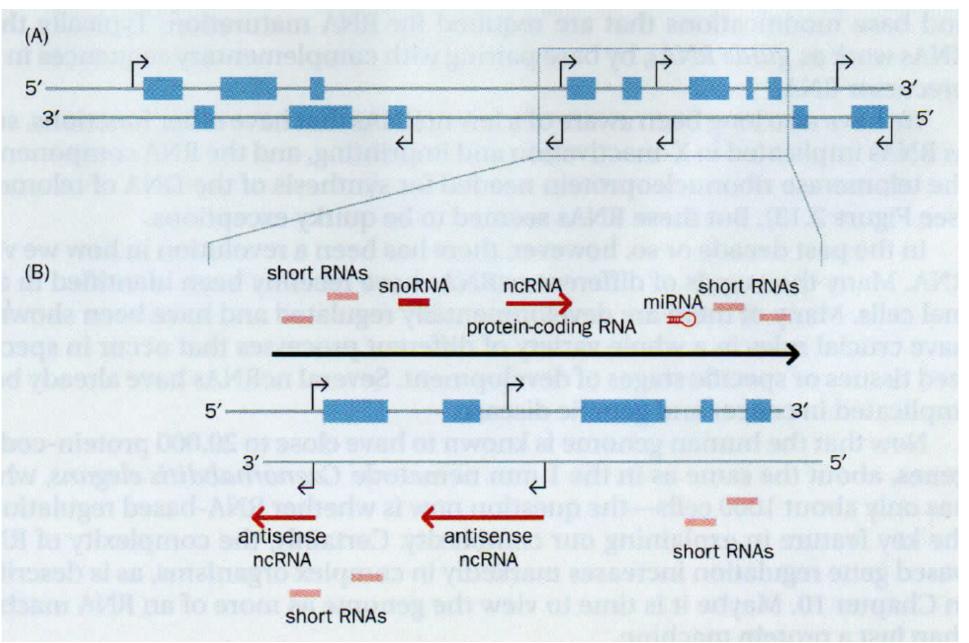
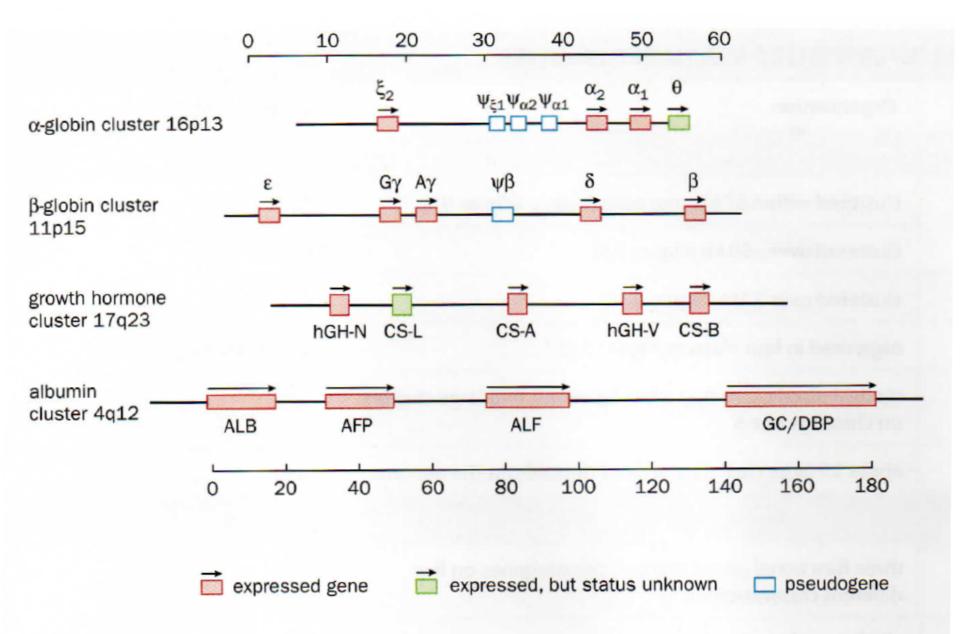
MUTATIONS IN SPACE:

Genes and consequences


Lecture plan

- Overview of human genes structure and processing
- Alternative splicing
- Epigenetics. Chromosomal imprinting.
- Variant annotation. ENSEMBL Variant Effect Predictor: impact and consequences
- Protein-truncating and loss-of-function variants
- Missense variants, inframe indels
- Synonymous and regulatory variants
- Variant effect, dominant and recessive variants, gainand loss-of-function

UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly

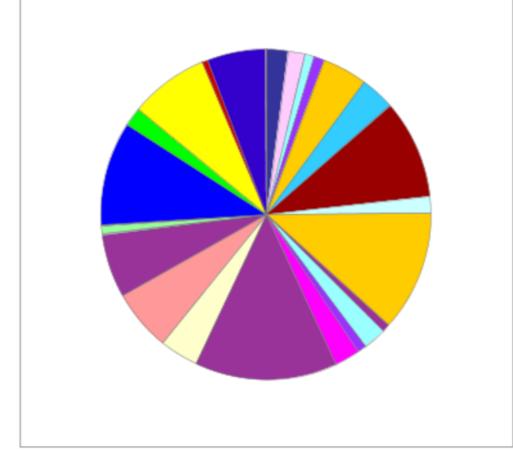


Blurring of gene boundaries

Strachan, Read – Human Molecular Genetics

Multigene families

Strachan, Read – Human Molecular Genetics


Multigene families

Family Copy no.		Organization	Chromosome location(s)	
CLUSTERED GENE FAMILIES				
Growth hormone gene cluster	hormone gene cluster 5 clustered within 67 kb; one pseudogene (Figure 9.8)		17q24	
α-Globin gene cluster	7	clustered over ~50 kb (Figure 9.8)	16p13	
Class I HLA heavy chain genes	ILA heavy chain genes ~20 clustered over 2 Mb (Figure 9.10)		6p21	
HOX genes	38	organized in four clusters (Figure 5.5)	2q31, 7p15, 12q13, 17q21	
Histone gene family	61 modest-sized clusters at a few locations; two large clusters on chromosome 6		many	
Olfactory receptor gene family	> 900	about 25 large clusters scattered throughout the genome	many	
INTERSPERSED GENE FAMILIES				
Aldolase	5 three functional genes and two pseudogenes on five different chromosomes		many	
PAX	9	all nine are functional genes	many	
NF1 (neurofibromatosis type I)	> 12	one functional gene at 22q11; others are nonprocessed pseudogenes or gene fragments (Figure 9.11)	many, mostly pericentromeric	
Ferritin heavy chain 20		one functional gene on chromosome 11; most are processed pseudogenes	many	

Human protein classes

PANTHER Protein Class Total # Genes: 20996 Total # protein class hits: 11214

**Chart tooltips are read as: Category name (Accession): # genes; Percent of gene hit against total # genes; Percent of gene hit against total # Protein Class hits

Click to get gene list for a category:

- calcium-binding protein (PC00060)
- cell adhesion molecule (PC00069)
- <u>cell junction protein (PC00070)</u>
- <u>chaperone (PC00072)</u>
- <u>cytoskeletal protein (PC00085)</u>
- defense/immunity protein (PC00090)
- enzyme modulator (PC00095)
- extracellular matrix protein (PC00102)
- hydrolase (PC00121)
- isomerase (PC00135)
- ligase (PC00142)
- Iyase (PC00144)
- membrane traffic protein (PC00150)
- nucleic acid binding (PC00171)
- oxidoreductase (PC00176)
- receptor (PC00197)
- signaling molecule (PC00207)
- storage protein (PC00210)
- structural protein (PC00211)
- surfactant (PC00212)
- transcription factor (PC00218)
- transfer/carrier protein (PC00219)
- <u>transferase (PC00220)</u>
- transmembrane receptor regulatory/adaptor protein (PC00226)
- transporter (PC00227)
- viral protein (PC00237)

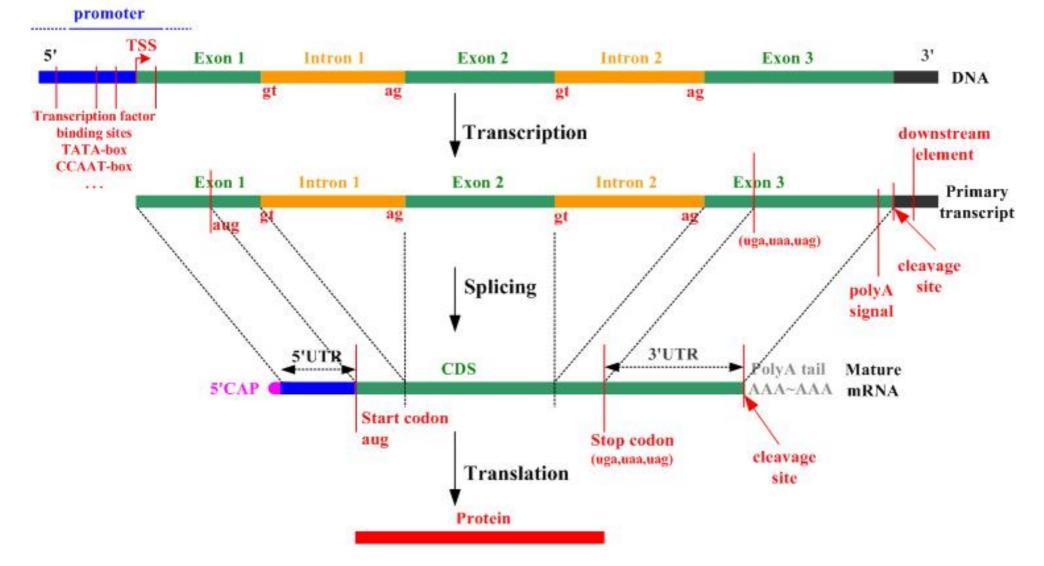
Human protein classes

questions

1	Nucleic acid binding (PC00171)	1567	
2	Hydrolase (PC00121)	1322	
3	Transcription factor (PC00218)	1138	
4	Enzyme modulator (PC00095)	1079	
5	Transferase (PC00220)	867	
6	Signaling molecule (PC00207)	693	
7	Receptor (PC00197)	675	
8	Transporter (PC00227)	638	
9	Cytoskeletal protein (PC00085)	497	
10	Oxidoreductase (PC00176)	424	
11	Defense/immunity protein (PC00090)	386	
12	Membrane traffic protein (PC00150)	280	
13	Ligase (PC00142)	250	
14	Calcium-binding protein (PC00060)	237	
15	Transfer/carrier protein (PC00219)	203	
16	Cell adhesion molecule (PC00069)	195	
17	Extracellular matrix protein (PC00102)	190	
18	Chaperone (PC00072)	111	
19	Cell junction protein (PC00070)	98	
20	Lyase (PC00144)	97	
21	Isomerase (PC00135)	85	
22	Structural protein (PC00211)	84	
23	Transmembrane receptor regulatory/adaptor protein (PC00226	64	
24	Storage protein (PC00210)	18	
25	Viral protein (PC00237)	8	Exercise: think of
26	Surfactant (PC00212)	8	
27	Unknown	9782	appropriate question
	Total	20996	

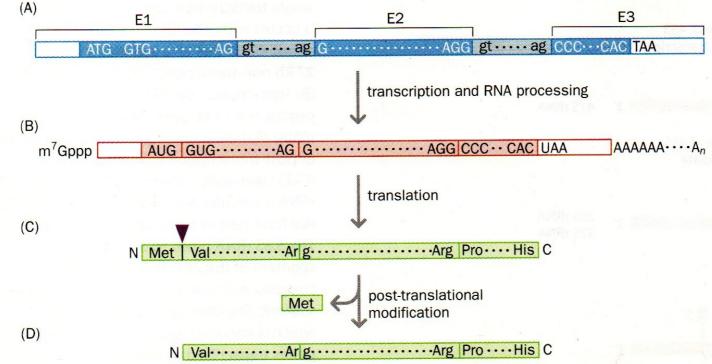
15

The resource for approved human gene nomenclature


GeneCards[®]: The Human Gene Database

16

GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. The knowledgebase automatically integrates gene-centric data from ~150 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.



