- Чтение, обработка, чистка, преобразование данных
- Описательная статистика, тесты ассоциации
- Введение в машинное обучение
- Визуализация
- Bioconductor
Язык R https://cloud.r-project.org/
RStudio https://www.rstudio.com/
getwd() # Узнать рабочую директорию
## [1] "/mnt/lustre/suvorova/Projects/Students/R/R_2018_Lect1"
setwd('Newdir') # Задать рабочую директорию
## Error in setwd("Newdir"): cannot change working directory
dir() # Список файлов в рабочей директории
## [1] "Lect1.Rmd" "R_2018_Lect1.Rproj"
x <- 1:5
x
## [1] 1 2 3 4 5
y <- 6:10
y
## [1] 6 7 8 9 10
x + y
## [1] 7 9 11 13 15
x^2
## [1] 1 4 9 16 25
x + 3
## [1] 4 5 6 7 8
x
## [1] 1 2 3 4 5
x > 4
## [1] FALSE FALSE FALSE FALSE TRUE
x == 4
## [1] FALSE FALSE FALSE TRUE FALSE
x = 4
x
## [1] 4
c(1,2,3)
## [1] 1 2 3
1:10
## [1] 1 2 3 4 5 6 7 8 9 10
seq(from=1,to=8,by=2)
## [1] 1 3 5 7
seq(3,4,length.out = 5)
## [1] 3.00 3.25 3.50 3.75 4.00
x <- 1:3
x
## [1] 1 2 3
x <- c(x,5:7)
x
## [1] 1 2 3 5 6 7
rep(1:3,times=3)
## [1] 1 2 3 1 2 3 1 2 3
rep(1:3,each=3)
## [1] 1 1 1 2 2 2 3 3 3
rep(1:3,length.out=5)
## [1] 1 2 3 1 2
Нужно сгенерировать заданное количество чисел из известного распределения
set.seed(123)
sample(1:30,10,replace=T)
## [1] 9 24 13 27 29 2 16 27 17 14
x=c(T,F,T,F)
typeof(x)
## [1] "logical"
x=c(1:5)
typeof(x)
## [1] "integer"
x=c(0.5,1.2,3.6)
typeof(x)
## [1] "double"
x=c('a','b',"c")
typeof(x)
## [1] "character"
c(1, 2, 3, 'a')
1; 2; 3; 4; 7; 9; 11; 12; 13; 14
x <- c(1, 5, 7, 9, 15, 3)
x[1]
## [1] 1
x[2:4]
## [1] 5 7 9
x[c(2,5)]
## [1] 5 15
x
## [1] 1 5 7 9 15 3
x[-1]
## [1] 5 7 9 15 3
x[x>5]
## [1] 7 9 15
x[x>5 & x<10]
## [1] 7 9
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
a <- c(5,4,8)
b <- c("aa","bb","cc")
h <- c(T,F,T)
df <- data.frame(a,b,h)
df
## a b h
## 1 5 aa TRUE
## 2 4 bb FALSE
## 3 8 cc TRUE
df <- data.frame(a = c(5,4,8,6),
b = c("aa","bb","cc","ff"),
h = c(T,F,T,T))
df
## a b h
## 1 5 aa TRUE
## 2 4 bb FALSE
## 3 8 cc TRUE
## 4 6 ff TRUE
df$a
## [1] 5 4 8 6
colnames(df)
## [1] "a" "b" "h"
rownames(df)
## [1] "1" "2" "3" "4"
dim(df)
## [1] 4 3
data()
head(mtcars,4)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
?mtcars
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
rownames(mtcars)
## [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
## [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
## [7] "Duster 360" "Merc 240D" "Merc 230"
## [10] "Merc 280" "Merc 280C" "Merc 450SE"
## [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
## [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
## [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
## [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
## [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
## [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
## [31] "Maserati Bora" "Volvo 142E"
colnames(mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
tail(mtcars,7)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.9 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2
mtcars[12,2]
## [1] 8
mtcars[8,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
mtcars[1:3,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
mtcars[,2]
## [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
mtcars[c(1,13),]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.62 16.46 0 1 4 4
## Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.60 0 0 3 3
mtcars[c(1,3,7),1]
## [1] 21.0 22.8 14.3
dim(mtcars)
## [1] 32 11
num=1:32
mtnew <- cbind (mtcars, num)
dim(mtnew)
## [1] 32 12
mtnew[30:32,]
## mpg cyl disp hp drat wt qsec vs am gear carb num
## Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6 30
## Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8 31
## Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2 32
Изменить имя столбца num
dim(mtnew)
## [1] 32 12
mtnew[1,]
## mpg cyl disp hp drat wt qsec vs am gear carb num
## Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4 1
newcar <- data.frame(mpg=21, cyl=4, disp=100, hp=80,
drat=1, wt=2,qsec=16, vs=1,am=0, gear=4, carb=1, num=33)
mtnew<-rbind(mtnew, newcar)
rownames(mtnew)[33]<-"Lada"
mtnew[30:33,]
## mpg cyl disp hp drat wt qsec vs am gear carb num
## Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6 30
## Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8 31
## Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2 32
## Lada 21.0 4 100 80 1.00 2.00 16.0 1 0 4 1 33
dim(mtnew)
## [1] 33 12
mtcars[mtcars$cyl>4 & mtcars$cyl<8,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
mtcars[order(mtcars$drat),]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
ls() # Список переменных
## [1] "a" "b" "df" "encoding" "h"
## [6] "inputFile" "mtnew" "newcar" "num" "x"
## [11] "y"
rm(list=ls()) # Удалить все переменные
ls()
## character(0)
write.table(mtcars,file='../mtnew.tab',quote=F, col.names = T,row.names = T,sep='\t')
write.csv(mtcars,file='mtnew.csv')
save(mtcars, file="mtnew.RData")
mt<-read.table("../mtnew.tab",sep="\t",header=T)
head(mt)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mt<-read.table("../mtnew.tab",sep="\t",header=T,skip = 2)
load('mtnew.RData')
x <- c(0:4)
y <- x + 5
plot(x, y, main = "My Chart Title", xlab ="X", ylab = "Y", pch=16, col = "red")
plot(x, y, main = "My Chart Title", xlab ="X", ylab = "Y",
pch=16, col = "red", xlim=c(1,7), ylim=c(0, 20))
x<-rnorm(1000)
y<-x*x + rnorm(1000, sd=2)
plot(x, y, pch=19, cex=0.3)
x <- rnorm(1000)
hist(x, col='blue')
boxplot(mpg~cyl,data=mtcars, main="Car Milage Data",
xlab="Number of Cylinders", ylab="Miles Per Gallon")
png(file="boxplot.png", width=400, height=350)
boxplot(mpg~cyl,data=mtcars)
dev.off()
## png
## 2
pdf('myfile.pdf')
png('myfile.png')
jpeg('myfile.jpg')