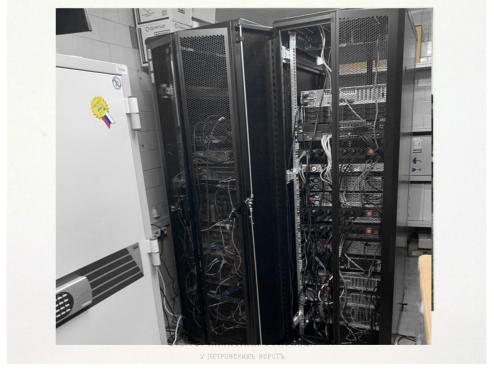
MEDICAL GENOMICS

Василий Евгеньевич Раменский

ramensky@gmail.com

Анастасия Александровна Жарикова


azharikova89@gmail.com

НМИЦ Терапии и профилактической медицины Факультет биоинженерии и биоинформатики МГУ

MEDICAL GENOMICS

- Big genomic data enable inference without intervention (aka reverse genetics)
- Data are just around the corner

MEDICAL GENOMICS

Part I. Кто виноват?

- 1. Mutations: origins and rates
- 2. Mutations: transmisson
- 3. Mutations in time: some basics of population genetics
- 4. Mutations in space: genes and consequences
- 5. Mutations in individuals and populations

Part II. Что делать?

- 6. Mendelian diseases: gene discovery and diagnostics
- 7. Some basics of quantitative genetics
- 8. Complex diseases: gene discovery and allelic architecture

Remarks

- Important info: kodomo
- English
- Molecular genetics + population genetics + medical genetics + statistical genetics + genetic
 epidemiology + bioinformatics ⇒ no single textbook
- Many topics not covered: immunology, pathogens, microbiome, therapy, genome editing
- Definitions
- Questions and exercises
- Homework slides
- Summary, concepts, further reading

Textbooks

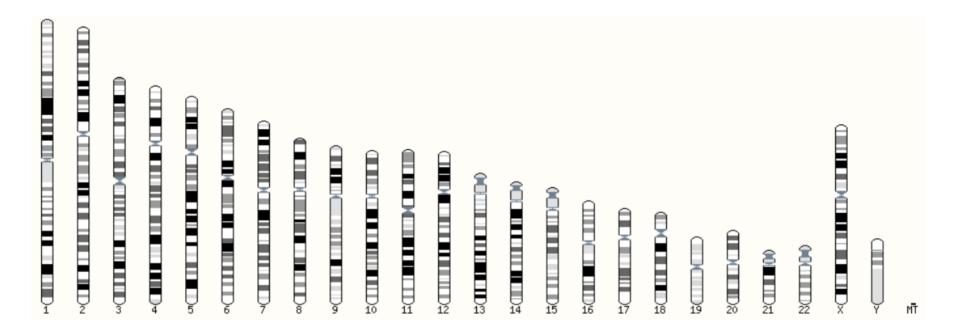
- 1. T.Strachan, A.Read. Human Molecular Genetics. 2011. ISBN 0815345895.
- 2. J. Gillespie. Population genetics. A concise guide 1998 ISBN 0-8018-5764-6
- 3. S. Szalai, et al. Medical genetics and genomics. 2016. https://www.researchgate.net/publication/303309837_M edical_genetics_and_genomics_2016
- 4. A.Griffiths et al. An Introduction to Genetic Analysis. Freeman/Worth, 11 ed. 2015 ISBN 1464109486
- 5. Бочков Н.П., Пузырев В.П., Смирнихина С.А. Клиническая генетика. Учебник. Под ред. Н.П. Бочкова. ГЭОТАР-Медиа, 4-е издание, 2018. ISBN 978-5-9704-4628-7

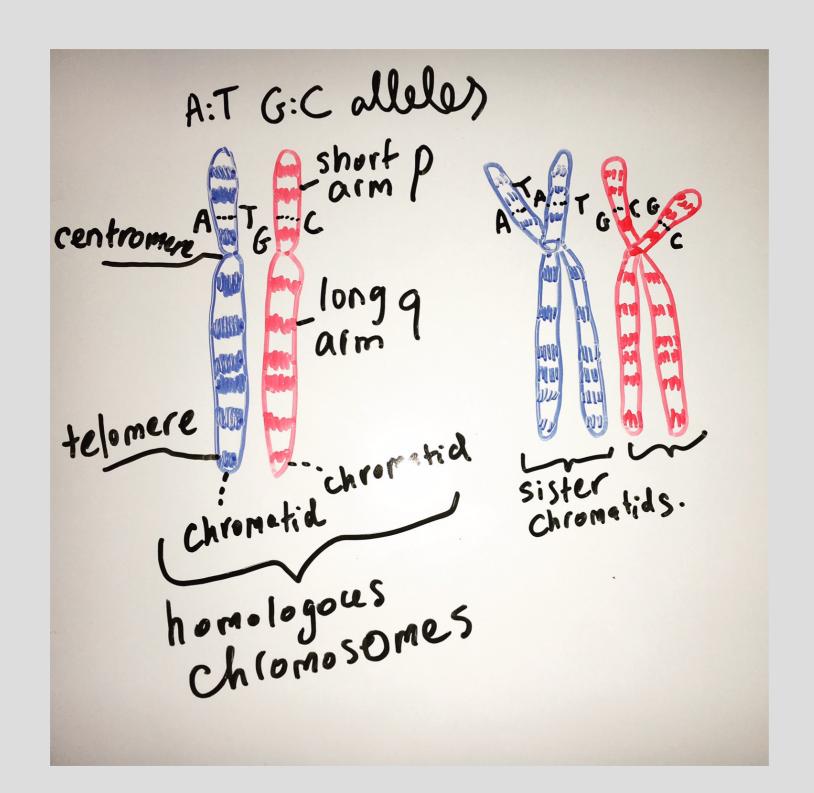
MUTATIONS:

ORIGINS AND RATES

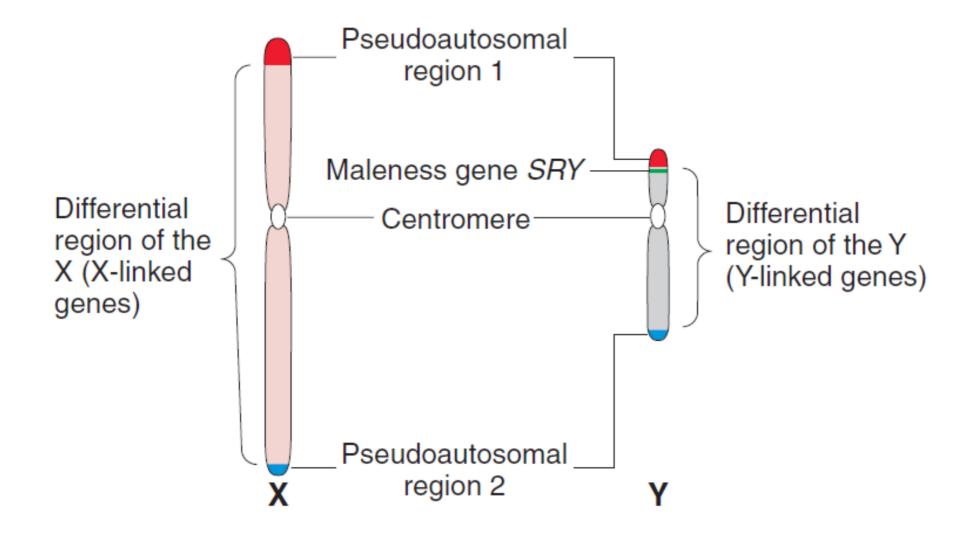
Lecture plan

- Human karyotype
- Mitosis and DNA replication
- · Replication fidelity and mutation rate
- Exogenous and endogenous DNA damage
- DNA repair mechanisms
- De novo mutations: single nucleotide variants
- Structural variants and CNVs
- Aneuploidy


Human karyotype



22 pairs of autosomal chromosomes + 2 sex chromosomes


Human karyotype

- Euchromatin (2.9 Gbp): the gene-rich, transcriptionally active regions of the nuclear genome
- **Heterochromatin** (0.2 Gbp): tightly packed (condensed), transcriptionally inactive, highly repetitive DNA. Location: centromeres, telomeres.
- Metacentric chromosomes have the centromere in the center, such that both arms are of nearly equal length.
- Acrocentric chromosomes (13, 15, 21, 22) have unequal arms.

Sex chromosomes

Women: XX, men: XY

Q: transmission of Y chromosome

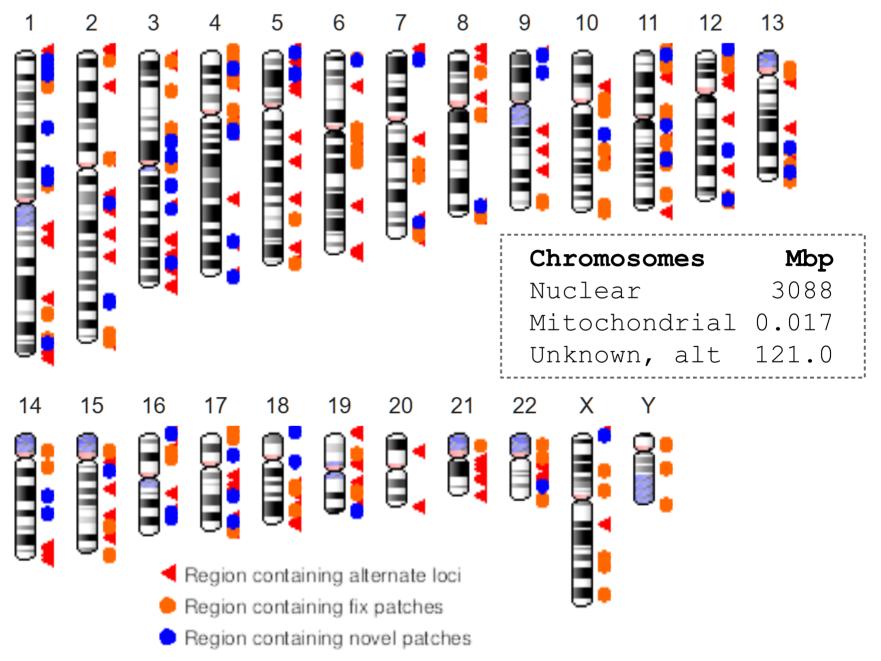
Griffiths -- Introduction to Genetic Analysis

How to check sex of an NGS sample?

How to check sex of an NGS sample?

• Heterozygous / Homozygous ratio on chromosome X

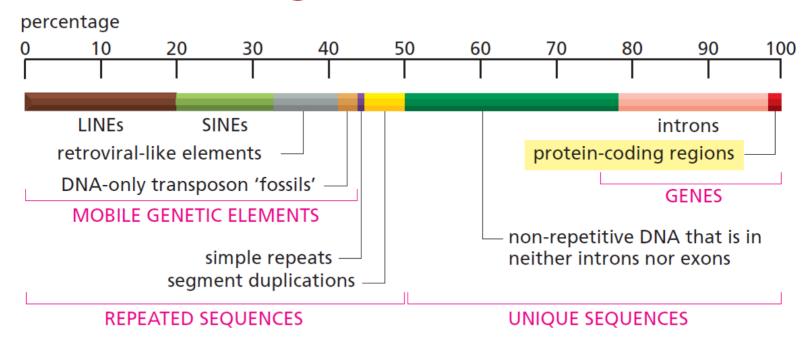
Het/Hom< 0.8 => M, Het/Hom> 0.8 => F; suspicious : 0.5-1.0


• *SRY* gene (Sex-determining Region Y): intronless sex-TF protein, responsible for the initiation of male sex determination in mammals

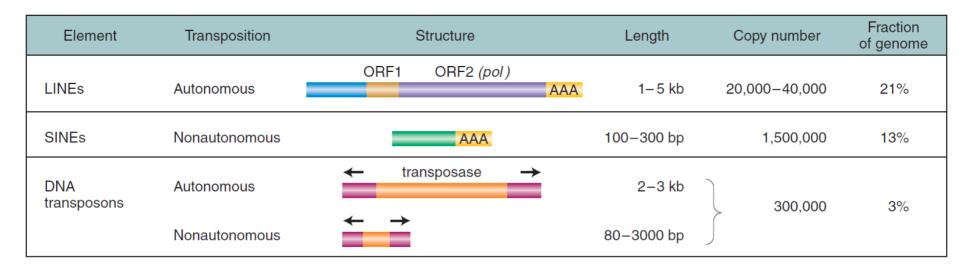
• The human amelogenin genes: AMELX and AMELY