Note: CDS (coding sequence) vs. mRNA, splicing sites, stop and start codons

Exercise: draw a typical human gene

Carol Guze -- Biology 442 - Human Genetics

Figure 1.23 Transcription and translation of the human β -globin . (A) The β -globin gene comprises three exons (El-E3) and two introns. The 5'-end sequence of El and the 3' end sequence of E3 are noncoding sequences (unshaded sections). (B) These sequences are transcribed and so occur at the 5' and 3' ends (unshaded sections) of the β -globin mRNA that emerges from RNA processing. (C) Some codons can be specified by bases that are separated by an intron. The Arg104 is encoded by the last three nucleotides (AGG) of exon 2 but the Arg30 is encoded by an AGG codon whose first two bases are encoded by the last two nucleotides of exon 1 and whose third base is encoded by the first nucleotide of exon 2. (D) During post-translational modification the 147 amino acid precursor polypeptide undergoes cleavage to remove ils *N*-terminal methionine residue, to generate the mature 146-residue β -globin protein. The flanking *N* and *C* symbols to the left and right, respectively, in (C) Strachan, Read – Human Molecular Genetics

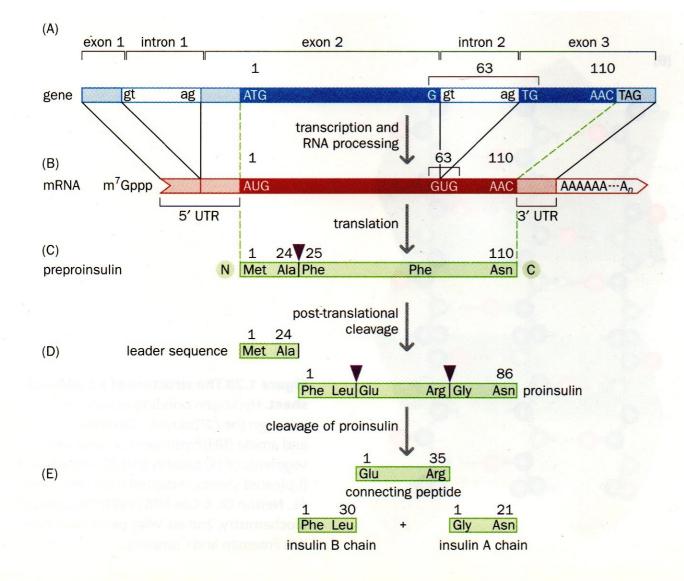
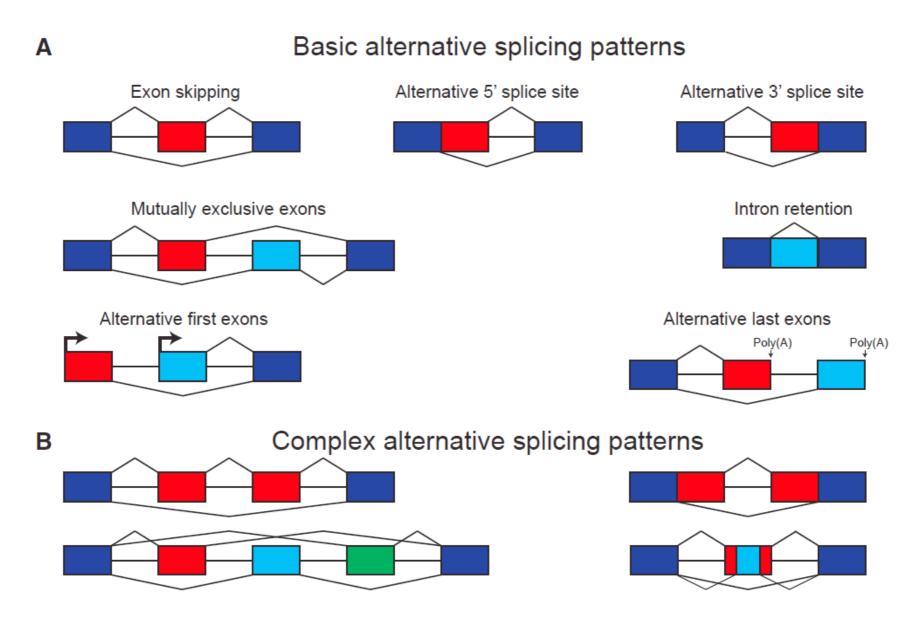
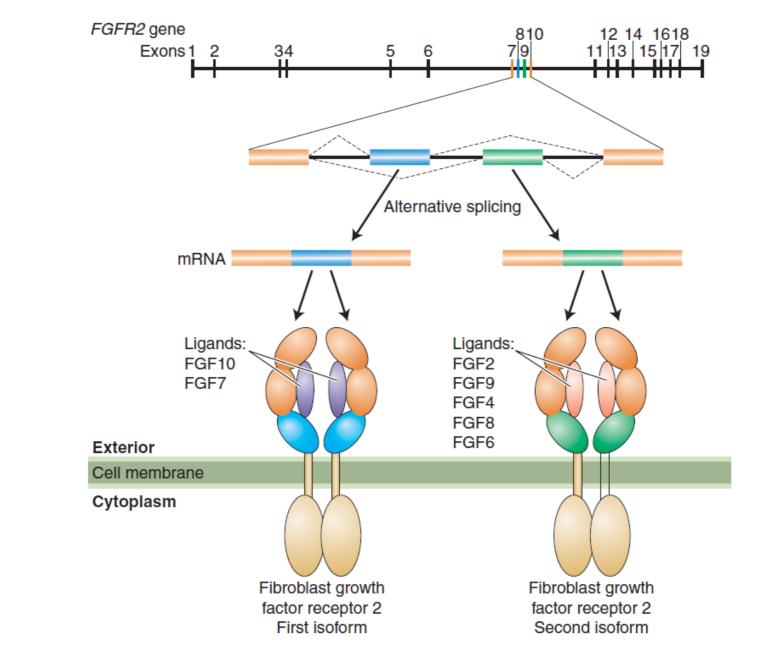


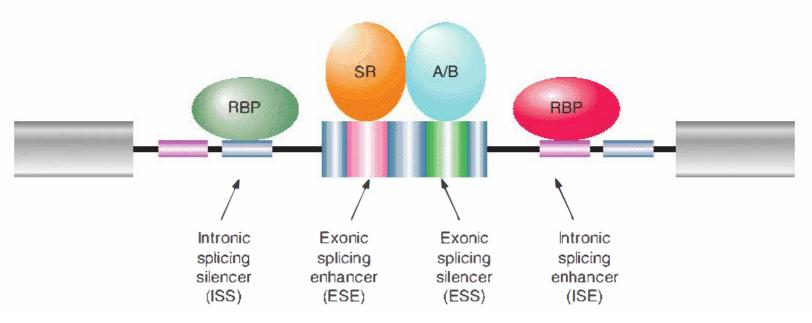
Figure 1.26 Insulin synthesis involves multiple post-translational cleavages of polypeptide precursors. (A) The human insulin gene comprises three exons and two introns. The coding sequence (the part that will be used to make polypeptide) is shown in deep blue. It is confined to the 3' sequence of exon 2 and the 5' sequence of exon 3. (B) Exon 1 and the 5' part of exon 2 specify the 5' untranslated region (5' UTR), and the 3' end of exon 3 specifies the 3' UTR. The UTRs are transcribed and so are present at the ends of the mRNA. (C) A primary translation product, preproinsulin, has 110 residues and is cleaved to give (D) a 24-residue N-terminal leader sequence (that is required for the protein to cross the cell membrane but is thereafter discarded) plus an 86-residue proinsulin precursor. (E) Proinsulin is cleaved to give a central segment (the connecting peptide) that may maintain the conformation of the A and B chains of insulin before the formation of their interconnecting covalent disulfide bridges (see Figure 1.29).

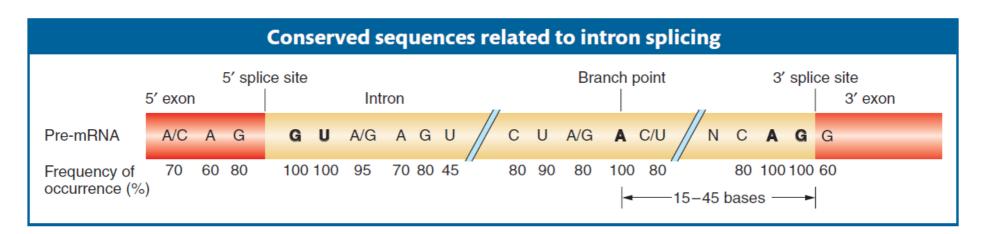

Examples of posttranslational processing

Strachan, Read – Human Molecular Genetics


TABLE 9-1 SOME VITAL STATISTICS FOR THE HUMAN GENOME

DNA length	3.2×10^9 nucleotide pairs*			
Number of genes	approximately 25,000			
Largest gene	2.4×10^{6} nucleotide pairs			
Mean gene size	27,000 nucleotide pairs			
Smallest number of exons per gene	1			
Largest number of exons per gene	178			
Mean number of exons per gene	10.4			
Largest exon size	17,106 nucleotide pairs			
Mean exon size	145 nucleotide pairs			
Number of pseudogenes**	more than 20,000			
Percentage of DNA sequence in exons (protein coding sequences)	1.5%			
Percentage of DNA in other highly conserved sequences***	3.5%			
Percentage of DNA in high-copy repetitive elements	approximately 50%			


Q: what gene (exon) is the largest?


