 
many highly non-random regions. These include clus- 
ters of glycine, proline, alanine, glutamine, serine, 
histidine, glutamate, aspartate, arginine, lysine, as- 
paragine or threonine residues, commonly in homo- 
polymeric tracts or in mosaic sequence arrangements, 
some of which contain regular or irregular short- 
period tandem repeats. A recent study that analyzed 
amino acid sequence databases globally (Wootton & 
Federhen, 1993) found that approx. 40% of sequence 
entries contain at least one such cluster and approx. 
15 % of the residues in the database occur in segments 
of improbably low compositional complexity. These 
clusters are very poorly understood at the molecular 
level and they were not anticipated from classical 
structural studies of globular proteins. Their compo- 
sitional biases are very much greater than the rela- 
tively well-understood constraints observed in 
secondary structure elements and supersecondary 

* The preliminary version of this work was presented during 
the Second International Workshop on Open Problems oj 
Computafional Molecular Biology, Telluride Summer 
Research Center, Telluride, Colo., 19 July-2 August 
1992. 

t Author for correspondence. 

structural motifs that are familiar from crystal and 
NMR structures. 

The work reported here provides a foundation for 
algorithms that analyze the local complexity of pro- 
tein sequences and make automated segmentation of 
sequences on the basis of defined complexity charac- 
teristics. Such algorithms are important because de- 
scription and classification of the low-complexity 
sequences of proteins can provide a focus for further 
research. Why, for example, do such residue clusters 
occur so commonly? This turns out to be a profound 
question that bears on many aspects of protein 
structure and interactions, biological function, 
genome structure and mutational flux. As a typical 
illustration, a recently-determined human sequence, 
RING3 (Beck et al., 1992), which contains several 
low-complexity segments of unknown function and 
shows an interesting distribution of homology to the 
Drosophila Fsh protein (Haynes et al., 1989, 1992), is 
shown in Fig. 1. This example also illustrates the 
application of one automated segmentation algor- 
ithm that is based on some of the formalisms devel- 
oped in this report. 

The great majority of low-complexity clusters 
are relatively short subsequences, in the length range 
of 1 S-50 residues, that do not resemble the function- 
ally well-understood, abundant structural proteins 
such as keratins, collagens and elastins. Although 
little is known about their molecular structures, 
dynamics and interactions, several distinct classes 
of low-complexity clusters are strikingly abundant 
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in many eukaryotic proteins that are, known from 
genetic experiments to be crucial in morphogenesis, 
embryonic development, transcriptional regulation, 
binding to chromatin and nuclear RNA, signal trans- 
duction, aspects of cellular structural integrity or 
extracellular structure and interactions. These are 
typically large, multidomain proteins, in many cases 
containing other modules whose likely structure and 
function can be identified by means of sequence 
homology. In some cases, domain homology provides 
part of a rationale for defining the boundaries of 
neighboring low-complexity segments, as deduced 
from the human and Drosophiia homologs in the 
example shown in Fig. 1. DNA sequences encoding 
low-complexity segments provide evidence for a high 
frequency of fixation of mutational changes such as 
recombinational repeat expansion and DNA replica- 
tion slippage in addition to nucleotide substitutions, 
deletion and insertions. Major open questions include 
the range of phenotypic consequences of these 
mutational events, the extent to which the observed 
spectrum of residue clusters in proteins is generated 
by mutational drive, and the magnitude of the genetic 
load imposed by this type of genome/phenotype flux. 

Given this range of important aspects of research 
on low-complexity segment5 of protein sequences, it 
is necessary to base the computational analysis of 
them on precise formalisms of local complexity and 
compositional probability. In this report, we compare 
severat such definitions for their utility in analyses of 
protein sequence databases and in optimal partition- 
ing algorithms. These studies underpin the choice of 
definitions for the SEG algorithm for automated 
segmentation of amino acid sequences into regions of 
high and low complexity, details and applications of 
which are described separately (Wootton & Feder- 
hen, 1993). 

2. LOCAL COMPLEXITY AND PROBABILITY 

In this section, we develop definitions of the 
local “complexity” and “probability” of the possible 
subsequences of a linear biopolymer. Some of 
these definitions are based on a technique analogous 
to the enumeration of microstates in classical 
statistical mechanics. A more general technique 
that is rooted in statistics and information theory 
and achieves similar goals is the method of types 
(Csiszar & Korner, 1981; Cover & Thomas, 199 1). In 
part, the theory presented here is an extension of the 
treatment used for short oligonucleotides by 
Konopka & Owens (1990a, b) and Salamon & 
Konopka (1992). 

Let the biopolymer have IV types of residues (an 
N-letter alphabet, usually N = 4 or 20) and consider 
a subsequence or window of length L residues. Stat- 
istical properties of each theoretically-possible or 
observed window may be defined at three levels: (1) 
complexity state or numerical partition, (2) compo- 
sition or “coloring” or (3) sequence. 

