Mutations in individuals and populations

Lecture plan

- Timeline of large scale genome projects
- The coalescent theory. Early estimates of nucleotide diversity in humans
- The excess of rare variants in humans. Explosive human population growth
- 1000 genomes: variation in an individual
- ExAC and gnomAD: variants in populations
- Genes intolerant to LoF variation
- Structural variation in populations
- ClinVar: open database of disease variants

Large-scale projects: timeline

2001 * Human genome
2003 * Encyclopedia of DNA Elements (ENCODE)
2004 * Resequencing studies

* Human genome... again!

2005 * HapMap: 11 populations
2006 * UK Biobank: 500,000 volunteers
2007 * Individual genomes: Craig Venter, James Watson
2009 * Genome Reference Consortium Human Build 37
2012 * 1000 genomes: 2,504 from 26 populations

* NHLBI Exome Sequencing Project: 6,500, heart, lung and
blood phenotypes
2013 * Genome Reference Consortium Human Build 38
* NCBI ClinVar, ClinGen

2016 * ExAC, gnomAD: 60,706 exomes from 6 broad populations and 14
disease cohorts; >125,000 exomes, >71,000 whole genomes
2021 * The Telomere-to-Telomere (T2T) Consortium human genome!
2022 * UK Biobank: >150,000 whole genomes

Are PTVs actually LoFs?

Lek (2016) Nature, ExAC paper, $\mathbf{\sim 6 0 , 0 0 0}$ individuals:

- 13.2 expected pLoF variants per gene, 62.8% of genes have $>10 \mathrm{pLoF}$ variants on the canonical transcript
- Each individual harbors ~ 85 heterozygous and ~ 34 homozygous PTVs

Sulem (2015) Nat Genet, $\mathbf{\sim 1 0 1 , 0 0 0}$ Icelanders: // founder population
-7.7% individuals have 1 gene completely knocked out by loss-of-function variants with a MAF under 2%
-553 were predicted to have >1 gene completely knocked out
$-1,171$ of the 19,135 RefSeq genes (6.1%) were completely knocked out

Saleheen (2017) Nature, ~10,000 Pakistanis // consanguineous

$-1,317$ distinct genes were predicted to be inactivated b / c of homozygous pLoFs

- 17.5% participants had at least one gene knocked out by a homozygous pLoF mutation, $\sim 18 \%$ of them >1 gene knocked out

Backman (2021) Nature 454,787 UK Biobank participants

- in $>80 \%$ of genes, at least 50 individuals carried a predicted LoF variant

Random genetic drift and mutations

The infinite-alleles model: each mutation creates a new allele in the population

$$
\text { Heterozygosity } H=\frac{\theta}{1+\theta}, \text { where } \theta=4 N_{e} \mu
$$

N_{e} : effective population size, $\sim \mathbf{1 0 , 0 0 0}$
μ : mutation rate per site per generation, $\sim 1.2 \times 10^{-8}$

$$
\begin{gathered}
\theta=4 \times 10^{4} \times 1.2 \times 10^{-8} \approx 5 \times 10^{-4} \\
\theta \ll 1 \Rightarrow H \approx \theta=1 / 2000
\end{gathered}
$$

The coalescent theory

Aim: estimate the number of segregating sites in a sample of N sequences

A	A	A	A	T	T	T	T	A	G	G	G	C	C	C	C
A	A	A	A	T	T	T	T	G	G	G	G	C	T	C	C
\mathbf{G}	A	A	A	C	T	T	T	A	G	G	G	C	C	C	C
\mathbf{G}	A	A	A	T	T	T	T	A	G	G	G	C	C	C	C

Assumptions:

- random reproduction (=genetic drift) in a population of constant size
- random neutral mutations

Method: generating the random genealogy of the individuals backward in time, and then superimposing mutations forward in time.

The coalescent theory

Every human:
$2^{1}=2$ parents
$2^{2}=4$ grandparents
$2^{3}=8$ great-grandparents
Macro: Some individuals are common ancestors, some have no descendants
Micro:

Lupski (2011) Cell

The coalescent theory

Every human:
$2^{1}=2$ parents
$2^{2}=4$ grandparents
$2^{3}=8$ great-grandparents
Macro: Some individuals are common ancestors, some have no descendants

Micro:

Lupski (2011) Cell

The most recent common ancestor of all members of a sexually reproducing population of constant actual size N is expected to appear after $\sim \log _{2} N$ generations // Rhode (2004) Nature

Exercise: estimate the time for the human MRCA

The coalescent theory

Untangled

Lines of descent of 12 genes for 15 generations under the Wright-Fisher model of evolution, where generation is produced from generation by sampling with replacement. ○ indicates the most recent common ancestor; black lines are the lineages of extant genes; gray lines show extinct lineages.

