HMM : Viterbi algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
O'5C C 03 ‘ C 0.2 OO'G
G 03 0.4 G 0.2
T 02 T 03

Let's consider the following simple HMM. This model is composed
of 2 states, H (high GC content) and L (low GC content). We can
for example consider that state H characterizes coding DNA while L
characterizes non-coding DNA.

The model can then be used to predict the region of coding DNA
from a given sequence.

Sources: For the theory, see Durbin et al (1998);
For the example, see Borodovsky & Ekisheva (2006), pp 80-81




HMM : Viterbi algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
O'5C C 03 ‘ C 0.2 OO'G
G 03 0.4 G 0.2
T 02 T 03

Consider the sequence S= GGCACTGAA

There are several paths through the hidden states (H and L) that lead to
the given sequence S.

Example: P = LLHHHHLLL

The probability of the HMM to produce sequence S through the path P is:
P =p(0) " P(GC) ™ P ™ PL(G) " PLr™ PH(C) ™ ...
= 05*02 *06*02 *04* 03 *..
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There are several paths through the hidden states (H and L) that lead
to the given sequence, but they do not have the same probability.

The Viterbi algorithm is a dynamical programming algorithm that
allows us to compute the most probable path. Its principle is similar to
the DP programs used to align 2 sequences (i.e. Needleman-Wunsch)

Source: Borodovsky & Ekisheva, 2006




HMM : Viterbi algorithm - a toy example

Start Viterbi algorithm:
y % principle
H 0.5 L
A 0.2 > | A 03
O'5C C 03 ) C 02 OO'G
G 03 0.4 G 0.2
T 0.2 T 03
"
GGCACTGAA

The probability of the most probable path ending in state k with observation "i" is

p,(i,x) = e,(i)

e

probability to
observe
element /in
state /

m?X(Pk (J,x - D'pkl)

\
probability of the most probability of the
probable path ending at transition from
position x-1 in state k state / to state k

with element j




HMM : Viterbi algorithm - a toy example

Start Viterbi algorithm:
y % principle
H 0.5 L
A 0.2 > | A 03
O'5C C 03 ) C 02 OO'G
G 03 0.4 G 0.2
T 0.2 T 03
"
GGCACTGAA

The probability of the most probable path ending in state k with observation "i" is
p,(i,x) = el(i)m?x(pk (J,x - 1).p,d)

In our example, the probability of the most probable path ending in state H with observation

"A" at the 4th position is:

Pu(A4)=e, (Amax(p,(C,3)pyy Py (C.3)Puy)

We can thus compute recursively (from the firstto the last element of our sequence) the

probability of the most probable path




HMM : Viterbi algorithm - a toy example

Start
‘-1/ \1A
H 1 L
A -2.322 > |A -1.737
'1C C -1.737 | C -2.322 3'0'737
G -1.737 -1.322 G -2.322
T -2.322 T -1.737

Remark: for the calculations, it is convenientto use the log of the
probabilities (rather than the probabilities themselves). Indeed,
this allows us to compute sums instead of products, which is
more efficientand accurate.

We used here log,(p).
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Start

H 1 L
_1C A 2322 | - > [A -1.737
C -1.737 | * C -2.322
G -1.737 1322 1g -2.322
T -2.322 T -1.737
GGCACTGAA

Probability (in log,) that G at the

first position was emitted by state H

Probability (in log,) that G at the
first position was emitted by state L

O -0.737

ou(G,1) = -1-1.737 = -2.737

p(G,1) =-1-2.322 = -3.322
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A
Cf
G

Probability (in log,) that G at the
2nd position was emitted by state H

Probability (in log,) that G at the
2nd position was emitted by state L

Start
‘-1/ \1A
H 1 L

22.322 > [A 1.737
1.737 | * C -2.322
-1.737 -1.322 G -2.322
T -2.322 T -1.737

GGCACTGAA

O -0.737

Pr(G,2) = -1.737 + max (pu(G,1)*+Pun, PL(G,1)+pLn)
=-1.737 + max (-2.737 -1, -3.322 -1.322)

= -5.474 (obtained from py(G,1))

pL(G,2) = -2.322 + max (pu(G,1)*+PuL, PL(G,1)+pLL)
=-2.322 + max (-2.737 -1.322 , -3.322 -0.737)

= -6.059 (obtained from py(G,1))




HMM : Viterbi algorithm - a toy example

Start
‘-1/ \1A
H 1 L
A -2.322 > [A 1.737
'1C C -1.737 | C -2.322 3'0'737
G -1.737 -1.322 G -2.322
T -2.322 T -1.737
GGCACTGAA
G G C A C T G A A
H -2.73 —+>»-547 <-> -8.21 —» -11.53 g -14.01 -25.65
L -3.32 606 M -879 |%¥-10944+-1401 +» .. I 1, 2449

We then compute iteratively the probabilities py(i,x) and p,(i,x) that nucleotide j at position x was
emitted by state H or L, respectively. The highest probability obtained for the nucleotide at the last
position is the probability of the most probable path. This path can be retrieved by back-tracking.