Park (2018) Am J Hum Genet

Griffiths -- Introduction to Genetic Analysis

Lewin – Genes XI

Griffiths -- Introduction to Genetic Analysis

Alternative splicing of human genes TGA ATG 1kb Ь U2 snRNP U1 snRNP Regulatory complex SR SR Splicing enhancer U2AF hnRNP proteins AUGA UG UCCAUUCAUA-5' UACUAC NNYYYYYYYYCAGGU AGGURAGU

Figure 1 | **The splicing code. a** | A pre-mRNA as it might appear to the spliceosome. Red indicates consensus splice site sequences at the intron–exon boundaries. Blue indicates additional intronic cis-acting elements that make up the splicing code. **b** | cis-elements within and around an alternative exon are required for its recognition and regulation. The 5' splice site and branch site serve as binding sites for the RNA components of U1 and U2 small nuclear ribonucleoprotein (snRNPs), respectively. This RNA:RNA base pairing determines the precise joining of exons at the correct nucleotides. Mutations in the pre-mRNA that disrupt this base pairing decrease the efficiency of exon recognition. Exons and introns contain diverse sets of enhancer and suppressor elements that refine bone fide exon recognition. Some exon splicing suppressors (ESSs) bind SR proteins and recruit and stabilize binding of spliceosome components such as U2AF. Exon splicing suppressors (ESSs) bind protein components of heterogeneous nuclear ribonucleoproteins (hnRNP) to repress exon usage. Some intronic splicing enhancers (ISEs) bind auxiliary splicing factors that are not normally associated with the spliceosome to regulate alternative splicing. **Wang (2007) Nat Rev Genet**

ESS

ESE

ESE

ESE

ISE

ISE

5' splice site

ESE

ISE

Branch site

3' splice site

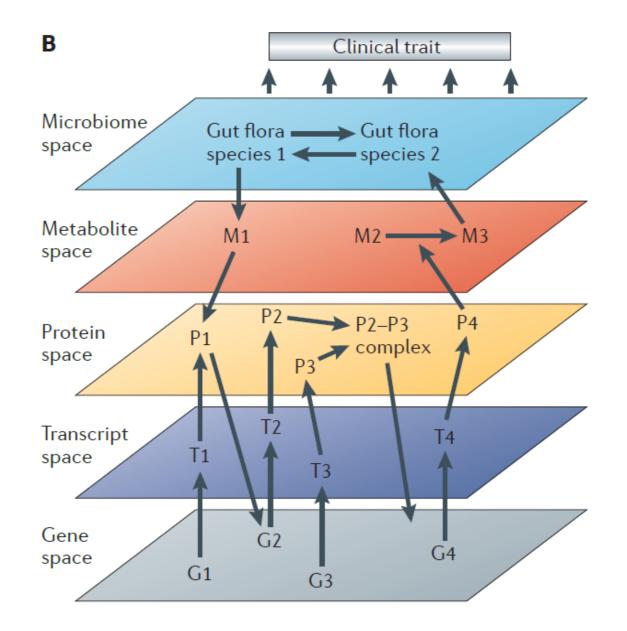
- ENSEMBL GRCh38 v.99, protein-coding genes and transcripts:
- 1 transcript: 22.2% (no alternative splicing)
- · 2-5 transcripts: 52.9%
- >5 transcripts: 24.9%
- More than 75 transcripts: *ADGRG1, ANK2, KCNMA1, MAPK10, NDRG2, PAX6, TCF4*
- Longest transcript designated as **canonical** (\neq most biologically relevant)
- AS contribution to proteome complexity and transcript functionality is still debated: transcripts ≠ protein isoforms
- AS transcripts that introduce premature stop codon are subject to NMD (nonsense-mediated decay)
- Microexons (3-30 nt): misregulated in autistic brain (Irimia (2014) *Cell*).

Aberrant splicing in disease

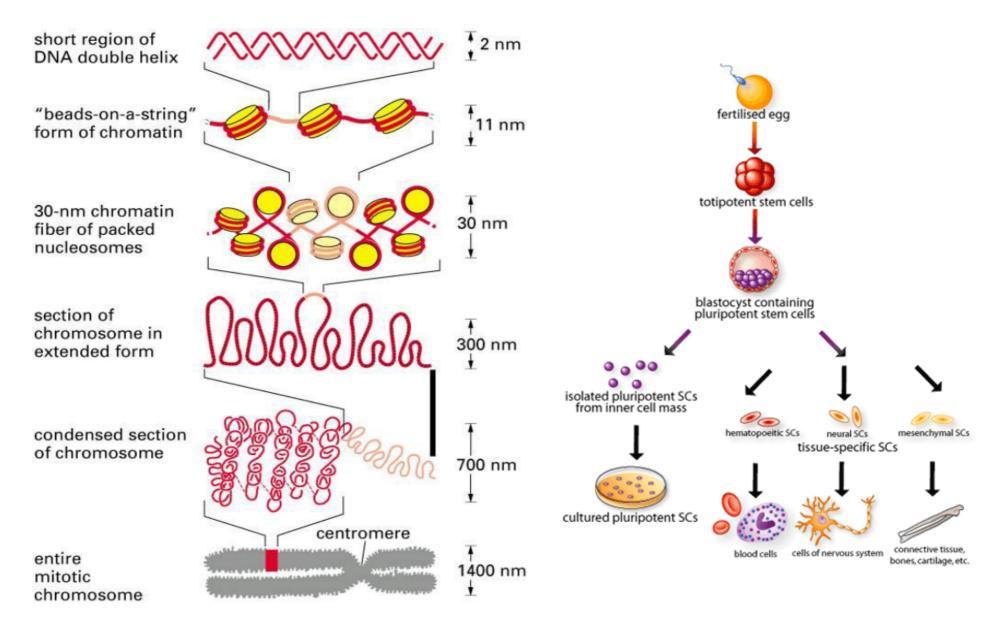
• Cis-acting splicing mutations: disruption of the splicing code, 15-60% of human disease mutations (Wang 2007 *Nat Rev Genet*)

Examples: synonymous mutations in $CFTR \implies$ cystic fibrosis;

Splice site mutations in $MITF \Rightarrow$ Waardenburg syndrome type 2 (WS2), a dominantly inherited syndrome of hearing loss and pigmentary disturbances


• **Trans-acting mutations**: disruption of the splicing RNA-protein machinery.

Example: mutations in $SMN1 \Rightarrow$ loss of snRNP production \Rightarrow spinal muscular atrophy (SMA). Nusinersen, an antisense oligonucleotide drug for correcting splicing in spinal muscular atrophy.


Park, E., Pan, Z., Zhang, Z., Lin, L., and Xing, Y. (2018). The Expanding Landscape of Alternative Splicing Variation in Human Populations. *Am. J. Hum. Genet.* 102, 11–26.

Wang, G.-S., and Cooper, T.A. (2007). Splicing in disease: disruption of the splicing code and the decoding machinery. *Nat. Rev. Genet.* 8, 749–761.

Human genome in action

More realistic picture

Molecular Biology of the Cell, 4th ed.

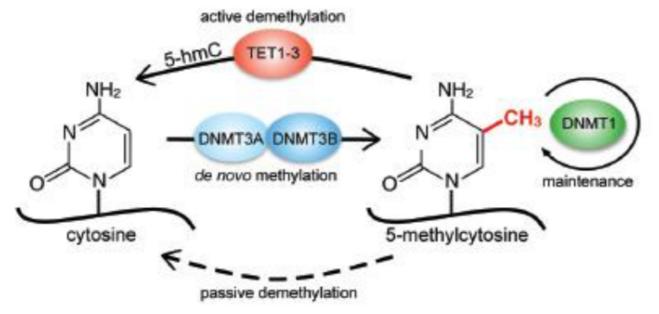
Chaudrey (2004) Stem Cell Bioeng

Epigenetics

Epigenetics: heritable phenotype changes that do not involve alterations in the DNA sequence

Epigenetic regulation:

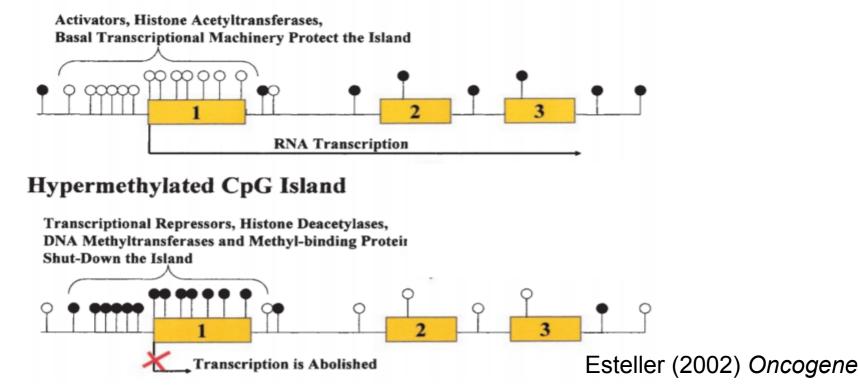
- 1. DNA methylation at CpG dinucleotides
- 2. Covalent modification of histone proteins


3. Noncoding RNAs

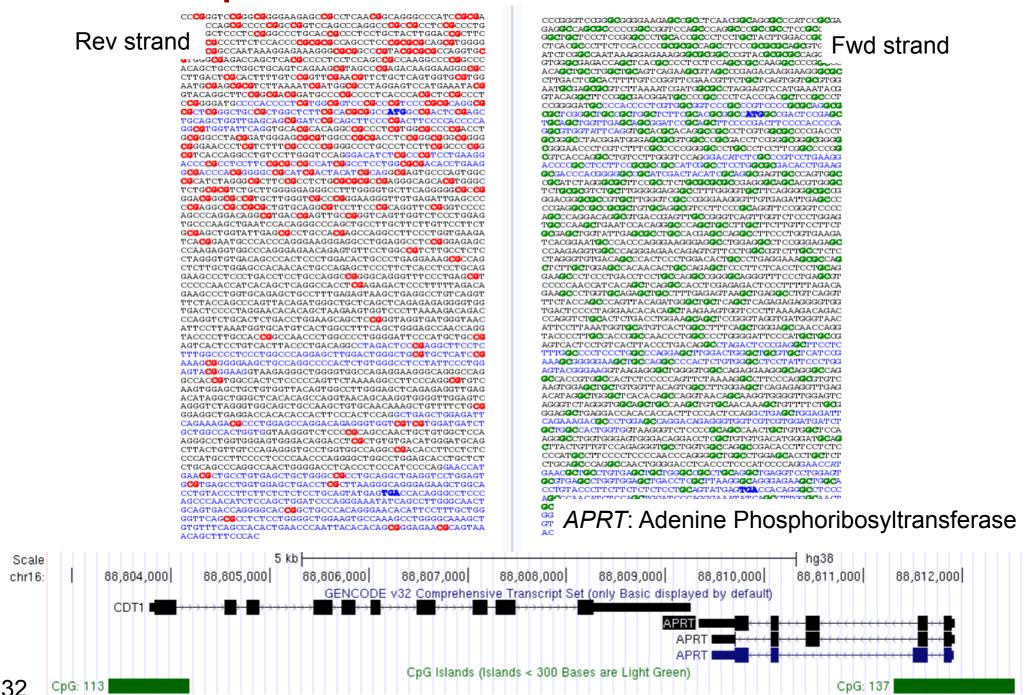
- *Above the genetis*: instructions on using instructions, or gene expression control mechanisms
- Methylation and histone modifications are reversible
- Maintained at cell division and erased during early embriogenesis
- Affected by internal (development, aging) and environmental (chemicals, drugs, diet, lifestyle) factors

DNA methylation

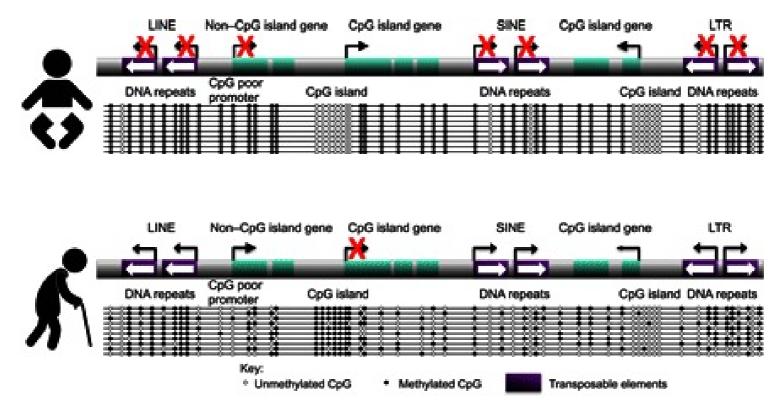
- The only known epigenetic modification of DNA in mammals is methylation of cytosine at position C₅ in CpG dinucleotides
- DNA methyltransferases (DNMTs) establish and maintain DNA methylation patterns
- Methyl-CpG binding proteins (MBDs) read them
- Patterns of CpG methylation may be person-specific, tissuespecific, or locus-specific