The coalescent theory

Lines of descent for a sample of $n=4$ genes form a subgraph of the population genealogy shown before. ○ indicates the most recent common ancestor of the sample. T_{i} : time interval in which the coalescent consists of exactly i lineages.

The coalescent theory

A fusion of two lineages is called a coalescence event. The complete topology of coalescence events is called the coalescent. In other words, a coalescent is the lineage of sequences (a.k.a alleles, genes, loci) in a sample traced backward in time to their \{last, most recent\} common ancestor (LCA, MRCA) sequence. Coalescent theory looks back in time and merges sequences originating from an LCA.

We can derive properties of an ensemble of coalescent trees compatible with the data; no specific tree can be known.

Coalescent trees are the convenient and computationally efficient way to derive important properties of sequence variation.

Genetic events, such as mutations, that differentiate the sequences, must have occurred since their descent from the LCA. Conversely, any event before the LCA has equally affected all members of the population and is therefore invisible.

The coalescent theory

Any n distinct alleles in generation G_{i} have ancestors in $G_{\mathrm{i}-1}$. The probabilities that the ancestor of the allele 2 is distinct from the ancestor of 1 ; the 3 is distinct from 1 and 2 , and so on:

$$
\frac{2 N-1}{2 N} \rightarrow \frac{2 N-1}{2 N} \times \frac{2 N-2}{2 N} \rightarrow \ldots
$$

The probability that n alleles all have distinct ancestors in $G_{\mathrm{i}-1}$;

$$
\left(1-\frac{1}{2 N}\right)\left(1-\frac{2}{2 N}\right) \ldots\left(1-\frac{n-1}{2 N}\right) \approx 1-\frac{1}{2 N}-\frac{2}{2 N}-\ldots-\frac{n-1}{2 N}
$$

The probability Pc that a coalescence occurs is one minus the probability that it does not:

$$
P_{c}=\frac{1+2+\ldots+(n-1)}{2 N}=\frac{n(n-1)}{4 N}
$$

The probability that the first coalescence occurs after exactly $t+1$ generations is therefore $(1-P c)^{t} P c$. Coalescence times are geometrically distributed with parameter $P \mathrm{c}$. The mean of the geometric distribution is the reciprocal of the probability of success, giving the mean time leading from a coalescent with \boldsymbol{n} alleles to coalescent with $\boldsymbol{n} \mathbf{- 1}$ alleles

$$
E\left\{T_{n}\right\}=\frac{4 N}{n(n-1)}
$$

The coalescent theory

Seq 1

Under the infinite sites model the number of (unobservable) mutations is equal to the number of observable segregating sites (variants) in the sample. For a given coalescence time T_{2} the number of segregating sites S_{2} per nucleotide is $2 T_{2} \mu$, where μ is the mutation rate per site per generation. What is T_{2} then?

The coalescent theory

The number of segregating sites per nucleotide S_{2} :

$$
T_{2}=4 N / 2, \quad S_{2}=2 \mu T_{2}=4 N \mu
$$

The coalescent theory

The total time in all of the branches of a coalescent is

$$
T_{c}=\sum_{i=2}^{n} i T_{i},
$$

which, using the fact that the expectation of the sum of random quantities is the sum of the expectations of those quantities (see Equation B. 11 on page 162), is

$$
E\left\{T_{c}\right\}=\sum_{i=2}^{n} i E\left\{T_{i}\right\}=4 N \sum_{i=2}^{n} \frac{1}{i-1} .
$$

Recalling that the expected number of segregating sites is the neutral mutation rate, u, times the expected time in the coalescent, we have

$$
E\left\{S_{n}\right\}=u E\left\{T_{c}\right\}=\theta \sum_{i=2}^{n} \frac{1}{(i-1)},
$$

which suggests that

$$
\hat{\theta}=\frac{S_{n}}{1+\frac{1}{2}+\frac{1}{3} \cdots+\frac{1}{n-1}}
$$

should be a good estimator for $\theta=4 N u$.