Complexity state 

Each window has a number of occurrences of each 
of the N letters or residues. The complexity state of 
the window is defined by the sorted vector of these N 
numbers, irrespective of which specific letter or 
residue is assigned to each number. Thus each 
window of length L has a complexity state vector S, 
whose N elements, nj have the properties:- 

I= I 

and, in order to make a unique sorted vector that 
defines the state, n,> n,+,. These complexity state 
vectors, Sj, were named “repetition vectors” by Sala- 
mon & Konopka (1992). Each S, represents a differ- 
ent partition of the integer L into N integers that sum 
to L. To generate and enumerate the S, vectors is a 
known problem of restricted partitioning in number 
theory (Hardy & Wright, 1938). For the compu- 
tations described here, data structures based on trees 
were implemented to generate the complete set of 
vectors for any values of N and L. The numbers of 
complexity state vectors for different window lengths 
L is shown for the N = 20 amino acid alphabet in 
Fig. 2. 

The importance of representing sequence windows 
as numerical partitions is that these vectors have the 
property “complexity” that depends only on the 
numbers N, L and ni, irrespective of the probabilities 
of occurrence of the states and their particular residue 
compositions. This may be illustrated by the follow- 
ing example of the ZO-letter amino acid alphabet and 
window length 20, for which there are 627 possible 
states. These include the “least complex” vector 

(200000000000000000000) 

and the “most complex” 

(1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1). 

These are both expected to be very improbable in 
typical random amino acid sequences. In contrast, 
some of the states of intermediate complexity, e.g. 

(42222111111110000000) 

(32222111111111000000) 

typically occur relatively frequently. The second of 
these has slightly greater numerical complexity than 
the first. Two different measures that correspond to 
this intuitive concept of numerical complexity, “com- 
plexity”, K, , and “entropy”, &. are defined below, 
together with different measures of the probabilities 
of complexity states based on different prior proba- 
bilities of the 20 amino acids. 

Composition or “‘coloring ” 

Each complexity state vector, as defined above, has 
a number of different residue compositions corre- 
sponding to all possible assignments of the N letters 
(residues) to the N numbers in each vector S,. These 
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0 

b 10 20 30 40 
Window length 

Fig. 2. The numbers of complexity states for the N = 20 amino acid alphabet at window lengths up to 
L = 40. The logarithmic scale of complexity states is to base IO. 

compositions, which represent, for example, the 
familiar biochemical concept of peptide amino acid 
compositions, are named “colorings” in Salamon & 
Konopka (1992). The number of compositions of any 
complexity state, denoted F here following the usage 
“Farben”, is given by: 

F= 
N! 

7’ (1) 

k!” rk ! 

Here, the values of r, are the counts of the number 
of occurrences of each number in the complexity state 
vector S,. Formally, 

and, by convention, O! = I. 
In practice however, because of the restricted par- 

titioning of L into Sj, only a few values from the 
possible ranges of I-, and k actually occur for any S; 
and the computation uses only the non-zero rk values. 
For example, for the vector 

(32222111111111000000) 

F is computed from the r* values (I, 4,9,6) corre- 
sponding to one 3, four 2s, nine Is and six OS. A 
unique situation occurs in the cases of window 
lengths L that are equal to or exact multiples of N, 
for which there is only one possible coloring of the 
vector of maximum complexity. For example, for 
L = 40 and the N = 20 amino acid alpha bet, this 
vector is: 

(22222222222222222222). 

In contrast, for most of the complexity states and 
window lengths encountered in practice in protein 

sequence analysis, very large values of F are obtained 
from the 204etter alphabet. 

All colorings (compositions) of any numerical state 
have the same local complexity value, measured as K, 
or K,, and can be considered to inherit this property 
from their complexity state vector. However, the 
probnbilities may differ between colorings of a single 
complexity state, depending on the probabilities of 
occurrence, pi. or the N different letters (residues). 
Only uniform probabilities of residues give equiprob- 
able compositions for any complexity state (see below 
under Choice of prior probabilities). 

Sequences 

For each composition of a complexity state, as 
defined above, there exists a (usually) large number of 
different possible sequences. This number, R, is the 
multinomial coefficient characteristic of the complex- 
ity state and is the same for all compositions (color- 
ings) of that state and depends only on N, L and n,: 

R= 
L! 

N’ (2) 

irJ n;! 

The total number of possible sequences over all the 
complexity states of window length L is the number 
of permutations, NL. Each sequence can be con- 
sidered to inherit its attributes of complexity and 
probability from, respectively, its complexity state 
and composition. 

‘Entropy ” and “complexity ” 

Two possible formal definitions of local compo- 
sitional complexity now follow from the attributes of 
complexity state vectors described above. 