Short arms of X and Y sex chromosomes, share 84% sequence identity. A 6 bp insertion/deletion difference in the first intron of the *AMELY* and *AMELX* genes is typically targeted in forensic sex identification (Tzvetkov 2010 *Pharmacogenomics*)

Genome Reference Consortium GRCh38.p13



Human genome contents


Regions	Length, Mbp	%	Description
Genes	1,200	37.5	Genomic locus where transcription occurs
Exons	48	1.5	Transcribed genomic region that remain in the RNA after splicing
Other (introns, UTRs)	1,152	36.0	Regions of a coding cDNA which are not translated
Unique and regulatory sequences	510	15.9	
Interspersed repeats	1,400	43.8	
LINEs	640	20.0	~850,000 Long Interspersed Elements (~7,000 bp). Retrotransposed elements containing open reading frames encoding (often inactive) reverse transcription machinery
SINEs, Alu repeats	420	13.1	~1,500,000 Short Interspersed Elements. Retrotransposed elements <500 bp that contain tRNA, snRNA and rRNA, which require other mobile elements to be transposed.
LTR retrotransposons	250	7.8	Transposable elements characterized by the presence of Long Terminal Repeats (LTRs) directly flanking an internal coding region
DNA transposons	90	2.8	Class II transposable elements that move through a DNA intermediate
Microsatellites	90	2.8	A region in the genomic sequence containing short tandem repeats of 2-10bp
Total	3,200	100.0	

Human genome contents

Alberts - Essential Cell Biology

ENSEMBL gene annotation GRCh38 v.99

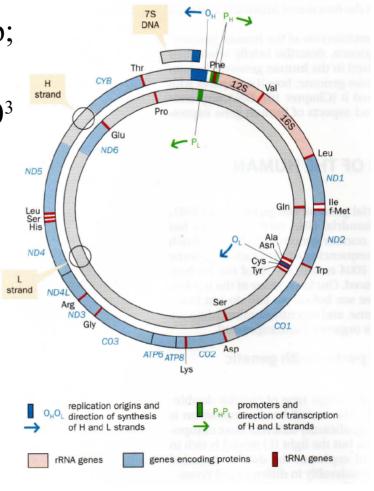
Gene biotype	Genes (Transcripts)	%	Description
Proten coding	19,968 (153,197)	32.9	Genes that contain an open reading frame (ORF)
Pseudogenes	15,263	25.2	Genes that have homology to known protein- coding genes but contain a frameshift and/or stop codon(s) which disrupts the ORF
To be confirmed	1,060	1.7	Require experimental validation
T-cell receptors, immunoglobulins	408	0.7	Undergo somatic recombination before transcription
RNA genes	23,977	39.5	
lncRNA	16,880		A non-coding gene >200bp in length
snRNA	1,910		Processing of pre-messenger RNA
miRNA	1,879		A small RNA (~22bp) that silences the expression of target mRNA
snoRNA	942		Post-transcriptional modification of other RNAs
Other	2,366		rRNA, sRNA, scRNA, scaRNA, miscRNA
Total	60,676 (227,818)	100	

ENSEMBL gene annotation GRCh38 v.99

Chromosome	Approximate length (bp)	Protein-coding genes	Non-protein coding genes Pseudogenes		
1	248956422	2047	1964	1233	
2	242193529	1303	1605	1033	
3	198295559	1075	1160	768	
4	190214555	753	984	732	
5	181538259	881	1200	710	
6	170805979	1041	989	803	
7	159345973	989	977	893	
8	145138636	670	1041	629	
9	138394717	778	786	678	
10	133797422	728	880	568	
11	135086622	1312	1053	815	
12	133275309	1036	1197	627	
13	114364328	321	586	378	
14	107043718	820	857	519	
15	101991189	613	986	513	
16	90338345	867	1033	467	
17	83257441	1185	1198	531	
18	80373285	269	608	246	
19	58617616	1474	895	514	
20	64444167	543	594	250	
21	46709983	231	403	183	
22	50818468	492	513	332	
X	156040895	843	640	872	
Υ	57227415	63	108	392	
Mitochondrial	16569	13	24		

Mitochondrial genome

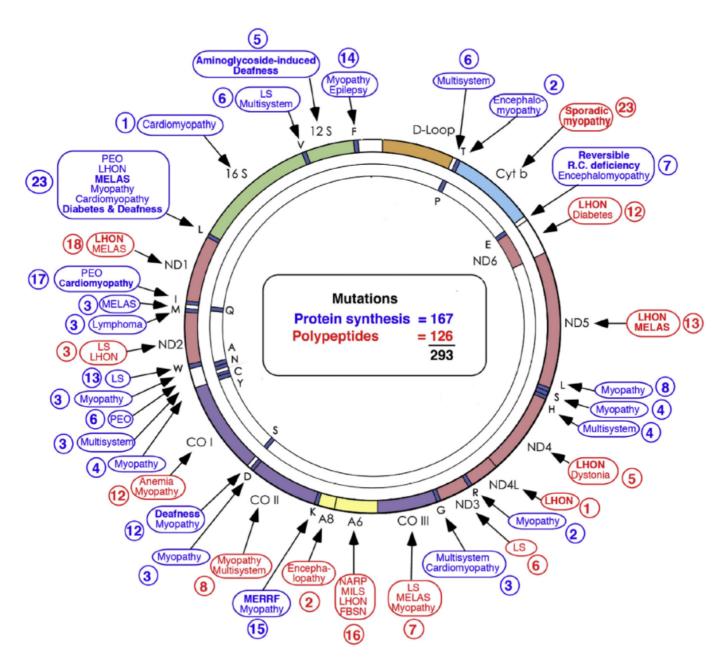
• mtDNA: circular, double-stranded, 16,569 bp; H and L chains; similar to bacteria