Ambrosi (2017) J Mol Biol

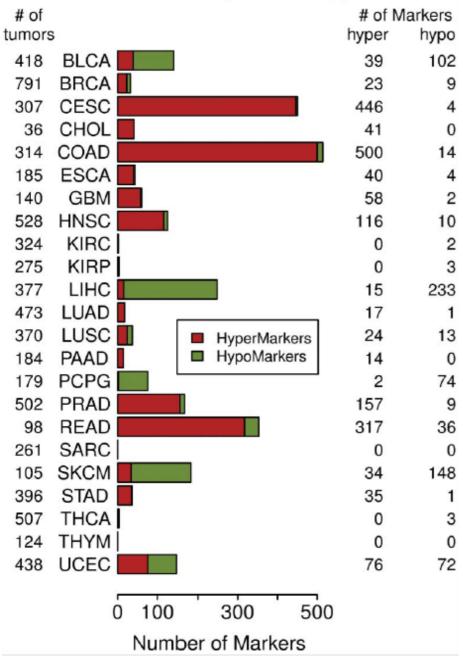

CpG dinucleotides and islands

- **CpG island** *ad hoc* definition: length >200 bp, CG >50%, observedto-expected CpG ratio >60%
- ~30,000 CpG islands in the human genome
- ~70% of human promoters have high CpG content (Saxonov 2006 PNAS)
- Methylation of CpG islands silences gene expression


Unmethylated CpG Island

CpG dinucleotides and islands

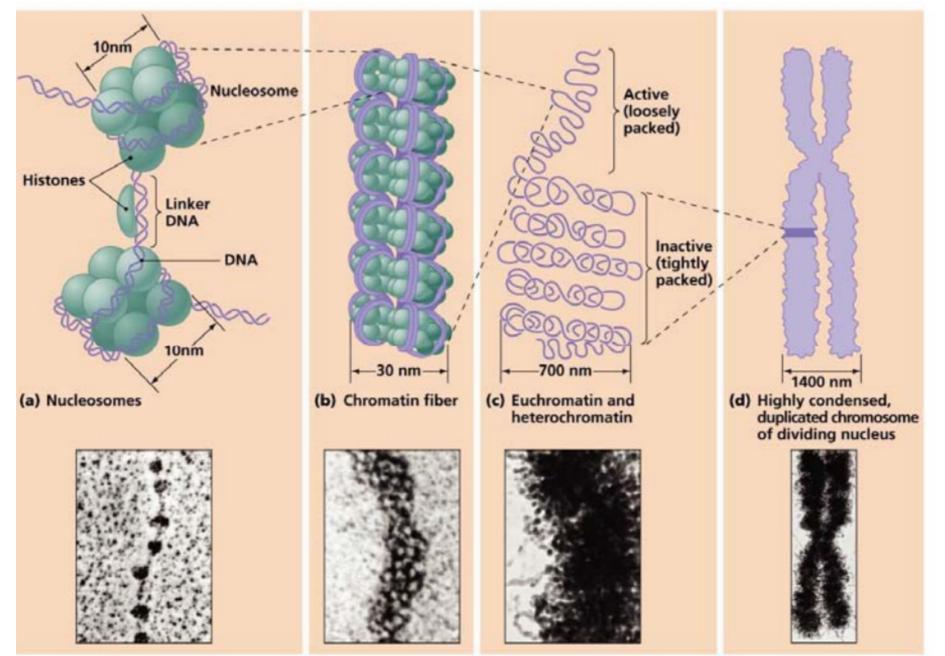
DNA methylation and aging



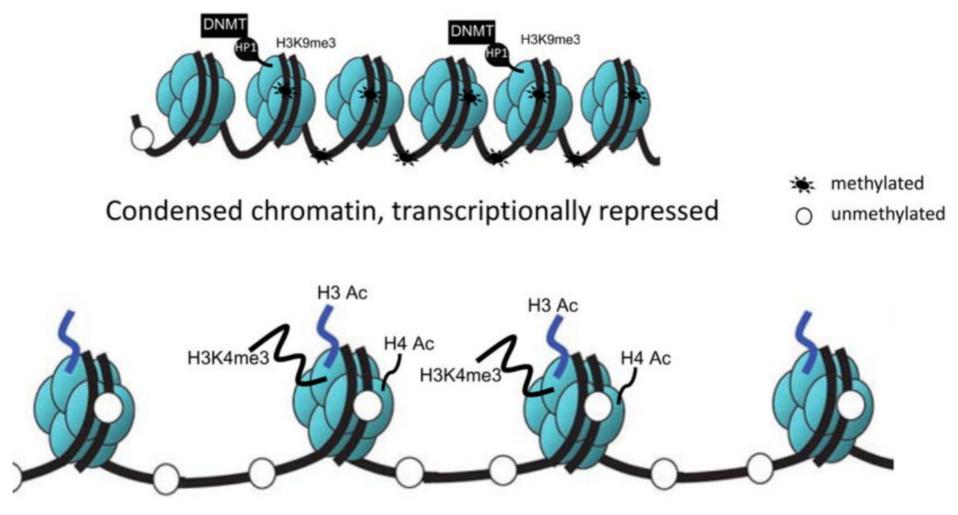
Young mammalian cells are characterized by DNA hypermethylation over the genome, with the exception of CpG islands within the promoters of expressed genes. In particular, DNA repeats, such as LINE, SINE, and long terminal repeat (LTR) transposable elements, are heavily DNA-methylated, helping to maintain them in a constitutive heterochromatin state. **During aging, there is general DNA hypomethylation over the genome, which mostly occurs in a stochastic manner within the cell population.** Loss of DNA methylation leads to activation of normally silenced DNA sequences like the transposable elements. However, DNA methylation also increases in a nonstochastic manner over the CpG islands of certain genes, correlating with their heterochromatinization and silencing.

Pal & Tyler (2016) Sci Adv

DNA methylation and cancer

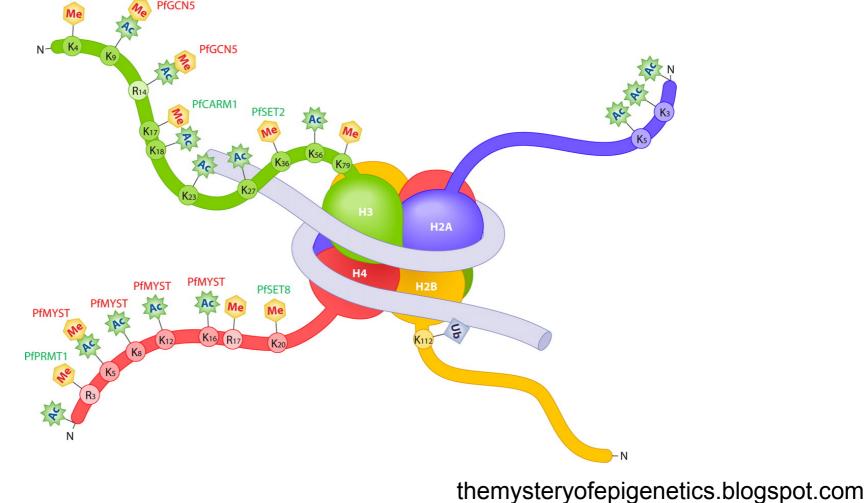

Filtered markers per cancer type

34


We identified **differentially methylated** regions for individual cancer types and those were further filtered against data from normal tissues to obtain marker regions with cancer-specific methylation, resulting in a total of 1,250 hypermethylated 584 and hypomethylated marker CpGs. From hypermethylated markers, optimal sets of six markers for each TCGA cancer type were chosen that could identify most tumors with high specificity and sensitivity [area under the curve (AUC): 0.969-1.000] and a universal 12 marker set that can detect tumors of all 33 TCGA cancer types (AUC >0.84).

Vrba & Futscher (2018) Epigenetics

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

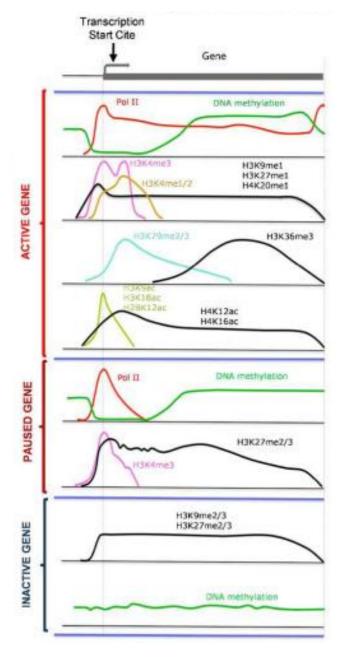

themysteryofepigenetics.blogspot.com

Open chromatin, transcriptionally active

Bansal (2017) Pediatric Diabetes

- **Histone code**: post-translational modifications of histone N-ends (Lys, Arg, Cys) by phosphorylation, acetylation, methylation and ubiquitylation.
- These changes regulate gene expression by modulating the access of regulatory factors to the DNA

The eukaryotic genome is organized in what is known as a **nucleosome**, the first level of condensation. The nucleosome is composed of 147 base pairs of negatively-charged DNA wrapped twice around an octamer of positively-charged proteins called **histones**. It consists of two H2A and H2B dimers, and a H3 and H4 tetramer. The nucleosomes are separated by 1,016 base pairs (bp) of DNA called "linker DNA", which constitutes an arrangement referred to as "beads on a string", that is around 10nm in diameter. DNA can be further condensed at different points during the cell cycle, forming a 30nm chromatin fiber composed of packed nucleosomes using the histone H1, which binds to the linker DNA. These 30nm fibers can form scaffolds and further condense until chromosomes are formed, which are the highest form of DNA organization within a cell.


Histones have very dynamic N-terminal "tails" extending from the surface of the nucleosome that are rich in basic amino acids. These tails can be modified by post-translational modifications (PTM's) catalyzed by a variety of enzymes, by adding either methyl, acetyl or phosphoryl groups. Aditionally, lysines can be mono, di or trimethylated, while arginine can accept up to two methyl groups which adds to the complexity. Methylation of DNA at cytosine residues, as well as PTMs of histones, including phosphorylation, acetylation, methylation and ubiquitylation, contributes to the epigenetic information carried by chromatin. These changes play an important role in the regulation of gene expression by modulating the access of regulatory factors to the DNA. Many modification sites are close enough to each other and it seems that modification of histone tails by one enzyme might influence the rate and efficiency at which other enzymes use the newly modified tails as a substrate.