“Complexity”, KI, is a measure analogous to 
the “factorial form” of the expression for message 
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Fig. 3. The average entropy of amino acid compositions, HL, as a function of window length, L. The 
three lines, from top to bottom, are for (I) uniform amino acid probabilities, (2) the amino acid frequencies 
in the Swissprot database, and (3) the amino acid frequencies of a low-complexity subset of the database 
[similar to that shown in Fig. 7(b)], The limit entropies, Hjangusg_ characteristic of these three frequencies 
are, respectively, 1 .O, 0.970 and 0.755. The values of HL were obtained by simulation, using for each cnrve 
1000 sample sequences each of 1000 residues drawn at random from the appropriate amino acid 

probabilities. 

0 20 40 60 80 100 120 
Window length 

complexity used in minimal message length encoding 
(Boulton % Wallace, 1969), and was applied to 
oligonucleotides by Salamon & Konopka (1992). K, 
is based on fl of equation (2), that is, the number of 
sequential rearrangements characteristic of each nu- 
merical state vector: 

K, +og,. (41 

The definition of “entropy”, K,, is analogous to 
that of informational entropy (Shannon, 1948) and is 
given by: 

(3) 

The term “entropy” in biological sequence analysis 
requires clarification. 4, as defined above for a single 
subsequence, has occasionally been called “entropy” 
in the literature, and could be considered to be an 
“observed entropy”. But it is more accurate to de- 
scribe K2 as a log likelihood measure of the complex- 
ity of the numerical state of the subsequence. The 
strict usage of “entropy” is to describe the expected 
information content of a population, which is a 
property of a system as a whole. In the present 
application, “entropy” in this sense could be applied 
at two levels. First (denoted n,) is the average value 
of K2 over the probability distribution of all the 

complexity states for a given window length, L. 
Second (denoted H,angu& is the average entropy 
characteristic of the global sequence language and the 
probabilities, pi, of its N letters: 

HL approaches Hlansuage asymptotically as L increases. 
This dependence is shown in Fig. 3 for uniform 
equiprobable amino acid frequencies and the fre- 
quencies of the total protein sequence database and 
a “low compIexity” subset (defined below). In order 
to avoid possible confusions surrounding the word 
“entropy”, we have adopted “low-complexity” rather 
than “low-entropy” as a general term for the classes 
of residue clusters and short-period repeats under 
study in this research. For similar reasons, we have 
also avoided the term “information content” of 
sequences. 

K, and K2 are different complexity measures that 
approach the same asymptotic limit at large values of 
L and ni. The log-likelihood form K2 can be derived 
from the factorial form K, if the n, are large enough 
for Stirling’s approximation to be valid (Boulton & 
Wallace, 1969; SaIamon & Konopka, 1992; Harris, 
1992). Since this is rarely the case for the analysis of 
typically-sized protein subsequences with the 20-letter 



154 JOHN C. WOOTTON and SCOTT FEDERHEN 

alphabet, we have explored the relationship between 
K, and K2. which is plotted in Fig. 4 for window 
lengths 10, 20 and 40. These window lengths have, 
respectively, 42, 627 and 35,251 complexity states 
(Fig. 2). Note that the numbers of different values of 
KI and K2 are fewer than the number of complexity 
states for any value of L. This is because some pairs 
or sets of states (different ones for K1 and KS) 
generate identical complexity values as a consequence 
of special numerical relationships in the vectors of nj. 

Clearly, K, and K, are broadly similar measures, 
and these results justify the use of either of them as 
a formal definition of local complexity in amino acid 
sequences. Other valid definitions of compositional 
complexity could be derived in principle from differ- 
ent premises, for example from a theory of algorith- 
mic complexity shown by Chaitin (1975) to be 
formally equivalent to information theory. For tbe 
plots in Fig. 4, logarithms of the same base (20) 
were used to compute both K, and K2, and these 
plots approach a line of slope 1 as L increases. 
The logarithms could equally well be taken to base 
2 or base e, giving the familiar information units, 
bits or nats per residue. For the results presented in 
this report, logarithms are base 20 and KI is used as 
the standard complexity measure unless otherwise 
stated. 

9 
7 

co 
d 

CD 
d 

EY 

t 
0 

n! 
0 

9 
0 

Choice of prior probabilities of amino acia!s 

One goal of the work described in this report is 
to develop algorithms that make an unbiased view of 
the total abundance and full range of classes of 
low-complexity regions in protein sequences and se- 
quence databases. For this purpose, it is appropriate 
to make the least committing assignment to the 20 
amino acids of uniform equalprior probabilities. This 
choice is based on the assumption, which is justified 
in retrospect, that the current protein sequence data- 
base is a heterogeneous statistical mixture, such that 
the initially-unknown amino acid frequencies of the 
low-complexity subset or subsets need have no simi- 
larity to the frequencies observed for the total data- 
base. This assumption was based in part on prior 
knowledge of some of the well-recognized fibrous 
structural polypeptides and amino acid clusters 
whose near-homopolymeric or quasiperiodic seg- 
ments have strikingly different amino acid compo- 
sitions from the predominant globular proteins of the 
database. The assumption is fully justified post hoc 
by the residue frequencies actually found in low- 
complexity partitions of the database that were ob- 
tained as a result of this research. 