HMM : Viterbi algorithm - a toy example

Start
‘-1/ \1A
H 1 L
A -2.322 > A -1.737
'1C C -1.737 | *° C -2.322 3'0'737
G -1.737 1322 |G -2.322
T -2.322 T -1.737
back-tracking
(= finding the path which
GGCACTGAA corresponds to the highest
probability, -24.49)
G G C A C T G A A
H -2.73 —>-5.47 — -8.21 —> -11.53 B -14.01 -25.65
L -3.32 6.06 N -8.79 1094 —+-14.01 1 .. - —— —-24.49

The most probable pathis: HHHLLLLLL Its probability is 22449 = 4.25E-8
(remember that we used log,(p))




HMM : Forward algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
0'5C C 03 ‘ C 0.2 OO'G
G 03 0.4 G 0.2
T 02 T 03

Consider now the sequence S= GGCA

What is the probability P(S) that this sequence S was generated by the
HMM model?

This probability P(S) is given by the sum of the probabilities p;(S) of each
possible path that produces this sequence.

The probability P(S) can be computed by dynamical programming using
either the so-called Forward or the Backward algorithm.




HMM : Forward algorithm - a toy example

Start Forward
y % algorithm
H 0.5 L
A 02 > A 03
°'5C C 03 C 02 OO'G
G 0.3 0.4 G 0.2
T 0.2 T 0.3
Consider now the sequence S= GGCA
Start G G A
H 0 0.5*0.3=0.15
L 0 0.5*0.2=0.1
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05 C

Consider now the sequence S= GGCA

Start

H

A 0.2
C 03
G 03
T 0.2

0.5

L

0.4

A 03
C 0.2
G 0.2
T 03

O 06

Start G G C A
H| 0 | 0503015 1= 0.15°0.5'03 + 0,1°0.4°0.3=0.0345
L| o | 05%0.2=0.1 /
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05 C

Consider now the sequence S= GGCA

Start

H

A 0.2
C 03
G 03
T 0.2

0.5 L
> [ A 03
C 02
0.4 G 0.2
T 03

O 06

Start G G C A
H 0 0.5*0.3=0.15 O.15*O.5*O.3\+ 0.1*0.4*0.3=0.0345
L 0 0.5*0.2=0.1 =+— 0.1*0.6*0.2 +‘0.15*0.5*O.2=0.027




HMM : Forward algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
O'5C C 03 ‘ C 0.2 OO'G
G 03 0.4 G 0.2
T 02 T 03

Consider now the sequence S= GGCA

Start G G C A
H| 0 | 0503=0.15 | 0.15'05'03 + 0.1'0.4'03=00345 == .+ .
L| o 0.5*0.2=0.1 4 0.1*0.6*0.2 +0.15%0.5*0.2=0.027 =—>: g




HMM : Forward algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
O'5C C 03 ‘ C 0.2
G 03 0.4 G 0.2
T 02 T 03

Consider now the sequence S= GGCA

O 06

Start G G C A
H 0 0.5*0.3=0.15 O.15*O.5*0.3\+ 0.1*0.4*0.3=0.0345 ——_ .. +... 0.0013767
L 0 0.5*0.2=0.1 4= 0.1*0.6*0.2 + 0.15%0.5*0.2=0.027 =—>: i 0.0024665
=> The probability that the sequence S was generated by the HMM model > =0.0038432

is thus P(S)=0.0038432.




HMM : Forward algorithm - a toy example

Start
H 0.5 L
A 02 > [ A 03
0'5C C 03 ‘ C 0.2 OO'G
G 03 0.4 G 0.2
T 02 T 03

The probability that sequence S="GGCA" was generated by the HMM model is Pyyu(S) =
0.0038432.

To assess the significance of this value, we have to compare it to the probability that sequence
S was generated by the background model (i.e. by chance).

Ex: If all nucleotides have the same probability, p,,=0.25; the probability to observe S by
chance is: Ppg(S) = ppg* = 0.25% = 0.00396.

Thus, for this particular example, it is likely that the sequence S does not match the HMM
model (Ppg > Phvm)-

NB: Note that this toy model is very simple and does not reflect any biological motif. If fact
both states H and L are characterized by probabilities close to the background probabilities,
which makes the model not realistic and not suitable to detect specific motifs.




HMM : Summary

Summary

The Viterbi algorithm is used to compute the most probable path (as well as
its probability). It requires knowledge of the parameters of the HMM model and
a particular output sequence and it finds the state sequence thatis mostlikely
to have generated that output sequence. It works by finding a maximum over
all possible state sequences.

In sequence analysis, this method can be used for example to predict coding
Vs non-coding sequences.

In fact there are often many state sequences that can produce the same
particular output sequence, but with different probabilities. It is possible to
calculate the probability for the HMM model to generate that output sequence
by doing the summation over all possible state sequences. This also can be
done efficiently using the Forward algorithm (or the Backward algorithm),
which is also a dynamical programming algorithm.

In sequence analysis, this method can be used for example to predict the
probability that a particular DNA region match the HMM motif (i.e. was emitted
by the HMM model). A HMM motif can representa TF binding site for ex.




HMM : Summary

Remarks

To create a HMM model (i.e. find the most likely set of state transition and
output probabilities of each state), we need a set of (tfraining) sequences,
that does not need to be aligned.

No tractable algorithm is known for solving this problem exactly, but a local
maximum likelihood can be derived efficiently using the Baum-Welch
algorithm or the Baldi-Chauvin algorithm. The Baum-Welch algorithm is
an example of a forward-backward algorithm, and is a special case of the
Expectation-maximization algorithm.

For more details: see Durbin et al (1998)

HMMER

The HUMMERS package contains a set of programs (developed by S. Eddy) to build
HMM models (from a set of aligned sequences) and to use HMM models (to align
sequences or to find sequences in databases). These programs are available at the
Mobyle plateform (htip://mobyle.pasteur.fr/cqgi-bin/MobylePortal/portal.py)