The coalescent theory

The infinite-sites model: each mutation alters a new site in a [very long] nucleotide sequence

A	A	A	A	T	T	T	T	G	G	G	G	C	C	C	C
A	A	A	A	T	T	T	T	G	G	G	G	C	C	C	C
G	A	A	A	C	T	T	T	A	G	G	G	T	C	C	C
A	G	A	A	T	C	T	T	G	A	G	G	C	T	C	C
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6

Sequences: $n=4$
Segregating sites: $S=8$

$$
E(S)=\theta_{s} L \sum_{k=1}^{n-1} \frac{1}{k} \text {, where } \theta_{s}=4 N_{e} \mu_{s}
$$

Sequence length: $L=16^{\cdots \cdots \cdots}$ Mutation per site per generation: μ_{s}
Average mismatches: $\Pi=24 / 6=4$
Nucleotide diversity: $\pi=H=\Pi / L$

$$
E(\Pi)=\theta_{s} L
$$

Exercise: sample size and variant discovery

$$
E(\pi)=\theta_{s}
$$

Estimates of nucleotide diversity in humans

Nucleotide diversity $\boldsymbol{\pi}=$ Average mismatches Π / Length L

$$
E(\pi) \equiv \theta_{s}, \quad \theta_{s}=4 N_{e} \mu_{s}
$$

N_{e} : effective population size,
μ_{s} : mutation rate per site per generation,

$$
E(S)=\theta_{s} L \sum_{k=1}^{n-1} \frac{1}{k}
$$

S : total segregating sites in a sample of n sequences

Estimates of nucleotide diversity in humans

Nucleotide diversity $\boldsymbol{\pi}=$ Average mismatches Π / Length L

$$
E(\pi) \equiv \theta_{s}, \quad \theta_{s}=4 N_{e} \mu_{s}
$$

N_{e} : effective population size, $\sim \mathbf{1 0 , 0 0 0}$
μ_{s} : mutation rate per site per generation, $\sim 1.2 \times 10^{-8}$

$$
\begin{gathered}
\theta_{4}^{s}=\mathbf{4} \times 10^{4} \times \mathbf{1 . 2} \times \mathbf{1 0 ^ { - 8 }} \approx \mathbf{5 \times 1 0 ^ { - }} \\
E(S)=\theta_{s} L \sum_{k=1}^{n-1} \frac{1}{k}
\end{gathered}
$$

S : total segregating sites in a sample of n sequences

A global reference for human genetic variation

The 1000 Genomes Project Consortium*
68 | NATURE | VOL 526| 1 OCTOBER 2015

Total 2,504 samples, Genome length 2.84 Gbp .

Expected autosomal SNVs:
$E(S)=\theta_{\mathrm{s}} L(1+1 / 2+\ldots+1 /(2 \times 2504))$
$=4.8 \times 10^{-4} \times 2.84 \times 10^{9} \times 9.09=\mathbf{1 2 . 4} \mathbf{~ m l n}$

A global reference for human genetic variation

The 1000 Genomes Project Consortium*
68 | NATURE | VOL 526 | 1 OCTOBER 2015

Total 2,504 samples, Genome length 2.84 Gbp .

Expected autosomal SNVs: $E(S)=\theta_{\mathrm{s}} L(1+1 / 2+\ldots+1 /(2 \times 2504))$ $=4.8 \times 10^{-4} \times 2.84 \times 10^{9} \times 9.09=\mathbf{1 2 . 4} \mathbf{~ m l n}$

Observed:
. 64 mln with MAF $<0.5 \%$,
. 12 mln (MAF: 0.5-5\%),

. 8 mln (MAF: >5\%)
...Why (a) so many (b) rare variants?

The excess of rare variants in humans

Coalescent-based $E(S)$:

- constant population size
- variant neutrality

Earlier estimates: few samples \Rightarrow common (neutral) variants

More realistic:

- demographic models with recent human expansion
- negative selection: reduction of variation and an excess of rare alleles in the remaining variation

Explosive genetic evidence for explosive human

 population growth Current Opinion in Genetics \& Development 2016, 41:130-139Feng Gao and Alon Keinan

Explosive genetic evidence for explosive human population growth current Opinion in Genetics \& Development 2016, 41:130-139 Feng Gao and Alon Keinan

Implications

One consequence of recent explosive growth is the extreme excess of very rare variants, including those observed only in a single genome out of a large sample (singletons). In fact, explosive population growth predicts not only more rare variants, for example singletons, as the sample size increases, but also a larger proportion of such variants (e.g. [13,14]). A recent study characterized how population growth and purifying selection has shaped the fraction of variants private to an individual, hence the number of new variants that will be discovered with each newly sequenced individual [14]. Assuming 10,000 genomes from the exact same population have already been perfectly sequenced, with growth of the magnitude estimated for Europeans $\left[12^{\bullet \bullet}\right.$] it predicts $>6,000$ novel variants to be discovered as heterozygous in the 10,001 st sequenced genomes, which is 18 -times more than that in the absence of growth. This entails that personalized medicine or personalized genomics will have to be much more personal in recently expanded populations than expected in the absence of growth.