The adoption of uniform prior probabilities of 
amino acids contrasts with the approach of Karlin 

0.0 0.2 014 0.6 0.8 

Kl 
Fig. 4. The relationship between ZC2 (log-likelihood or “entropy”) and K, (factorial form) as measures of 
local complexity in amino acid sequences. Points, computed using equations (3) and (4), are co-plotted 
for window lengths 10 (42 complexity states), 20 (627 states) and 40 (35,251 states). These points clearly 
show the three zones of correlation that correspond to the three window lengths, and these approximate 

curves approach a slope of 1 as L increases. 
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. . ..-.--.- _----- .., . ._._, _._ _.. 

. , . . . , I  

0.0 0.2 0.4 
Complexity 

r 

0.6 0.8 

Fig. 5. The number of colorings (amino acid compositions) of each complexity state at window length 
40 (35,251 states). Numbers of colorings, F, were computed by equation (1) and are plotted on a 

logarithmic scale to base 20 as a function of complexity, K, , computed by equation (4). 

et al. (1990, 1991) and Karlin & Brendel (1992) in 
their statistical methods for analysis of residue pat- 
terns, clusters and alignments. The latter methods 
depend on specific target frequencies of residues and 
residue patterns and employ the empirical frequencies 
that are observed in the sequences and databases 
under study as priors in first order random or higher 
order Markov chain models. The work reported here, 
which is mostly based on uniform probabilities of 
amino acids, has also explored the consequences of 
unequal amino acid frequencies by means of 
simulated random shuffles of sequence databases. 

Probabilities of complexity states 

For uniform residue frequencies, all compositions 
(colorings) of a complexity state Sj are equiprobable, 
and the probability of the state follows simply from 
equations (1) and (2): 

P,, = RF/NL. (5) 

Similarly, the probability of each of the F compo- 
sitions of that state is RjNL. PO is a point probability. 
The corresponding probability, Qo, of observing 
any complexity state that is of equal or lesser 
probability to S, has also been computed, using 
exhaustive enumeration of the cumulative probability 
distribution: 

fi?O = c pO(sQ,). 

SQ0 

Here, S, is the set of numerical state vectors that are 

of equal or lesser probability to Si, that is, S E Se. iff 
PO(S) Q P,(S,). 

Enumeration of the a priori probabilities of com- 
plexity states, PO and Q,, , is computationally intensive 
for the 20-letter alphabet and the window lengths 
required for research on protein subsequences (typi- 
cally 10-l 50 residues). We have generated look-up 
tables from a priori calculations of PO up to L = 5000 
and Q. up to L = 40 for the uniform amino acid 
frequencies. For a priori calculations from unequal 
frequencies, the probabilities of all the colorings of 
each complexity state must be enumerated individu- 
ally, and this is feasible only for very short windows. 
The scale of this computational problem is illustrated 
by Fig. 5, which shows the number of colorings F as 
a function of K, for each of the 35,251 complexity 
states of window length 40. 

Probabilities of observed sequence segments 

In contrast to enumerations a priori, the compo- 
sitional probabilities of any observed sequence win- 
dows can be calculated rapidly for any prior 
probabilities, pi, of the 20 amino acids (although for 
most purposes reported here uniform priors, 
p,= 0.05, are appropriate for reasons described 
above). If the numbers of each residue observed in a 
sequence segment of length L are ni, the multinomial 
probability, Pmu~tintlrnial, of the composition of that 
segment is: 
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Pmultinomial =nfipr’ (7) 
,=l 

where n is the multinomial coefficient given by 
equation (2). As the nj increase to large values, an 
approximation, commonly called “&i-square” may 
be used as an estimate of compositional probability: 

where theA values are the observed frequencies, q/L, 
of the 20 amino acids. This approximation is not 
strictly x2 distributed, and there is no established 
theoretical basis for its application to this problem. 
Nevertheless, it has proved to be a useful supplemen- 
tary heuristic in optimal segmentation algorithms for 
a few amino acid sequences, even in cases with some 
n, values t5. 

Another approximate measure is the statistic, 
D C,arkr described by CIark (1952) and suggested to us 
by Jean-Michel Claverie. This is an extension of the 
coefficient of divergence for use with multiple charac- 
ters (in this application, the N = 20 amino acids): 

D Clsrk is potentially applicable (Clark, 1952) as a 
statistic that is relatively independent of sample size 
(in this application, window length, L). 