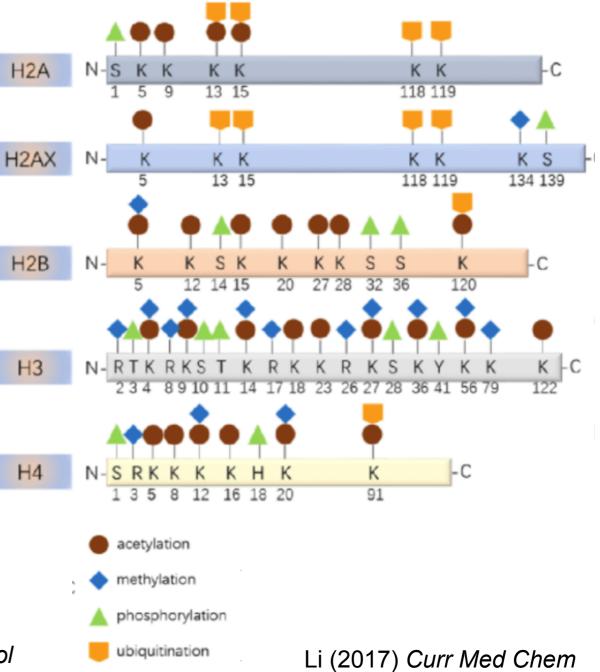
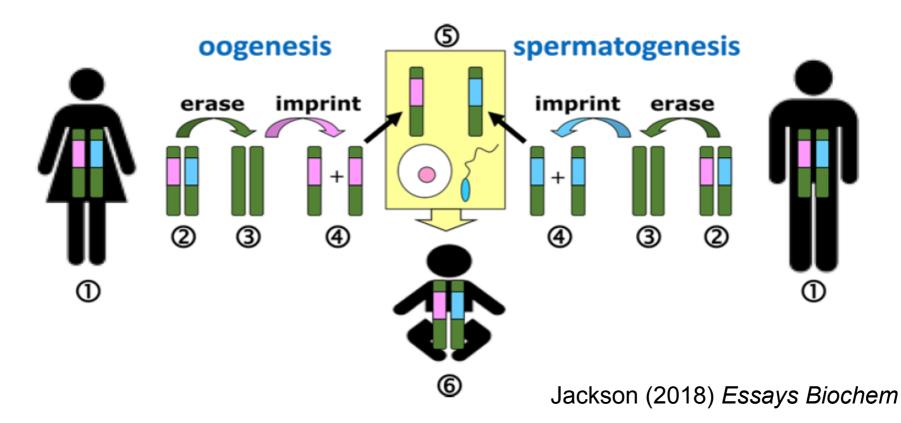

37

Table 1. The histone code.

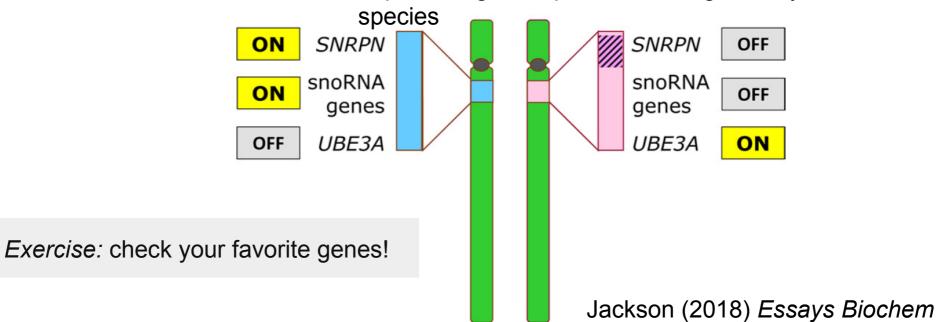
Histone code	Methylation			Acetylation	Ubiquitination
	Monomethylation	Dimethylation	Trimethylation		
H2AK119	-	_	-	_	Repression
Н2ВК5	Activation	_	Repression	-	-
Н3К4	Activation	Activation	Activation	_	-
Н3К9	Activation	Repression	Repression	Activation	-
H3K14	-	_	-	Activation	-
H3K18	-	_	-	Activation	-
H3K27	Activation	Repression	Repression	Activation	-
НЗКЗ6	Repression	Activation	Activation	_	-
Н3К56	_	_	_	Activation	-
Н3К79	Activation	Activation	Activation, repression	-	_
H4K12	_	_	_	Activation	-
H4K20	Activation		Repression	_	-

For each post-translational modification, the known functional association on gene transcription is shown. By reading the combinatorial and/or sequential histone modifications that constitute the histone code, it may be possible to predict which gene products will be transcribed. However, this code is controversial, since some gene loci present marks both associated with transcriptional activation and linked with repression. These bivalent domains are posited to be poised for either up- or down-regulation and to provide an epigenetic blueprint for lineage determination, and are usually found in stem cells.



39 Botchkarev (2012) J Invest Dermatol

Chromosomal imprinting


- Chromosomal imprinting, or imprints: ~100 genes on various chromosomes, one copy is inactive by epigenetic mechanisms depending upon parent of origin
- For some genes (~70) only the paternal allele is active, while the maternal copy is epigenetically silenced throughout the life of the individual, and vice versa (~30 genes)
- Mutations in an active copy of a gene result in **imprinting disorders**

Chromosomal imprinting

Gene	Aliases	Location	Status	Expressed Allele
MAGEL2	nM15, NDNL1	15q11-q12 <i>AS</i>	Imprinted	Paternal
MKRN3	D15S9, RNF63, ZFP127, ZNF127, MGC88288	15q11-q13	Imprinted	Paternal
UBE3A	AS, ANCR, E6-AP, HPVE6A, EPVE6AP, FLJ26981	15q11-q13 <i>AS</i>	Imprinted	Maternal
NPAP1	C15orf2	15q11-q13	Imprinted	Unknown
ZNF127AS	MKRN3AS, Znp127as	15q11-q13	Unknown	Unknown
SNORD109A	HBII-438A	15q11.2	Imprinted	Paternal
SNORD108	HBII-437, HBII-437 C/D box snoRNA	15q11.2	Imprinted	Paternal
SNORD107	HBII-436, HBII-436 C/D box snoRNA	15q11.2	Imprinted	Paternal
SNORD109B	HBII-438B, HBII-438B C/D box snoRNA	15q11.2	Imprinted	Paternal
ATP10A	ATPVA, ATPVC, ATP10C, KIAA0566	15q11.2 <i>AS</i>	Imprinted	Maternal
SNRPN	SMN, PWCR, SM-D, RT-LI, HCERN3, SNRNP-N, FLJ33569, FLJ36996, FLJ39265, MGC29886, SNURF- SNRPN, DKFZp762N022, DKFZp686C0927, DKFZp761I1912, DKFZp686M12165	15q11.2	Imprinted	Paternal

http://www.geneimprint.com/site/genes-by-

Imprinting disorders

	Angelman syndrome	Prader-Willi syndrome
Key features	 * Moderate to severe ID (IQ ~25–54) * Jerky, puppet-like movements * Happy and sociable disposition * Seizures 	 * Mild to moderate ID (IQ ~60-70) * Insatiable appetite leading to morbid obesity * Behaviour problems
Frequency in the population	~1/20,000	~1/15,000
Underlying genetic abnormality (in some cases, the underlying cause has not been determined)	 Maternal 15q11.2 deletion (~70%) Paternal UPD (~4%) Imprinting defect (~8%) Pathogenic variant in UBE3A (~6%) 	– Paternal 15q11.2 deletion (~70%) – Maternal UPD (~20%) – Imprinting defect (~5%)
Key genes	<i>UBE3A</i> encoding a ubiquitin ligase	SNORD116 gene cluster encoding snoRNAs (other genes in the imprinted region may also influence the phenotype)

Jackson (2018) Essays Biochem

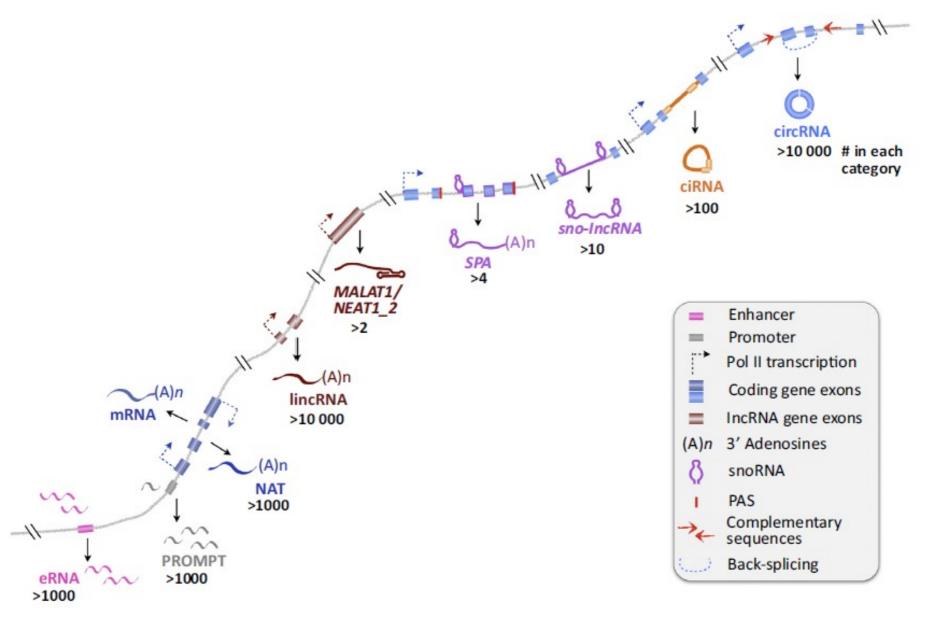
Imprinting disorders

- IGF2 is a hormone that stimulates growth during embryonic and fetal development // not the IGF2 receptor gene!
- Normally maternally silenced in humans
- Epimutation (missing methyl tags) can result in two active copies

Activation of the maternal *IGF2* gene during egg formation or very early in development causes **Beckwith-Wiedemann Syndrome (BWS):** Beckwith-Wiedemann syndrome

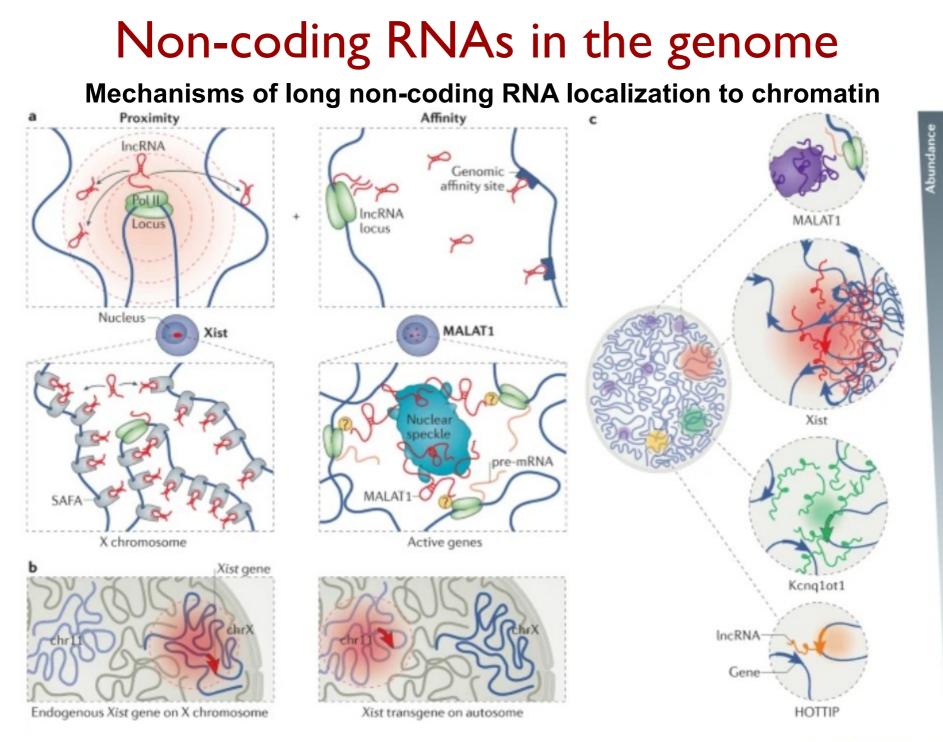
- overgrowth
- an increased risk of cancer, especially during childhood
- variety of other symptoms