Discovery of novel variants

Cumulative number of samples
"The number of nonsense variants discovered in 300 samples is 40 times greater than the average number discovered in a single sample, whereas the number of synonymous variants is only 10 times greater (although the absolute number of nonsense variants is a relatively minor proportion of the total variation discovered); this effect is due to purifying selection. All classes of variants are discovered at rates exceeding what would be predicted under a neutral model of evolution in a population of constant size, an effect of population growth."

Kiezun (2012) Nature Genetics

Median autosomal variants per genome

	AFR		EAS		EUR	
Samples	$\begin{gathered} 661 \\ 8.2 \end{gathered}$		$\begin{gathered} 504 \\ 7.7 \end{gathered}$		$\begin{gathered} 503 \\ 7.4 \end{gathered}$	
Mean coverage						
	Var. sites	Singletons	Var. sites	Singletons	Var.sites	Singletons
SNPs	4.31M	14.5k	3.55 M	14.8k	3.53M	11.4 k
Indels	625k	-	546k	-	546k	-
Large deletions	1.1 k	5	940	7	939	5
CNVs	170	1	158	1	157	1
MEI (Alu)	1.03k	0	899	1	919	0
MEI (L1)	138	0	130	0	123	0
MEI (SVA)	52	0	56	0	53	0
MEI (MT)	5	0	4	0	4	0
Inversions	12	0	10	0	9	0
Nonsynon	12.2k	139	10.2k	144	10.2k	116
Synon	13.8k	78	11.2k	79	11.2k	59
Intron	2.06 M	7.33k	1.68 M	7.39k	1.68 M	5.68k
UTR	37.2k	168	30.0k	169	30.0k	129
Promoter	102k	430	81.6k	425	82.2k	336
Insulator	70.9k	248	57.7k	252	57.7k	189
Enhancer	354k	1.32k	289k	1.34 k	288k	1.02k
TFBSs	927	4	748	4	749	3
Filtered LoF	182	4	153	4	149	3
HGMD-DM	20	0	16	1	18	2
GWAS	2.00k	0	1.99k	0	2.08k	0
ClinVar	28	0	24	0	29	1

Median autosomal variants per exome

Super- population code	Synonymous (het; hom alt)	Missense (het; hom alt)		
EUR	$6961 ; 4317$	$7220 ; 4452$	$116 ; 55$	$116 ; 38$
AFR	$9296 ; 4673$	$9347 ; 4820$	$163 ; 56$	$156 ; 31$
AMR	$7257 ; 4314$	$7449 ; 4479$	$121 ; 56$	$121 ; 38$
SAS	$7180 ; 4397$	$7366 ; 4550$	$123 ; 56$	$121 ; 39$
EAS	$6502 ; 4759$	$6802 ; 4908$	$105 ; 66$	$113 ; 45$
Frameshift	Stop gain (het; hom alt)	Start lost (het;	Splice donor (het;	Splice acceptor (het;
hom alt)	PP Del			
hom alt)	hom alt)			
$151 ; 146$	$93 ; 35$	$61 ; 52$	$184 ; 99$	$114 ; 72$
$196 ; 150$	$123 ; 32$	$78 ; 51$	$231 ; 116$	$150 ; 80$
$154 ; 145$	$96 ; 34$	$62 ; 50$	$187 ; 101$	$117 ; 76$
$159 ; 148$	$93 ; 36$	$68 ; 49$	$186 ; 103$	$117 ; 78$
$143 ; 149$	$89 ; 38$	$62 ; 54$	$171 ; 112$	$115 ; 86$

Analysis of protein-coding genetic variation in 60,706 humans

60,706 exomes of unrelated adults without pediatric disease

- 7,404,909 high quality variants (1 each 8 bp)
- 99% with MAF<1\%, 54% are singletons
- 7.9% are multiallelic
- 317,381 indels
- Approaching saturation: 62.8% of all possible synonymous $\mathrm{C}>\mathrm{T}$ at CpG (gnomAD: $\sim 85 \%$)
- Mutational recurrence: de novo mutations from other datasets \Rightarrow depletion of singletons

ExAC

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek ${ }^{1,2,3,4}$, Konrad J. Karczewski ${ }^{1,2 *}$, Eric V. Minikel ${ }^{1,2,5 *}$, Kaitlin E. Samocha ${ }^{1,2,5,6 *}$, Eric Banks ${ }^{2}$, Timothy Fennell² ${ }^{2}$,
 18 AUGUST $2016 \mid$ VOL $536 \mid$ NATURE 285

SNVs	Average	Deviation	SNVs	Average	Deviation
PTV HIGH	97	6	Singleton	18	13
Missense MODERATE	6291	139	<0.01\%	177	30
			0.01-1\%	273	23
Synonymous LOW	7192	88	1-10\%	1308	72
Other MODIFIER	561	13	>10\%	12365	109
Indels			Indels		
Frameshift	69	3	<=5\%	15	5
Other	41	3	$>5 \%$	151	6

Exercise: why most variants here are common, not rare?