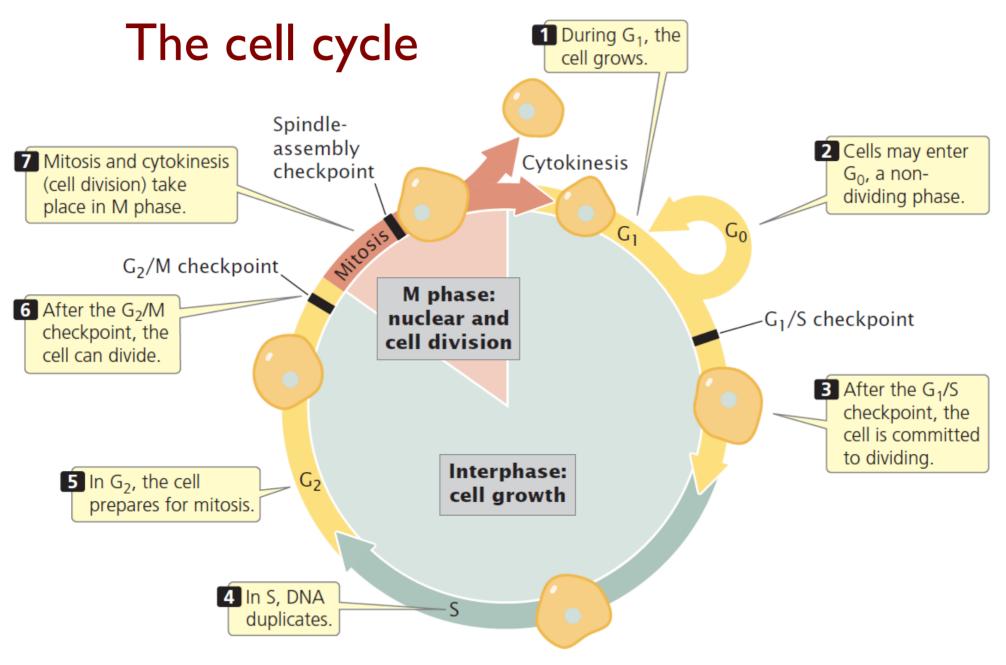

• Egg only, maternally inherited; each cell: $\sim 10^3$ copies; highly heterogeneous

• 37 genes: 22 tRNA + 2 rRNA + 13 coding

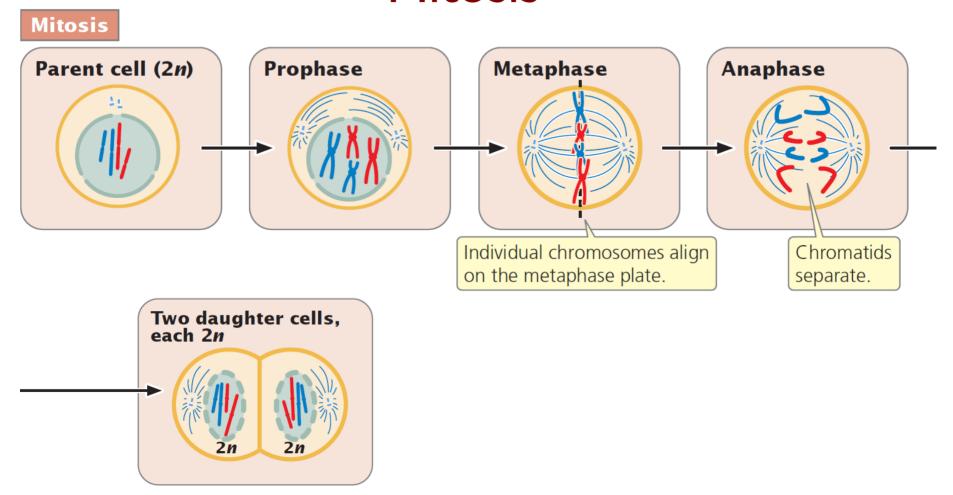
 13 polypeptides are part of mitochondrial respiratory complex (Sugars → ATP), together with multiple nuclear genes

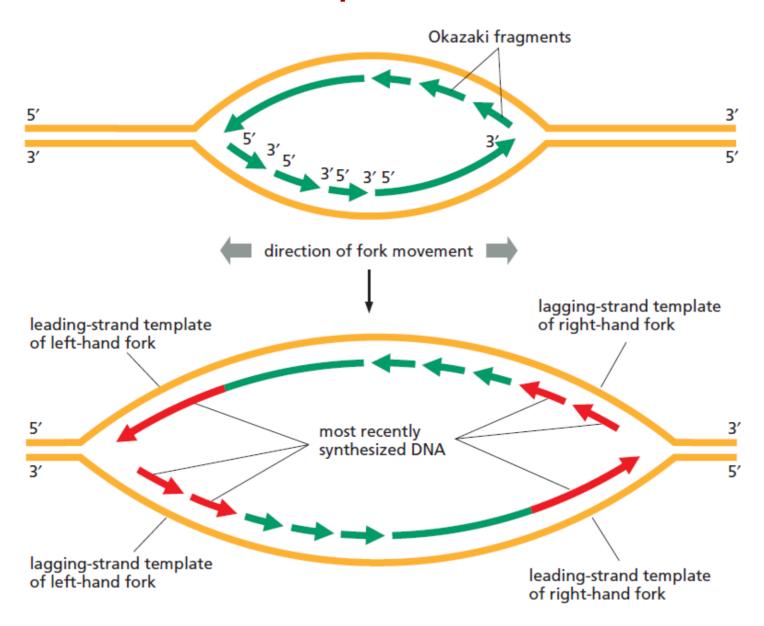
• mtDNA is to some extent autonomous, with its own genetic code


• Stop codons: TAA, TAG, AGA, AGG

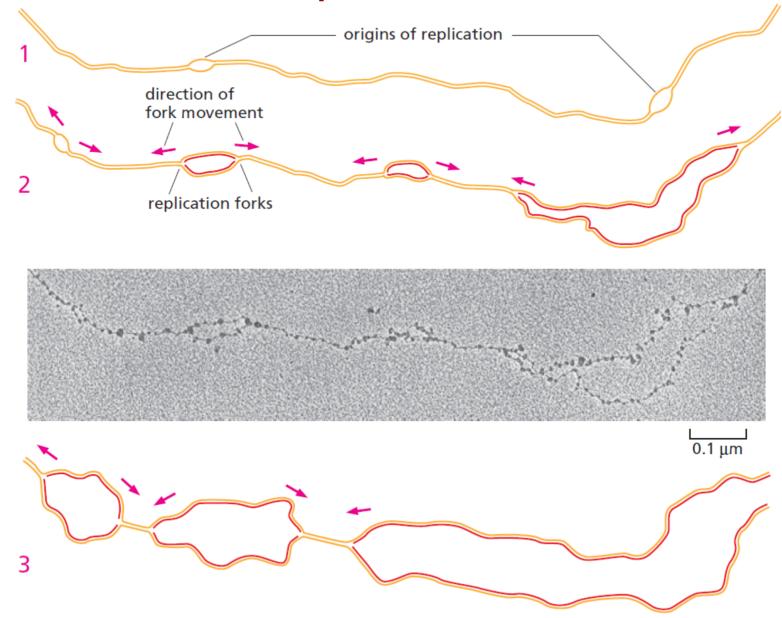


- **Mitochondrial diseases**: a heterogeneous group of inherited anomalies in oxidative phosphorylation due to mutations in the mitochondrial (70%) or nuclear DNA (30%)
- ◆ ~300 disease-causing point mutations known in mtDNA