Macroglossia


Umbilical hernia

Omphalocele

Frequency: $\sim 15,000$ births. However, in babies that were conceived in the laboratory with the help of artificial reproductive technology, the rate of BWS may be as high as 1/4,000.


https://learn.genetics.utah.edu/content/epigenetics/imprinting

Non-coding RNAs in the genome

Trends in Genetics

Huang Wu (2017) Trends Genet

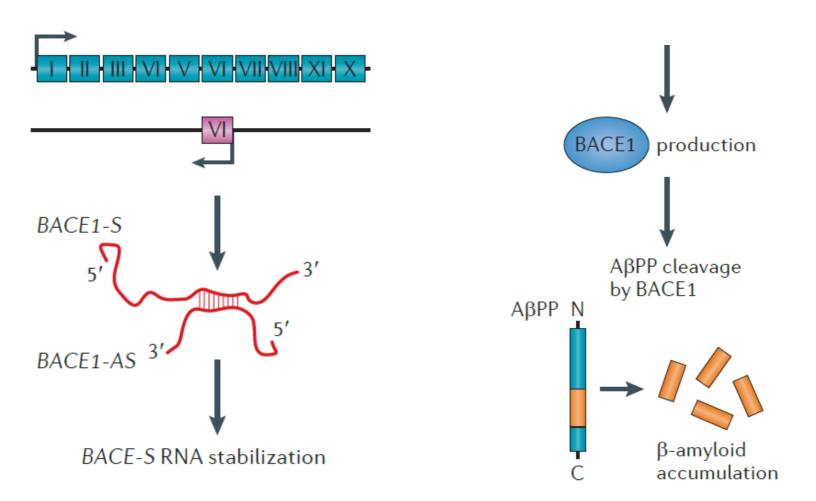
45 Engreitz (2016) Nat Rev Mol Cell Biol

Nature Reviews | Molecular Cell Biology

Non-coding RNAs in the genome

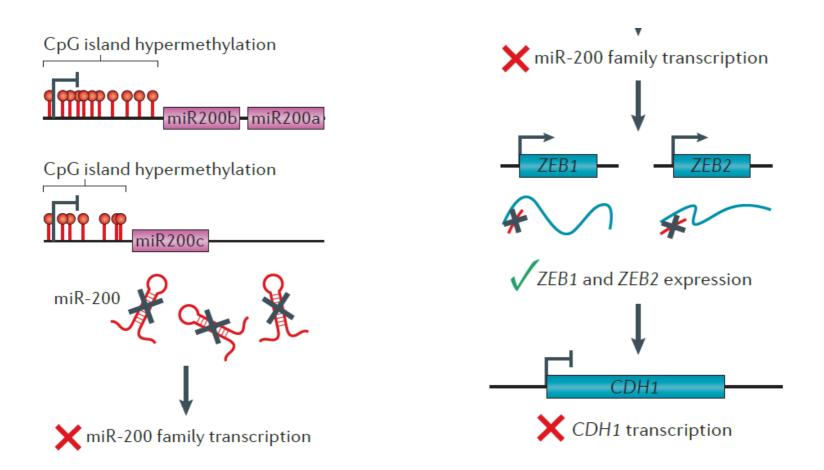
Name	Size	Location	Number in humans	Functions	Illustrative examples
Short ncRN	As				
miRNAs	19–24 bp	Encoded at widespread locations	>1,424	Targeting of mRNAs and many others	miR-15/16, miR-124a, miR-34b/c, miR-200
piRNAs	26–31bp	Clusters, intragenic	23,439	Transposon repression, DNA methylation	piRNAs targeting RASGRF1 and LINE1 and IAP elements
tiRNAs	17–18bp	Downstream of TSSs	>5,000	Regulation of transcription?	Associated with the CAP1 gene
Mid-size ncRNAs					
snoRNAs	60–300 bp	Intronic	>300	rRNA modifications	U50, SNORD
PASRs	22–200 bp	5' regions of protein-coding genes	>10,000	Unknown	Half of protein-coding genes
TSSa-RNAs	20–90 bp	–250 and +50 bp of TSSs	>10,000	Maintenance of transcription?	Associated with RNF12 and CCDC52 genes
PROMPTs	<200 bp	–205 bp and –5 kb of TSSs	Unknown	Activation of transcription?	Associated with EXT1 and RBM39 genes
Long ncRNA	ls				
lincRNAs	>200 bp	Widespread loci	>1,000	Examples include scaffold DNA– chromatin complexes	HOTAIR, HOTTIP, lincRNA-p21
T-UCRs	>200 bp	Widespread loci	>350	Regulation of miRNA and mRNA levels?	uc.283+, uc.338, uc160+
Other IncRNAs	>200 bp	Widespread loci	>3,000	Examples include X-chromosome inactivation, telomere regulation, imprinting	XIST, TSIX, TERRAs, p15AS, H19, HYMAI

Esteller (2011) Nat Rev Genet


Non-coding RNAs in non-cancer disease

Disease	Involved ncRNAs	ncRNA type
Spinal motor neuron disease	miR-9	miRNA
Spinocerebellar ataxia type 1	miR-19, miR-101, miR-100	miRNA
Amyotropic lateral sclerosis	miR-206	miRNA
Arrhytmia and hypertension	miR-1	miRNA
Atheromatosis and atherosclerosis	miR-10a, miR-145, mR-143 and miR-126	miRNA
Atheromatosis and atherosclerosis	Circular ncRNA linked to the CDKN2A locus	lncRNA
Cardiac hypertrophy	miR-21	miRNA
Rett's syndrome	miR-146a, miR-146b, miR-29 and miR-382	miRNA
5q syndrome	miR-145 and miR-146a	miRNA
ICF syndrome	miR-34b, miR-34c, miR-99b, let-7e and miR-125a	miRNA
Crohn's disease	miR-196	miRNA
Prader–Willi and Angelman syndromes	snoRNA cluster at 15q11–q13 imprinted locus	snoRNA
Beckwith–Wiedeman syndrome	IncRNAs H19 and KCNQ1OT1	IncRNA
Uniparental disomy 14	snoRNA cluster at 14q32.2 imprinted locus	snoRNA
Silver–Russell syndrome	IncRNA H19	IncRNA
Silver–Russell syndrome	miR-675	miRNA
McCune–Albright syndrome	IncRNA NESP-AS	IncRNA
Deafness	miR-96	miRNA
Alzheimer's disease	miR-29, miR-146 and miR-107	miRNA
Alzheimer's disease	ncRNA antisense transcript for BACE1	IncRNA

Exercise: research a ncRNA-related disease


Esteller (2011) Nat Rev Genet

Non-coding RNAs in Alzheimer's disease

An antisense lncRNA, *BACE1* $\Box AS$, regulates the expression of the sense *BACE1* gene (labelled *BACE1* $\Box S$ in the figure) through the stabilization of its mRNA. *BACE1* $\Box AS$ is elevated in Alzheimer's disease, increasing the amount of BACE1 protein and, subsequently, the production of $\beta \Box$ amyloid peptide.

Non-coding RNAs in cancer

Alterations in the epigenetic regulation of the miR \Box 200 family are involved in epithelial-to-mesenchymal transition in cancer. Specifically, CpG island hypermethylation-associated silencing of these miRNAs in human tumours causes an upregulation of the zinc finger E-box-binding homeobox (HOX) 1 (*ZEB1*) and *ZEB2* transcriptional repressors, which, in turn, leads to a downregulation of E-cadherin *CDH1* Esteller (2011) *Nat Rev Genet*

Epigenetic effects of smoking

From Wikipedia, the free encyclopedia

Contents [hide]

1 Health impact

2 Mechanisms for changes in DNA methylation

2.1 Damage to DNA

2.2 Effects on DNA methylating proteins

2.3 Effects on transcription factors

3 Consequences of altered DNA methylation

- 4 Effects on histone modifications
- 5 Effects on miRNA
- 6 See also
- 7 References

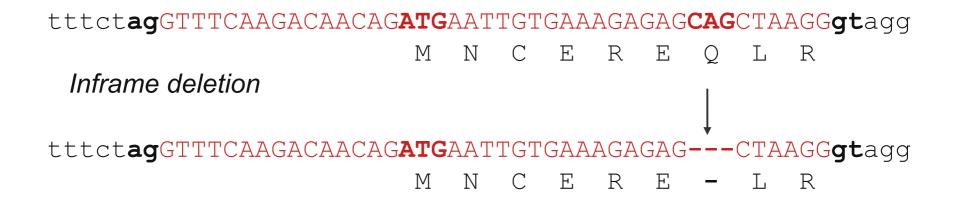
Николай Конст. Кольцов (1872-1940)

- + 0 • 1915: «Следует признать гены способными... к Ведь во всяком органическом соединении может быть 1927: *Omnis* molecula:
 - водорода атом скачкообразно заменен группой СН₃» molecula ех 0

мутациям.

гипотеза матричном воспроизведении молекул наследственности

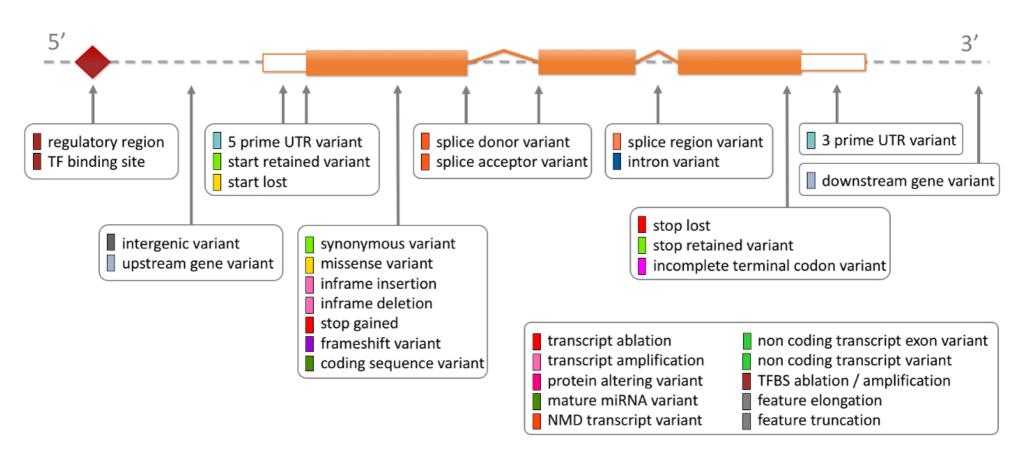
Кольцов 1927


Тимофеев-Ресовский, Циммер, Дельбрюк, Шредингер 1935-1945

Уотсон, Крик 1953

Examples of coding changes in RBFOX1

Examples of coding changes in RBFOX1



tttct**ag**GTTTCAAGACAACAG**ATG**A**AT**TGTGAAAGAGAG**CAG**CTAAGG**gt**agg Ν Е F М С R 0 Τ. R Frameshift deletion tttctagGTTTCAAGACAACAGATGA--TGTGAAAGAGAGCAGCTAAGGgtagg М М * Κ R А Κ Α