Implementations 

The methods described in this report have been 
implemented as a structured and documented suite of 
programs, SPLEX, in C language for Sun and Silicon 
Graphics workstations and servers. This software 
including source code is available by anonymous ftp 
from ncbi.nlm.nih.gov (130.14.20.1) in subdirectory 
pubjsplex. This includes libraries for handling se- 
quences and sequence databases in the FASTA for- 
mat of Pearson 8c Lipman (1988), generalized 
windowing functions, and options for production of 
descriptive statistics from sequence databases and 
shuffled databases, in addition to the look-up tables 
of P,, and Qa and the specific algorithms for calcu- 
lations of all the theoretical and observed functions 
defined above. The C language uses the NCBI tools 
for ease of portability of code (NCBI Programmer’s 
Reference, 1992, NCBI Software Development Kit, 
National Center for Biotechnology Information, Na- 
tional Library of Medicine, National Institutes of 
Health, Building 38A, 8600 Rockville Pike, Bethesda, 
MD 20894, U.S.A.). For the data and analyses 
presented here, additional manipulations were made 
to the values produced by SPLEX using the Splus 
programming, statistical analysis and graphical sys- 
tem (Becker et al., 1988). 

3. PROTEIN SEQUENCE COMPLEXITY: OBSERVED 
AND THEORETICAL DISl-RIBUTIONS 

In this section, we compare the theoretical prob- 
ability distribution of protein subsequence eomplex- 
ity with the frequencies observed in the protein 
sequence database and a random shufile of this 
database. Swissprot [release 22.0, May 1992 (Bairoch 
& Boeckmann, 1992)] was chosen on grounds of its 
well-structured format which enables easy parsabii- 
ity, its relative completeness of annotation, and the 
fact that unnecessary redundancy due to alternative 
versions of the same sequence has been removed by 
careful manual merging procedures. To make an 
appropriate population of protein sequences for stat- 
istical analysis, Swissprot 22.0 was further reduced by 
removal of (1) the six artificial “warning” entries 
constructed to represent Alu sequence subclasses, 
and, to restrict the analysis to the 20-letter alphabet, 
(2) the 610 entries that contain the amino acid 
redundancy codes, B, Z and X. The resulting data- 
base, denoted “Swissprot” in this paper, comprised 
24,434 entries containing a total of 8,268,602 
residues. 

“ShufBed Swissprot” is a first-order random shuffle 
of this database that preserves the exact total amino 
acid composition and set of sequence lengths of the 
database. For each shuffle, a randomization of the 
8,268,602 amino acids was first constructed, by taking 
one amino acid at a time, then this string was 
segmented into the exact lengths of the 24,434 orig- 
inal sequences, thus preserving the same order of 
sequence lengths. This procedure ensures that the 
sequence end-effects are the same for analyses of 
subsequences of both Swissprot and Shuftled Swis- 
sprot. Ten random shuffles of this type were gener- 
ated with different seeds, and one was chosen as 
typical [from inspection of log Ifrequency) vs K, plots 
for L = 201 for further analysis. 

A stnaN number of complexity states predominate 

Figure 6 shows the theoretical discrete probability 
distributions of K, for the complexity states of win- 
dow lengths, 10, 20 and 40 [Fig. 6(a)], together with 
the corresponding distributions of the frequencies of 
these states in Swissprot [Fig. 6(b)] and Shuffled 
Swissprot [Fig. 6(c)]. These plots show the character- 
istic, spiky, irregular, dependence of probability on 
complexity: at the larger window lengths, there are 
several cases of complexity states that have very close 
K, values but orders of magnitude different probabil- 
ities. At any window length, the specific pattern of 
spikiness is essentially the same for the observed and 
shuffled distributions, demonstrating that this prop- 
erty is primarily a consequence of the numerical 
relationships of the complexity states, rather than an 
effect of different amino acid frequencies or sampling 
variation. 

Another striking feature of these distributions is 
that a small fraction of the complexity states, which 
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are clustered at similar K, values, contain almost all 
the probability. Taking the theoretical distributions 
calculated from uniform amino acid frequencies: For 
L = 10, 8 out of the 42 states (19%) contain 97% of 
the probability. For L = 20, 37 out of the 627 states 
(5.9%) contain 98% of the probability, and the most 
probable two states 

(32222211111110000000) 

(32222111111111000000) 

contain 18% of the probability. For L = 40, 798 out 
of the 35,251 states (2.3%) contain 94% of the 
probability. Thus, as L increases, a decreasing frac- 
tion of the complexity states fall into the “typical” set 
of relativety high probability, and the great majority 
of states (“non-typical”) are of extremely low prob- 
ability. 