Pathogenic mutations in mtDNA

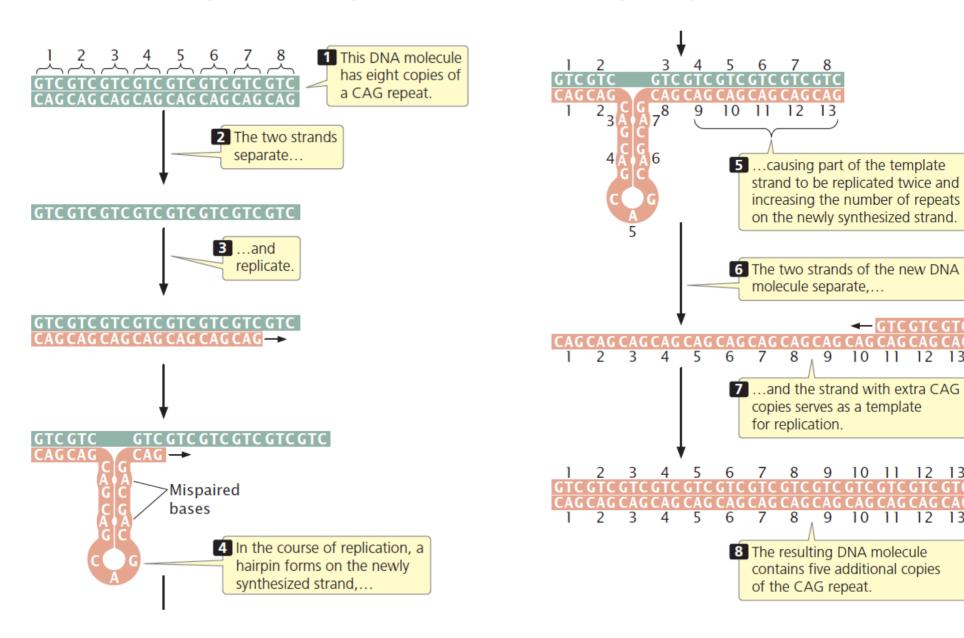

2.7 The cell cycle consists of interphase and M phase.

Mitosis

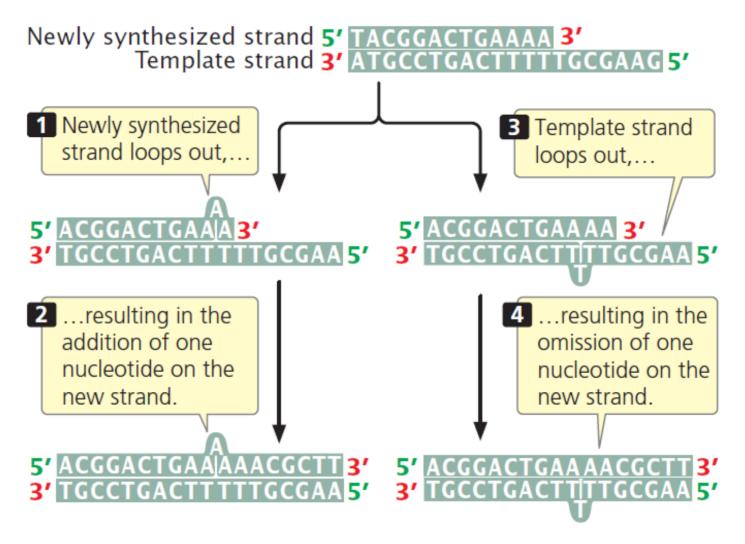


Mitosis: a type of cell division that results in two daughter cells with the set of chromosomes as the parent nucleus, typical of ordinary tissue growth

DNA replication forks



DNA replication forks



Alberts -- Essential Cell Biology

Repeat expansion during replication

Repeat expansion during replication

13.13 Insertions and deletions may result from strand slippage.

Repeat expansion and disease

		Number of Co	pies of Repeat
Disease	Repeated Sequence	Normal Range	Disease Range
Spinal and bulbar muscular atrophy	CAG	11–33	40–62
Fragile-X syndrome	CGG	6–54	50–1500
Jacobsen syndrome	CGG	11	100-1000
Spinocerebellar ataxia (several types)	CAG	4–44	21–130
Autosomal dominant cerebellar ataxia	CAG	7–19	37–220
Myotonic dystrophy	CTG	5–37	44–3000
Huntington disease	CAG	9–37	37–121
Friedreich ataxia	GAA	6–29	200–900
Dentatorubral-pallidoluysian atrophy	CAG	7–25	49–75
Myoclonus epilepsy of the Unverricht-Lundborg type*	CCCCGCCCCGCG	2–3	12–13

Exercise: find related genes in OMIM database

OMIM®

Online Mendelian Inheritance in Man®

An Online Catalog of Human Genes and Genetic Disorders

Updated February 12, 2021

Search OMIM for clinical features, phenotypes, genes, and m

Q

Dissected OMIM Morbid Map Scorecard (Updated February 12th, 2021):

Class of phenotype	Phenotype	Gene *
Single gene disorders and traits	5,740	4,006
Susceptibility to complex disease or infection	694	499
"Nondiseases"	151	119
Somatic cell genetic disease	231	130

^{*}Some genes may be counted more than once because mutations in a gene may cause more than one phenotype and the phenotypes may be of different classes (e.g., activating somatic BRAF mutation underlying cancer, 164757.0001. and germline BRAF mutation in Noonan syndrome, 164757.0022.)

Mutations

Mutations are random changes in DNA sequences

Mutations are the cause of all genetic variation and genetic disease.