Variation consequences

Promoter ♦ 5'-UTR ♦ Start (ATG) ♦ Donor(GT) ♦ Acceptor(AG) ♦ ... ♦ Stop(TAA,...) ♦ 3'-UTR

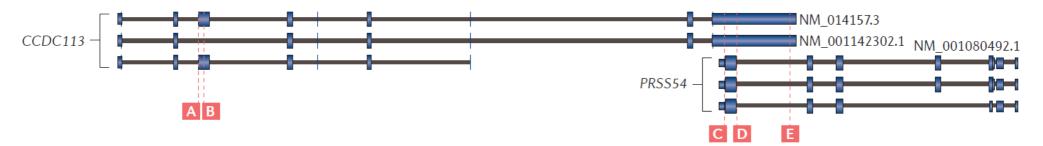
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences 54

ENSEMBL Variant Effect Predictor

Variation consequences and impact

*	SO term	SO description	SO accession	Display term	IMPACT
	transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	<u>SO:0001893</u> &	Transcript ablation	HIGH
	splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	<u>SO:0001574</u> &	Splice acceptor variant	HIGH
	splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	<u>SO:0001575</u> &	Splice donor variant	HIGH
	stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	<u>SO:0001587</u> &	Stop gained	HIGH
	frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	<u>SO:0001589</u> &	Frameshift variant	HIGH
	stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	<u>SO:0001578</u> &	Stop lost	HIGH
	start_lost	A codon variant that changes at least one base of the canonical start codon	<u>SO:0002012</u> &	Start lost	HIGH
	transcript_amplification	A feature amplification of a region containing a transcript	<u>SO:0001889</u> &	Transcript amplification	HIGH
	inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequence	<u>SO:0001821</u> &	Inframe insertion	MODERATE
	inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequence	<u>SO:0001822</u> &	Inframe deletion	MODERATE
	missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	<u>SO:0001583</u> &	Missense variant	MODERATE
	protein_altering_variant	A sequence_variant which is predicted to change the protein encoded in the coding sequence	<u>SO:0001818</u> &	Protein altering variant	MODERATE
	splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	<u>SO:0001630</u> &	Splice region variant	LOW
	incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	<u>SO:0001626</u> &	Incomplete terminal codon variant	LOW
	start_retained_variant	A sequence variant where at least one base in the start codon is changed, but the start remains	<u>SO:0002019</u> &	Start retained variant	LOW
	stop_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	<u>SO:0001567</u> &	Stop retained variant	LOW
	svnonvmous variant	A sequence variant where there is no resulting change to the encoded	ടറ [.] ററ1819.മ	Svnonvmous variant	IOW

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences


ENSEMBL Variant Effect Predictor

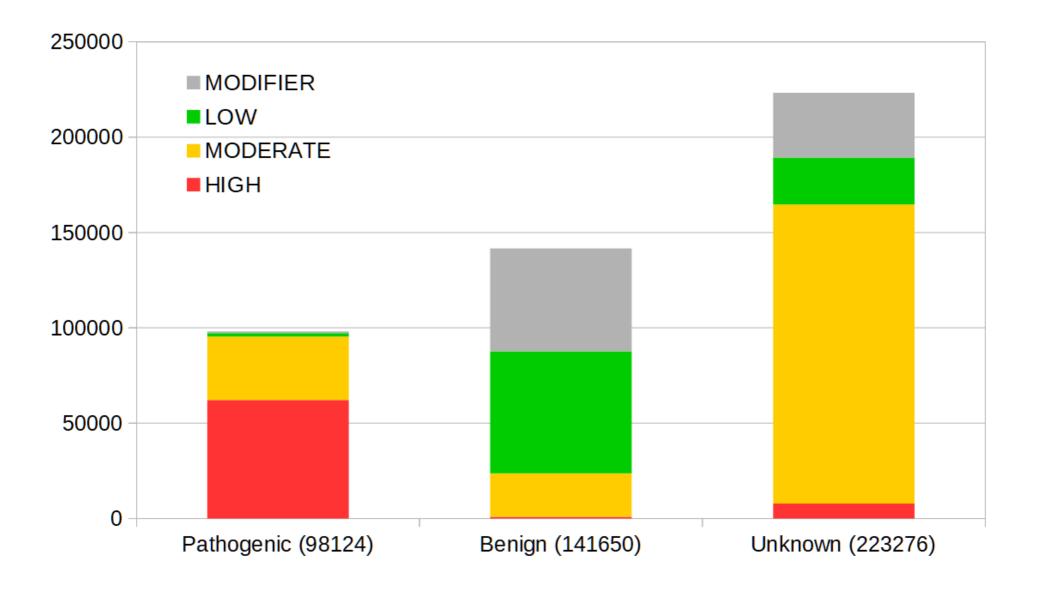
Variation consequences and impact

IMPACT	Consequence examples	Description				
HIGH	splice_acceptor_variant, splice_donor_variant, stop_gained, stop_lost, start_lost	The variant is assumed to have high (disruptive) impact in the protein, probably causing protein truncation, loss of function or triggering nonsense mediated decay				
MODERATE	inframe_insertion, inframe_deletion, missense_variant	A non-disruptive variant that might change protein effectiveness				
LOW	splice_region_variant, synonymous_variant	A variant that is assumed to be mostly harmless or unlikely to change protein behaviour				
MODIFIER	5_prime_UTR_variant, 3_prime_UTR_variant, intron_variant, TFBS_ablation	Usually non-coding variants or variants affecting non-coding genes, where predictions are difficult or there is no evidence of impact				

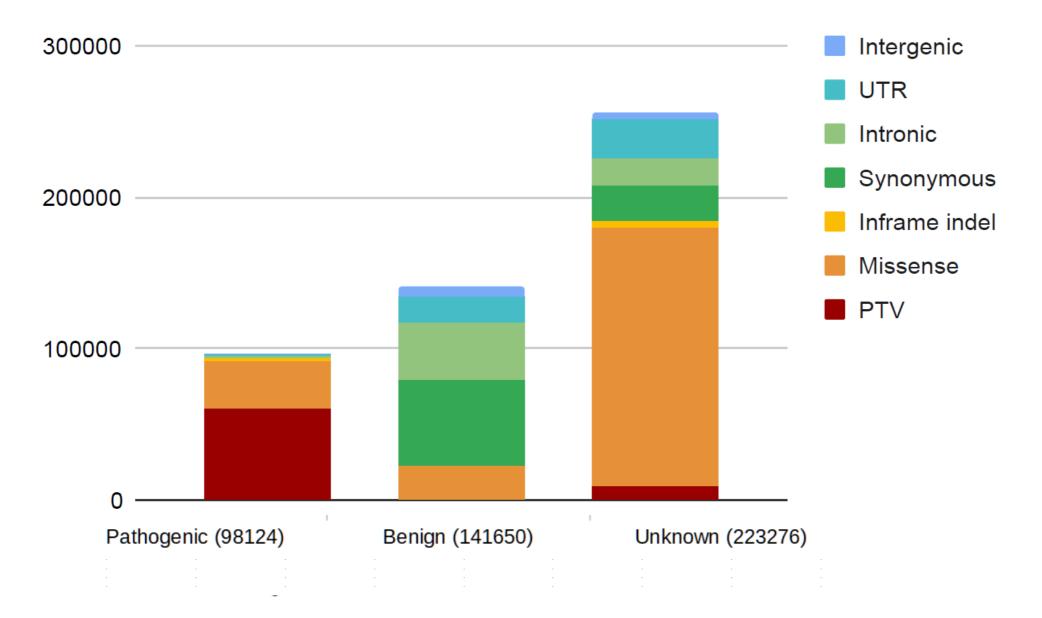
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences 56


Complexity of variant annotation

	Variant allele	Gene	Transcript change	RefSeq	Protein change	Molecular consequence
A rs765957496	G	CCDC113	c.228+1143A>G	NM_001142302.1	—	Intron variant
	G	CCDC113	c.229•2A>G	NM_014157.3	—	Splice acceptor variant
B rs775877153	А	CCDC113	c.228+1182T>A	NM_001142302.1	—	Intron variant
	А	CCDC113	c.266T>A	NM_014157.3	Met89Lys	Missense variant
C rs780162055	Т	PRSS54	c.1135G>A	NM_001080492.1	Glu379Lys	Missense variant
	Т	CCDC113	c.*500C>T	NM_001142302.1	—	3' UTR variant
D rs776101237	А	PRSS54	c.655-2A>T	NM_001080492.1	—	Splice acceptor variant
	А	CCDC113	c.*962T>A	NM_001142302.1	—	3' UTR variant
E rs745863465	С	PRSS54	c.655-18T>G	NM_001080492.1	—	Intron variant
	С	CCDC113	c.*996A>C	NM_001142302.1	—	3' UTR variant


A demonstration of the multiple possible effects of a single variant across transcripts and genes. The complexity of genomic annotation adds to the complexity of variant annotation. In this example, two genes, coiled-coil domain-containing 113 (*CCDC113*) and protease serine 54 (*PRSS54*) overlap on different strands of the genome, and both have multiple observed transcripts. Variants intersecting this extent of the genome show different effects depending on the gene and the transcript inspected.

Complexity of variant annotation


Variant	Transcript A	Transcript B	Transcript C
1	Promoter	Promoter	Exon
2	Non Coding Exon	Non Coding Exon	Non Coding Splice
3	Coding Exon	Non Coding Exon	Intron
4	Coding Splice	Coding Splice	Non Coding Exon
5	Intron	Coding Splice	Non Coding Exon
6	Coding Exon	Coding Exon	Promoter
7	Non Coding Exon	Downstream	Prompter

EnsemblVEP annotation for ClinVar variants

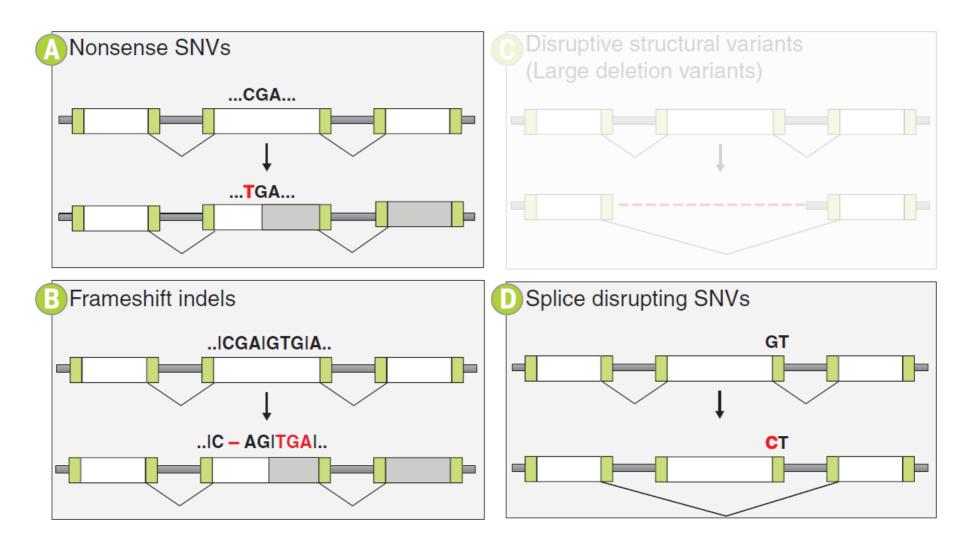
ClinVar (Oct. 2019), 498,742 variants annotated with Ensembl VEP