This phenomenon, as Seen in Fig. 6, illustrates two 
well-established properties of information theory, 
nameIy ergodicity and asymptotic equipartition 
(Shannon, 1948; Cover & Thomas, 1991). As a result 
of ergodicity, the typical set of high-probability com- 
plexity states tend to have values of K, or K2 that are 

close to the average entropy, HL, characteristic of the 
window length, L, and increasingly approach the 
limit of the average entropy of the language, Hhnguag, 
with increasing L. As a result of asymptotic equipar- 
tition, with increasing values of L, the states of the 
typical set, that contain almost all the probability, 
become increasingly equiprobable and contain only a 
very small fraction of the total states. These proper- 
ties are also illustrated by the trends seen with 
increasing window length in Figs 3 and 4. In Fig. 6, 
the limit entropies of the languages are 1.0 for 
the theoretical and 0.97 for Swissprot and Shuffled 
Swissprot. Thus many of the striking properties of 
these sequence complexity distributions are conse- 
quences of well-established theorems of information 
theory, and are essentially the same for both observed 
and theoretical distributions. Other numerical re- 
lationships are seen in the theoretical distributions 
when PO is plotted on a logarithmic scale as a function 
of complexity [Fig. 7(a)]: First, log(P,) shows 
a relatively strong, roughly linear correlation with 
K, and can therefore be considered to be an approxi- 
mate complexity measure. Second, parallel lines of 

0.0 0.2 0.4 0.4 0.6 0.8 OO.0 0.2 0.4 0.6 0.8 

0.4 0.6 0.8 OO.0 0.2 0.4 0.6 0.8 

Fig. 6. Theoretical and observed distributions of the complexity measure, K, . The horizontal axis of all 
the plots is the complexity, K, , computed using equation (4), at window lengths, L, of 10 (top row of 
plots), 20 (middle row) and 40 (bottom row). (a) The theoretical probabilities of the complexity states [P,,, 
equation (S)] based on uniform amino acid frequencies. (b,c) The frequencies of the complexity states 

observed in, respectively, Swissprot and Shuffled Swissprot. 
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striation arise [Fig. 7(a)] from subsets of the complex- 
ity states that have the same number of compositions, 
F. 

The excess of low -complexity subsequences in natural 
proteins 

The frequency distributions of complexity for Swis- 
sprot (Fig. 6) appear to resemble those for the 
Shuffled Swissprot at the high-complexity end of the 
range, but the real sequences show a large excess of 
the low-complexity states. The magnitude of this 
excess is seen more clearly from plots of the log (to 
base 20) of the frequencies or probabilities of the 
states [Fig. 7(b)], and in Log-Odds Ratio (LOR) plots 
(Fig. 8). The Log-Odds Ratio compares the observed 
and theoretical distributions:- 

LOR = l,,rs) = log(S). (10) 

LOR, under the name “surprisal”, was shown by 
Salamon & Konopka (1992) to have interesting prop- 
erties when plotted as a function of the complexity, 
K,, of short olignucleotides. Different subsets of 
nucleotide sequences (exons and introns from pri- 
mate, viral and organellar genomes) all gave approxi- 
mate straight lines that showed characteristic 
differences in slope between exons and introns. The 
approximate linearity of these plots has not yet been 
fully explained (see accompanying paper by Salamon 
et al., 1993), but the differences in slope and intercept 
could clearly be exploited in automated discrimi- 
nation methods for different classes of nucleotide 
sequences. 

The LOR plots for the protein sequences of Swis- 
sprot at window lengths lo,20 and 40 [Fig. 8(a)] show 
a more elaborate structure than the corresponding 
plots for short oligonucleotide windows (Salamon & 
Konopka, 1992). Clearly, there is a strong correlation 
between LOR and K, , with many of the complexity 
states tending to be concentrated in central lines that 
show different slopes in the low-complexity and high- 
complexity regions. The corresponding plots for 
Shuffled Swissprot [Fig. 8(b)] show only the high 
complexity states, since the expected numbers of 
windows in the low-complexity states are very close 
to zero for a random database of X,268,602 residues. 
The plots for Shuffled Swissprot are very closely 
similar to the high-complexity part of the correspond- 
ing Swissprot plots, showing a similar concentration 
of states on a central line and a matching pattern of 
scattered points. The scatter of LOR values is evi- 
dently a consequence of the numerical relationships 
of the state vectors rather than a sampling effect (this 
is confirmed below following complexity partitioning 
of the database). A satisfactory theoretical expla- 
nation for the characteristics of these plots has not yet 
been developed, and the corresponding plots for 
nucleotide sequences at large window lengths may be 
more revealing for this purpose (Salamon et al., 
1993). 

4. HEURISTICS FOR OPTIMAL SEGMENTATION 
ALGORITHMS 

In this section, we compare different measures of 
compositional complexity and probability for their 
practical utility in protein sequence and database 
analysis. Some algorithms have been published for 
optimal segment identification in protein sequences 
but these used intrinsic residue propensities such as 
hydrophobicity (Auger & Lawrence, 1989; Chappey 
& Hazout, 1992). There is no prior experience of the 
use of local complexity in such optimal segmentation 
methods, and exploration of the characteristics of 
different measures is necessary. 