Mechanisms of mutation:

- Spontaneous replication errors
- Endogenous (spontaneous) DNA damage: deamination, depurination
- Exogenous (induced) DNA damage: chemical agents, radiation

Variants = mutations (recent changes), polymorphisms (segregating in a population), engineered (non-random) changes

Mutations

Single nucleotide variant: change of the base of a single DNA nucleotide (90%)

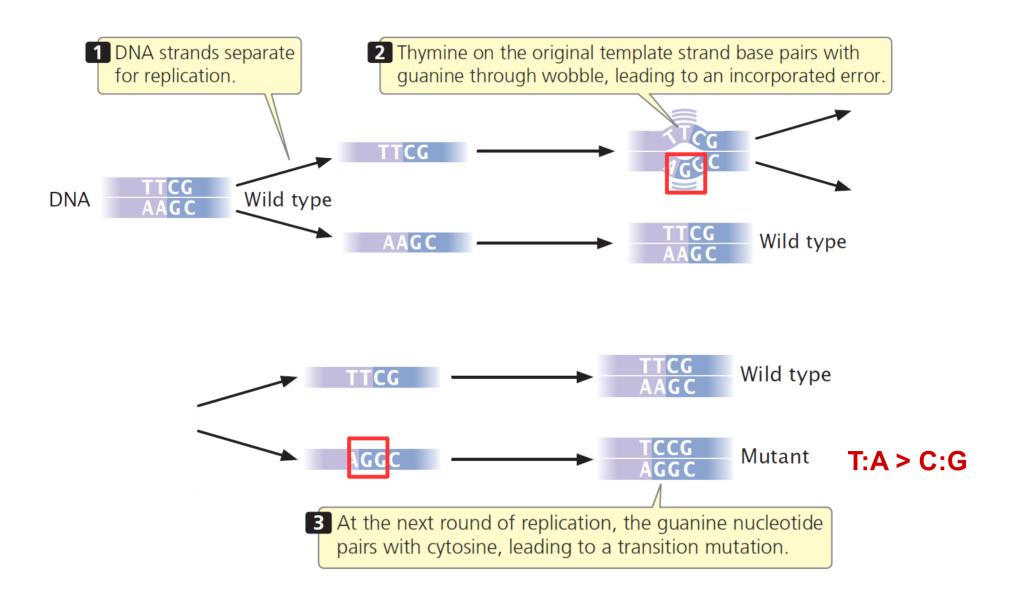
- Transition (G>A, C>T)
- Transversion (C>G, etc)

Short deletion: removal of few (<50bp?) nucleotides (6%)

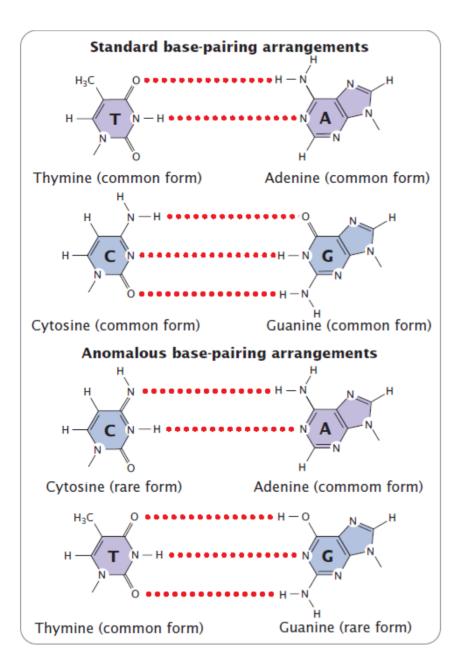
- Deletion of a unique sequence
- Contraction of a short repeat

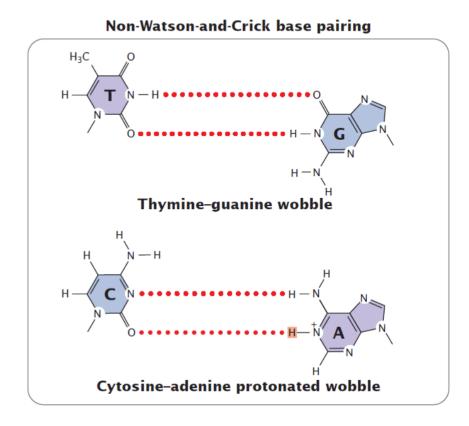
Short insertion: addition of few (<50bp?) nucleotides (2%),

- Insertion of a unique sequence
- Expansion of a short repeat


Structural variant (2%): sequence change \sim 1 kbp and larger in size

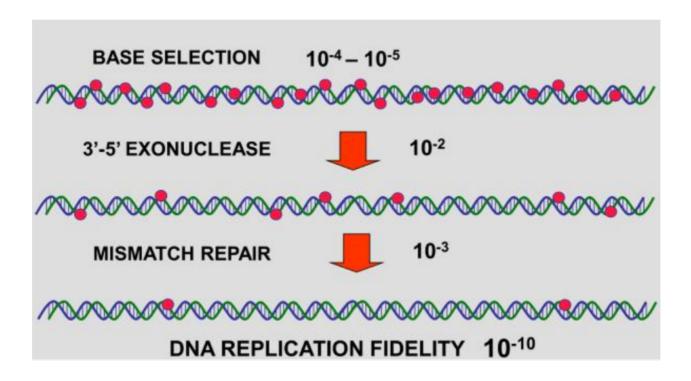
- Balanced
 Inversion or translagati
 - Inversion or translocation
- Unbalanced (aka **CNV**, **copy number variant**)


 Tandem or dispersed duplication, deletion, insertion


Aneuploidy: wrong number of whole chromosomes: nullisomy, monosomy, trisomy

Replication errors become mutations

Standard and non-standard base pairing



Mechanisms of replication fidelity

Overall mutation rate: 10⁻¹⁰ per nucleotide per replication

- 1. DNA polymerase: ~10⁻⁵ error rate
- 2. Proofreading 3'>5' exonuclease removes 99% mispairings: ~10⁻²
- 3. Mismatch repair (MMR) machinery removes and restores DNA fragment around the mismatch: $\sim 10^{-3}$

Mechanisms of replication fidelity

Overall mutation rate: 10⁻¹⁰ per nucleotide per replication

TABLE 6–1 ERROR RATES	
US Postal Service on-time delivery of local first-class mail	13 late deliveries per 100 parcels
Airline luggage system	1 lost bag per 200
A professional typist typing at 120 words per minute	1 mistake per 250 characters
Driving a car in the United States	1 death per 10 ⁴ people per year
DNA replication (without mismatch repair)	1 mistake per 10 ⁷ nucleotides copied
DNA replication (including mismatch repair)	1 mistake per 10 ⁹ nucleotides copied