EnsemblVEP annotation for ClinVar variants

ClinVar (Oct. 2019), 498,742 variants annotated with Ensembl VEP

Pathogenic variants in ClinVar (Oct. 2019)

Gene	Frameshift	Stop gain or Ioss	Splice site	Missense	Inframe	Synonymous	UTR	Intronic	Upstream	Start codon	Phenotype
HBB	30	14	21	35	3	1	7	12	7	4	Beta thalassemia
LDLR	387	171	51	77	9	3	7	6	0	2	Familial hypercholesterolemia
CFTR	123	111	70	105	5	3	0	20	0	4	Cystic fibrosis
GALT	21	15	11	100	1	2	0	4	1	1	Deficiency of UDPglucose-hexose-1- phosphate uridylyltransferase
KCNQ2	61	20	20	102	7	2	0	1	1	1	Benign familial neonatal seizures; Early infantile epileptic encephalopathy
MECP2	268	60	12	27	12	2	0	1	0	3	Mental retardation; Rett syndrome
MLH1	316	132	76	69	4	6	1	11	0	10	Hereditary nonpolyposis colon cancer; Lynch syndrome
ОТС	22	32	39	203	5	2	0	7	0	4	Ornithine carbamoyltransferase deficiency


Exercise

Use ClinVar (OMIM) to find and save one example of disease-associated pathogenic mutation for *each* annotation type:

- stop-gain
- synonymous
- missense
- splice-site
- frameshift indel

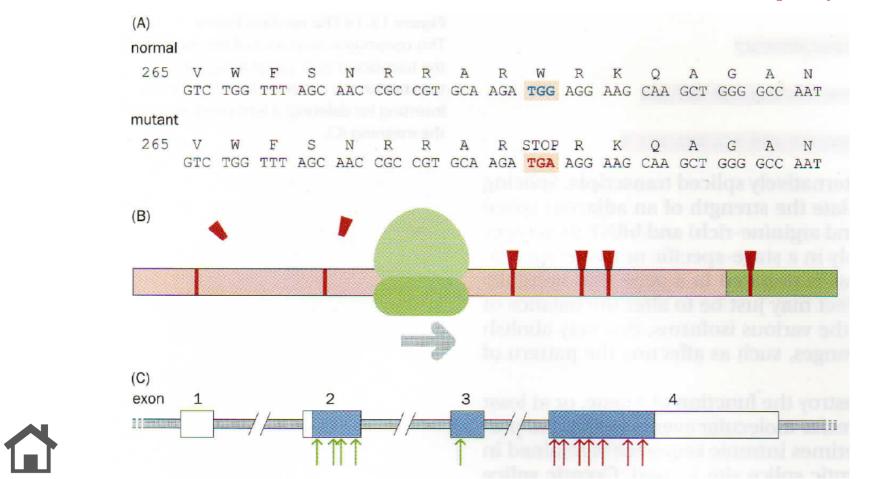
PTVs and LoF variants

Protein-truncating variants: stop-gain, splice site, frameshift indels. VEP impact: HIGH.

PTVs and LoF variants

Protein-truncating variants: stop-gain, splice site, frameshift indels. VEP impact: HIGH. *However, not all PTVs are loss-of-function*

LOFTEE tool (K.Karczewski et al): filters and flags to predict pLoF (putative LoF) from candidate PTVs. <u>https://github.com/konradjk/loftee</u>


PTVs not predicted as pLoF, examples:

- Stop-gain and frameshift variants near the end of the transcript, based on the 50 bp rule
- Variants in an exon with non-canonical splice sites (GT, AG) around it
- Splice site variants rescued by nearby, in-frame splice site
- Variants in small introns

Flagged PTVs, examples:

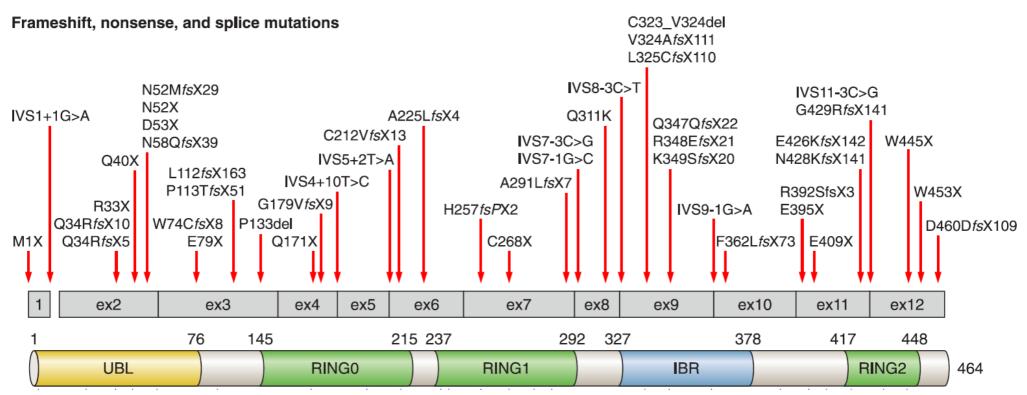
- Variants in NAGNAG sites (acceptor sites rescued by in-frame acceptor site)
- Variants that fall in an intron with a non-canonical splice site

PTVs and nonsense-mediated decay (NMD)

(A) G>A change in exon 6 of the *PAX3* gene (B) Nonsense-mediated decay (NMD). Splice junctions (red bars) retain proteins of the exon junction complex (EJC, red triangles). Ribosome moves along the mRN A and displaces the EJC proteins. If it encounters a premature stop codon and detaches before displacing all EJCs, the mRNA is targeted for degradation. Stop codons in the last exon or less than 50 nucleotides upstream of the last splice junction (the green zone) do not trigger NMD. (C) Depending on whether or not a premature stop codon triggers NMD, the consequences of a nonsense mutation can be very different. 65

Strachan, Read – Human Molecular Genetics

PTVs and nonsense-mediated decay (NMD)


Ideally: $PTV \rightarrow NMD \rightarrow Transcript \ level \rightarrow Protein \ level \rightarrow Cellular functions$

However, variation in mRNA and protein expression levels are often uncorrelated: the reduction in RNA levels may not reduce the protein level, and vice versa

Battle, A., Khan, Z., Wang, S.H., Mitrano, A., Ford, M.J., Pritchard, J.K., and Gilad, Y. (2015). Impact of Regulatory Variation from RNA to Protein. Science 347, 664–667.

Narasimhan VM, Xue Y, Tyler-Smith C. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? Trends in Molecular Medicine. 2016;22(4):341-351. doi:10.1016/j.molmed.2016.02.006.

Α



Mutations in the Parkin RBR E3 Ubiquitin Protein Ligase *PRKN* are the most frequent known cause of early-onset (40–50 yr) Parkinson's disease. PD is the second most common neurodegenerative disorder, after Alzheimer's disease, with prevalence in industrialized countries $\sim 0.3\%$.

PRKN parkin RBR E3	ubiquitin protein li		Dataset gnomAD v2.1.1 • gnomAD SVs v2.1 •					
ClinVar variants								
Pathogenic / likely pathoge	enic only 🕑 Uncertain s	significance / conflict	ing only	Ber	nign / likely ben	ign only 🖌	Other or	nly 💡
pLoF only Missense / Infram	ne indel only Synonymous	only Other only					Collaps	se to bins
Only show ClinVar variants that are	in gnomAD						3 ₆₃	
- ≭ Frameshift ≭ Other pLoF ▲Misser	se / Inframe indel ♦ Splice regio	n • Synonymous / non	-coding					
Data displayed here is from ClinVar's M	arch 2, 2021 release.							
Variant ID • Source	HGVS Consequence	VEP Annotation	<u>LoF</u> Curatio	n	<u>Clinical</u> Significance	<u>Flags</u>		Allel
6-162622230-CTT-C	p.Arg156SerfsTer29	• frameshift						
6-162622236-CAG-C	p.Cys154SerfsTer31	frameshift						
6-162622280-AC-A	p.Gly139ValfsTer38	frameshift						
6-162622285-CT-C	c.413-2delA	splice acceptor				LC pLoF	pLoF flag	

Mutations in the Parkin RBR E3 Ubiquitin Protein Ligase *PRKN* are the most frequent known cause of early-onset (40–50 yr) Parkinson's disease. PD is the second most common neurodegenerative disorder, after Alzheimer's disease, with prevalence in industrialized countries ~0.3%.

Protein-truncating variants: stop-gain, splice site, frameshift indels. VEP impact: HIGH.

Fig. 3. Splicing disruption. (A) Proportion of variants disrupting splicing at each distance +/-25 bp from donor and acceptor site (B) Classification of splice disruption events: exon skipping, exon elongation and mixture (C) Diagram of donor and acceptor splice junctions and sequence logo of represented sequences. Rivas (2015) *Science*

1. Narasimhan VM, Xue Y, Tyler-Smith C. (2016) Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? *Trends Mol Med* 22:341-351.

- A knockout of the immune gene *IRF7* was shown to confer **susceptibility to flu viruses**, leading to life-threatening influenza in an otherwise healthy child (Ciancanelli 2015 *Science*)
- Instances where a naturally-occurring LoF variant proves beneficial to health. These discoveries have stimulated drug development:
 - lowering LDL levels: PCSK9
 - decreasing susceptibility to HIV: CCR5
 - increasing endurance: ACTN3
 - increasing sepsis resistance: *CASP12*
 - reduced triglyceride levels in humans: APOC3
- 2. DeBoever, C., Tanigawa, Y., Lindholm, M.E., et al. (2018). Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. *Nat Commun* 9, 1–10.
- 18,228 PTVs × 135 phenotypes; find 27 associations between medical phenotypes and PTVs in genes outside the MHC

1. The stop-gain variant in *GNAS* (MIM:139320) is present in the highly variable **first exon** of the gene and is likely to result in nonsense-mediated RNA decay; in contrast, pathogenic *GNAS* variants that cause Albright hereditary osteodystrophy (MIM:103580) are located in **later**, highly constrained exons.

2. Similarly, the stop-gain variant in *TGIF1* (MIM:602630) is located in the **first exon**, where multiple PTVs in gnomAD are also located, but *TGIF1* pathogenic variants causing holoprosencephaly are located in the **final exons**, where they affect DNA binding affinity.

3. Finally, a frameshift deletion in *HIST1H1E* (MIM:142220) is located near **the start** of the single exon of this gene; however, pathogenic *HIST1H1E* frameshift deletions that cause child overgrowth and intellectual disability are located near **the end** of the exon, where they result in a truncated histone protein with lower net charge that is less effective at binding DNA.

We believe that these three rare PTVs are benign because of their locations, despite the fact that they occur in genes that cause dominant DD via haploinsufficiency. Wright (2019) Am J Hum Genet