First, all the measures defined above were com- 
pared in simple “profiling” of sequences at fixed 
window lengths in one-residue steps. A typicai sample 
of the results at window length 12 is shown in Fig. 9. 
The region of sequence profiled, which contains 
segments of contrasting complexity, is residues 
-500 of the human RING3 protein shown in 
Fig. 1. Clearly, all these measures give broadly similar 
results. As expected from the analyses shown in 
Figs 4 and 7, the measures 4, K,, and log(P,) (also 
Q. and Pmultinomiplr not shown) give almost identical 
profiles, and x2 is a close approximation to these. 
D clal shows less clear-cut contrast between regions of 
high and low complexity, consistent with the greater 
averaging of information that is characteristic of the 
coefficient of divergence. 

Also shown, labeled “offset = 3”, is a typical result 
of a method based on self-self sequence alignment. 
The values for this method are similarity measures for 
subsequences aligned at different offsets. This method 
thus gives a relatively direct estimate of the autocor- 
relation within a window, and is the basis of an 
algorithm (States & Claverie, 1993) for localization of 
low-period repeats. The self-alignment method also 
provides a possible means of very approximate local- 
ization of low-complexity regions, whether or not 
periodic, as shown in the Fig. 6 profile and other 
similar results, although this method gives relatively 
inaccurate definition of the boundaries of these 
regions. 

This study using profiling methods therefore sup- 
ports the use of any of these measures for approxi- 
mate, first-pass identification of regions that contain 
low-complexity subsequences within them. In the 
SEG algorithm, K2 is used for this purpose on 
grounds of computational efficiency. 

Second, the values for all the complexity and 
probability measures were computed over a range of 
window lengths (L = 24) for several protein se- 
quences that contain low-complexity regions. Results 
for the human RING3 protein are given as three- 
dimensional perspective plots in Fig. 10. In these 
landscapes, low-complexity and low-probability are 
upwards on the y-axis, so that the local optima 
sought by the segmentation algorithm correspond to 
the highest peaks within local regions of the ridges. 
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Fig. 7. Log-probability and log-frequency distributions of the complexity K, . (a) Theoretical PO distributions calculated 
for uniform amino acid frequencies. Points are co-plotted for window lengths L = IO (42 states), 20 (627 states) and 40 
(35,251 states), giving the three clearly distinct regions of correlation from top to bottom respectively. (b) Observed 
log-frequency distributions for window length L = 40. Each of the four plots has a vertical log-frequency axis similar to 
that indicated for the bottom plot. The horizontal scale of K, is the same for all four distributions. The separate, 
complementary distributions for low-compkxity and high-complexity segments were derived from Swissprot by automated 
partitioning using the SEG algorithm. A moderately stringent threshold of complexity was used for the first pass of this 
partitioning to ensure that the low-complexity fraction was relatively uncontaminated with spurious high-complexity 

segments. Consequently, a few low-complexity segments (Kr < 0.58) arc evident in the high-complexity set. 
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0:4 
Complexity 

0:s 0.8 

010 0.2 0:4 016 0.8 
Complexity 

Fig. 8. LOR plots as a function of complexity, K,, for Swissprot (a) and Shuffled Swissprot (b). Points 
were computed using equations (IO} and (4). As in Figs 4 and 7(a), points are co-plotted for window 
lengths L = 10 (42 states), 20 (627 states) and 40 (35,25 1 states), giving the three clearly-distinct elongated 

clusters from, respectively, bottom-left to top-right. 
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Fig. 9. “Profiles” of residues 400-500 of the human RING3 protein using different complexity or 
probability measures. Complexity, log-likelihood, log-probability (log P,), x2 and Dar* were computed 
respectively by equations (4), (3), (5), (8) and (9), using all subsequences of length L = 12. “Offset = 3” 
is explained in the text. For visual comparability, the measures are all normalized to the same range on 
the vertical axes, using sign reversal where appropriate to make the bottom of the profiles correspond to 
the lowest complexity or probability. The horizontal axes are the same for all the plots and represent 

position in sequence. 

The differences between the plots in Fig. 10 reveal 
features that are critical for the performance of these 
measures as optimization heuristics. One feature is 
the distinction between “log-probability” and “corn- 
plexity” measures: log(P,,) [and the very similar 
h?(Qo) and log(J’multinamial ) not shown in Fig. 101 and 
the x2 approximation are essentially log-probability 
measures. These have flat baselines (Fig. 10) and the 
peaks correspond precisely to the subsequences of 
lowest probability as determined by the different 
measures. Thus log-probability measures, calculated 
over all subsequences within a defined sequence, 
provide a simple and direct route to the optimal 
low-complexity segment, given that the optimum is 
defined as the segment of lowest probability. Experi- 
ence with many natural proteins has now justified the 
view that this is indeed the most satisfying definition 
of “optimum” for the purpose of differentiating 
regions of contrasting complexity in natural proteins. 
Boundaries produced by this log(P,) definition par- 
tition the compositional information efficiently be- 
tween neighboring low- and high-complexity 
segments with minimal cross-contamination. This 
method also seems biologically appropriate because 
many such segments contrast in functional and 
evolutionary characteristics, as illustrated by Fig. 1 
and other examples partitioned by means of the 
SEG algorithm. In our implementation of SEG, 
log(P,) is used as default (taken from a look-up table) 

and the other measures are available as options. 
The x2 heuristic is advantageous in some cases 
because it tends to give more stringent optimal 
segments, more sharply contrasting with their flank- 
ing sequences than those produced using log(P,,). 
This property is reflected in the more jagged peaks 
seen in Fig. 10. 