Mutation rate and its consequences

S: mutation rate per nucleotide per cell division

K: the average number of germline cell divisions per generation, from zygote

to zygote (~30 in females, ~60–500 in males)

N: genome size

Mutation rate per genome: $S \times K \times N$

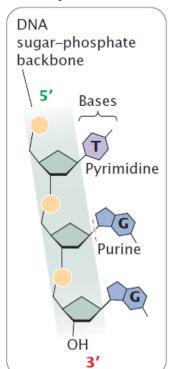
 $\sim 10^{-10}$ per nucleotide per cell division (or $\sim 10^{-8}$ per generation, because there are ~ 100 cell divisions and rounds of DNA replication per human generation $\Rightarrow \sim 100$ de novo mutations in a newborn

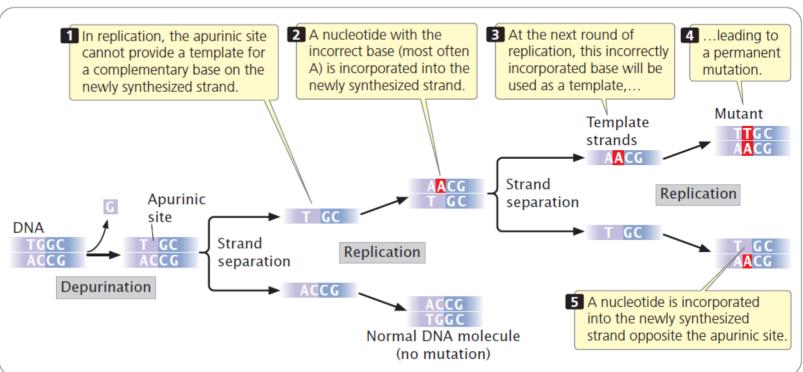
- 1) \sim 1% of all newborns being affected by a serious disease due to a de novo mutation. If the mutation rate were 100 times higher, 10^{-8} per cell division, we would immediately **go extinct**.
- 2) 10^{14} cells in human body \Rightarrow total number of somatic mutations in each person?

Mutation rate and its consequences

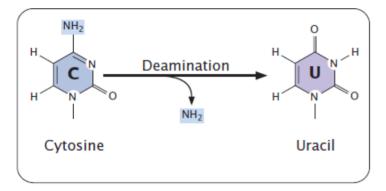
Genes Genet. Syst. (2019) 94, p. 13-22

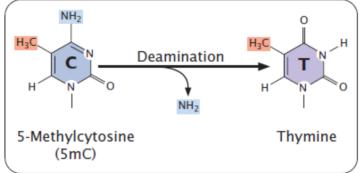
Spontaneous *de novo* germline mutations in humans and mice: rates, spectra, causes and consequences


Mizuki Ohno*


The human body consists of approximately 10¹⁴ cells and undergoes approximately 10¹⁶ cell divisions in a lifetime, resulting in **over 10¹⁵ cumulative mutations per individual** (Frank, 2014).

If 10^6 stem cells in intestinal tissue generate transient daughter cells once a week with a mutation rate of approximately 10^{-9} per nucleotide per cell division, the intestinal epithelium of a 60-year-old human would have accumulated more than 10^9 independent mutations. Thus, **nearly every genomic site is likely to be mutated in at least one cell in this organ** (Lynch, 2010a, 2010b).


Depurination $G:C \rightarrow A:T$



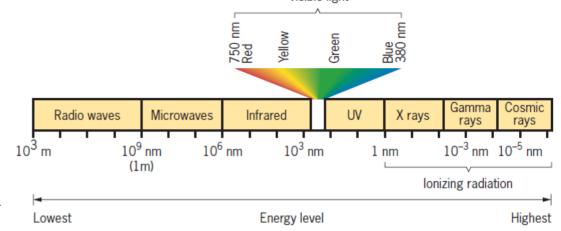
Deamination C:G \rightarrow U:A \rightarrow T:A

$$C:G \rightarrow 5mC:G \rightarrow T:G \rightarrow T:A$$

Pierce -- Genetics Essentials. Concepts and Connections

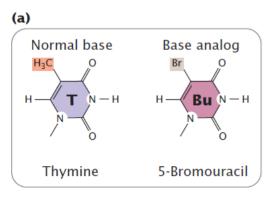
Deamination of 5'-methylcytosine

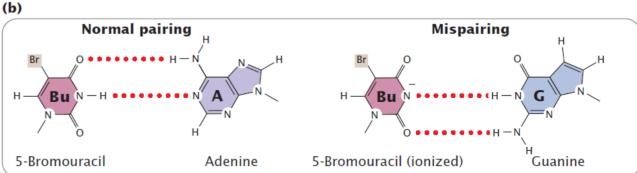
- Cannot be detected by DNA repair system, because it produces a normal base
- Most mutations occur in male germ cells (M/F = 7:1), because of heavy methylation of sperm DNA and high number of cell divisions
- Example: 46% of point mutations in coagulation factor VIII (*F8*) in unrelated hemophilia A patients
- 23% of all mutations in Human Gene Mutation Database (1998)

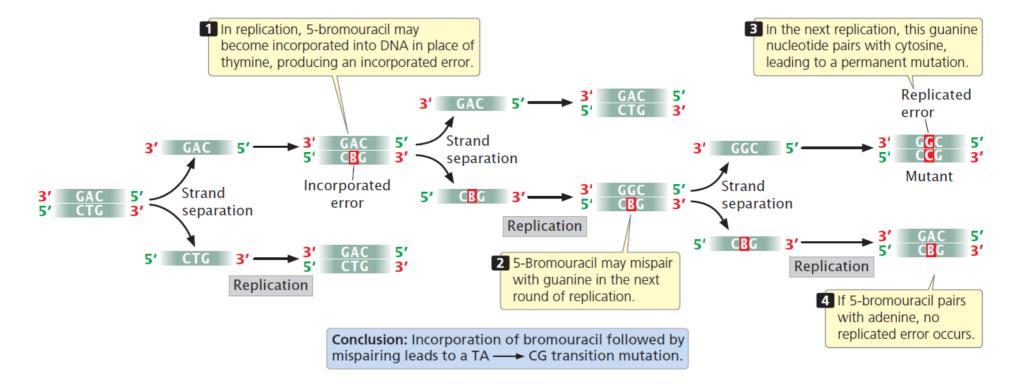

Chemical mutagens

- Base analogs: 5-bromouracil, 2-aminopurine
- **Alkylating agents**: methyl (-CH₃) and ethyl (-CH₃-CH₂) groups added to nucleotide bases
- Deamination: nitrous acid deaminates cytosine, creating uracil
- Hydroxylamine: adds a hydroxyl group (-OH) to cytosine
- Intercalating agents: proflavin, acridine orange, ethidium bromide, dioxin

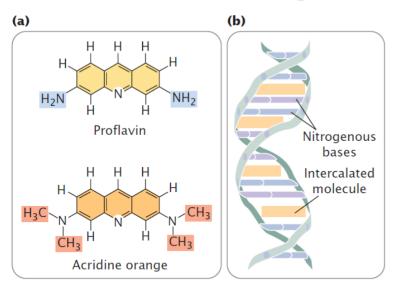
Radiation

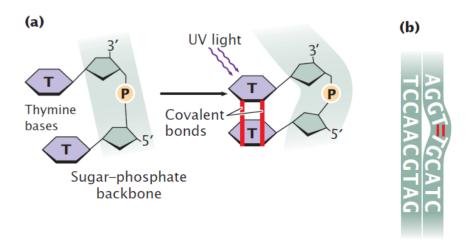

• **Ionizing:** $\sim 10^{-5} - 1 \text{ nm}$


• Ultra-violet: $\sim 1 - 380 \text{ nm}$



Chemical mutagens: 5-bromouracil





Chemical mutagens

	Original base	Mutagen	Modified base	Pairing partner	Type of mutation
(a)	H N O N H H H H	EMS Alkylation	H ₃ C-CH ₂ H N N N H N H	O CH ₃	CG → TA
	Guanine		<i>O</i> ⁶ -Ethylguanine	Thymine	
(b)	H C N	Nitrous acid (HNO ₂) Deamination	H N H	H-N H	CG →→ TA
	Cytosine		Uracil	Adenine	
(c)	H C N	Hydroxylamine (NH ₂ OH) Hydroxylation	HON	H-N H-N N N	CG > TA
	Cytosine		Hydroxylamino- cytosine	Adenine	

13.20 Intercalating agents such as proflavin and acridine orange insert themselves between adjacent bases in DNA, distorting the three-dimensional structure of the helix and causing single-nucleotide insertions and deletions in replication.

13.21 Pyrimidine dimers result from ultraviolet light. (a) Formation of thymine dimer. (b) Distorted DNA.

Intercalating agents: distorted DNA \Longrightarrow insertions and deletions **Ionizing radiation:**

- Free radicals, reactive ions \Rightarrow altered bases
- Double-strand breaks

UV light: Pyrimidune dimers (TpT, CpC, CpT) \Rightarrow distorted DNA \Rightarrow replication blocked \Rightarrow apoptosis or continued error-prone replication

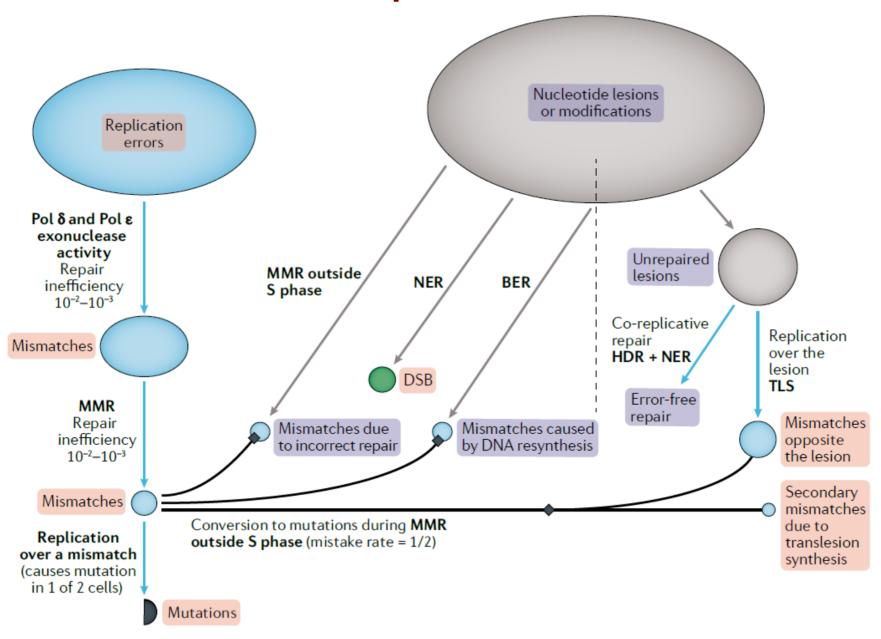
Depurination: about 5000 adenine or guanine bases are lost every day from each nucleated human cell by spontaneous hydrolysis of the basesugar link

Deamination: at least 100 cytosines each day in each nucleated human cell are spontaneously deaminated to produce uracil.

Attack by reactive oxygen species: highly reactive superoxide anions and related molecules are generated as a by-product of oxidative metabolism in mitochondria. They can also be produced by the impact of ionizing radiation on cellular constituents. These reactive oxygen species attack purine and pyrimidine rings.

Nonenzymatic methylation: accidental nonenzymatic DNA methylation by S-adenosyl methionine produces about 300 molecules per cell per day of the cytotoxic base 3-methyl adenine, plus a quantity of the less harmful 7-methyl guanine.

Strachan, Read. Human Molecular Genetics, Chapter 13


Ionizing radiation: gamma- and X-rays can cause single-strand or double-strand breaks in the sugar-phosphate backbone.

Ultraviolet radiation: UV-C rays (with a wavelength of about 260 nm) are especially damaging, but the major source of UV damage in humans is from the UV-B rays (260-315 nm) in sunlight that can penetrate the ozone layer. UV radiation causes cross-linking between adjacent pyrimidines on a DNA strand to form cyclobutane pyrimidine dimers and other abnormal photoproducts.

Environmental chemicals: these include hydrocarbons (for example, in cigaretre smoke), some plant and microbial products such as the aflatoxins found on moldy peanuts, and chemicals used in cancer chemotherapy. Alkylating agents can transfer a methyl or other alkyl group onto DNA bases and can cause cross-linking between bases within a strand or between different DNA strands.

Strachan, Read. Human Molecular Genetics, Chapter 13

Sources of point mutations