In contrast to log-probability measures, complex- 
ity, 4, (and the very similar log-likelihood, &) and 
D Clark have curved baseline that approach limits 
asymptotically with increasing L. These curves can be 
flattened empirically using average values from simi- 
lations, as shown, for example, for K2 in Fig. 3. 
However, uncertainties in such correction factors, 
particularly for the shorter values of L, make these 
measures less reliable than the log-probability 
measures for definition of the boundaries of optimal 
low-complexity segments. Such corrected complexity 
measures can, however, be used to find local minima 
of complexity that are not necessarily optimal. This 
is sometimes justified as the basis of a very rapid 
computation by the method of steepest descents, once 
a general region of low-complexity sequence has been 
defined approximately and “trimming” from both 
ends is required. The log-likelihood measures, K2, 
corrected by means of the top curve in Fig. 3, has 
been used to implement such steepest-descent- 
trimming in the FSEG program, a very rapid but 
approximate variant of SEG. 
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Fig. IO. Landscapes of subsequence complexity and probability for the human RING3 protein over a 
range of window lengths from L = 2 to 40. Log-probability (log PO), complexity, K, , x2 and Dna were 
computed respectively by equations (5), (4). (8) and (9). Not shown are plots for Q, and P mv,tintia, I which 
gave almost identical landscapes to P,,, and for lot-likelihood, &, which gave very similar results to 
complexity, K, . All the perspective plots are viewed from the same angle relative to the axes, and the tops 
of the vertical axes correspond to the lowest complexity or probability. The number on the “position in 
sequence” axes refer to the N-terminal residue of each window. Incomplete windows at the C-terminal 

end of the RING3 protein are not plotted. 

5. COMPLEXITY PARTITIONS OF THE PROTEIN 
SEQUENCE DATABASE 

The striking excess of low-complexity segments in 
proteins in the Swissprot database shows clearly in 
Figs 7(b) and S(a), demonstrating the statistical het- 
erogeneity of the database. Following optimal seg- 
mentation of the database using SEG IFig. 7(b), 
bottom two plots], the low-complexity set is itself a 
statistical mixture and consists of a number of com- 
positional classes, each of which has one or a few 
predominant amino acids. For example, there are 
“glutamine-rich” and “glycine-proline-rich” classes, 
each of which contain a number of subclasses differ- 
ing in possible structures and functions. The results 
of such statistical and functional classification of 
low-complexity segments is reported separately 
(Wootton & Federhen, 1993; and unpublished work). 

It is also interesting to ask if the high-complexity 
subset of the database [the “typical 8S%“, Fig. 7(b), 
bottom plot] is statistically homogeneous and 
whether it can be adequately approximated by a 

random model. This is important because most se- 
quence alignment methods and commonly-used data- 
base search algorithms such as BLAST and FASTA 
(Altschul et al., 1990; Pearson & Lipman, 1988), are 
based on first-order random models in which se- 
quences are treated as random draws sampled with 
replacement from the observed single residue fre- 
quencies. These search methods give spurious results 
with query sequences that contain highly non- 
random low-complexity sequences. Comparisons of 
the high-complexity subset of Swissprot with Shuffled 
Swissprot suggest that the former does indeed ap- 
proximate to first-order random. This shows in the 
similar distributions of complexity [Fig. 7(b) and 
comparison of Fig. 8{a,b)], and particularly clearly in 
the point-by point comparison of the LOR plots 
(Fig. 11). Figure 11 illustrates the fact that these 
values are determined by the numerical relationships 
of the complexity state vectors: the points for the 
high-complexity subset of Swissprot are clearly very 
close to those of the shuffled database. This supports 
the conclusion that the random expectation used as 
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0.0 0.2 0.4 
Complexity 

0.6 

Fig. 11. Point-by-point comparison of the LOR plots for the high-complexity subset of Swissprot (e) 
and Shuffled Swissprot (+) at window length 20. Points were computed using equations (10) (LOR) and 

(4) (complexity, K, )_ 

the statistical basis of current database search algor- 
ithms (Karlin & Altschul, 1990; Altschul et aZ., 1990) 
is adequate for the typical 85% of protein subse- 
quences. The random model is not appropriate for 
low-complexity segments, and statistically valid re- 
sults can be obtained from present database search 
methods only if these segments are filtered from 
query sequences. Further research is required to 
develop comparison and search methods appropriate 
for low-complexity regions of proteins. 
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