ExAC

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek ${ }^{1,2,3,4}$, Konrad J. Karczewski ${ }^{1,2 *}$, Eric V. Minikel ${ }^{1,2,5 *}$, Kaitlin E. Samocha ${ }^{1,2,5,6 *}$, Eric Banks ${ }^{2}$, Timothy Fennell², Anne H O'Donnell-Turia ${ }^{1,2,7}$. Tames S Ware ${ }^{2,8,9,10,11}$. Andrew T Hil1 ${ }^{1,2,12}$ Rervl R Cumminoss ${ }^{1,2,5}$ Tarı Tukiainen ${ }^{1,2}$ 18 AUGUST 2016 | VOL $536 \mid$ NATURE| 285

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek ${ }^{1,2,3,4}$, Konrad J. Karczewski ${ }^{1,2 *}$, Eric V. Minikel ${ }^{1,2,5 *}$, Kaitlin E. Samocha ${ }^{1,2,5,6 *}$, Eric Banks ${ }^{2}$, Timothy Fennell², Anne H O'Donnell-Turia ${ }^{1,2,7}$. Tames S Ware ${ }^{2,8,9,10,11}$. Andrew T Hil1 ${ }^{1,2,12}$ Rervl R Cumminoss ${ }^{1,2,5}$ Tarı Tukiainen ${ }^{1,2}$ 18 AUGUST $2016 \mid$ VOL $536 \mid$ NATURE| 285

Frameshift and in-frame indels
Mutability-adjusted proportion of singletons (MAPS)

Analysis of protein-coding genetic variation in 60,706 humans

```
Monkol Lek }\mp@subsup{}{}{1,2,3,4}\mathrm{ , Konrad J. Karczewski',2*, Eric V. Minikel 1,,5*, Kaitlin E. Samocha 1,2,5,6*, Eric Banks2, Timothy Fennell}\mp@subsup{}{}{2}
```



```
18 AUGUST 2016| VOL 536| NATURE | 285
```


Individual exomes:

1) Known pathogenic variants
53.7 disease-causing alleles from HGMD and ClinVar in an exome, of which 47.2 with AF_POPMAX>1\%
This is incompatible even with recessive inheritance \Rightarrow misclassification, incomplete penetrance
2) High confidence PTVs

179,774 high-confidence PTVs, 121,309 (67\%) are singletons

- 85 heterozygous and 35 homozygous PTVs, of which
- 18 (het) and 0.19 (hom) are rare ($\mathrm{AF}<1 \%$), 2 singletons

Estimating the selective effects of heterozygous protein-truncating variants from human exome data

Christopher A Cassa ${ }^{1,2,9}$, Donate Weghorn ${ }^{1,9}$, Daniel J Balick ${ }^{1,9}$, Daniel M Jordan ${ }^{3,9}$, David Nusinow ${ }^{11}$, Kaitlin E Samocha ${ }^{4,5}$, Anne O'Donnell-Luria ${ }^{4,6}$, Daniel G MacArthur ${ }^{2,4}$, Mark J Daly ${ }^{2,4}$, David R Beier ${ }^{7,8}$ \& Shamil R Sunyaev ${ }^{1,2}$ VOLUME 49 | NUMBER 5 | MAY 2017 NATURE GENETICS

$S_{\text {het }}$ applications:

- Discrimination between AR and AD modes of inheritance
- In dominant diseases, restricting to genes with $S_{\text {het }}>0.04$ provides a 3x reduction of candidate variants
- $S_{\text {het }}$ helps predict phenotypic severity, age of onset, penetrance
"The cumulative frequency of rare deleterious PTVs [in a gene] is primarily determined by the balance between incoming mutations and purifying selection rather than genetic drift. This enables the estimation of the genome-wide distribution of selection coefficients for heterozygous PTVs and corresponding Bayesian estimates for individual genes."

Estimating the selective effects of heterozygous protein-truncating variants from human exome data

Christopher A Cassa ${ }^{1,2,9}$, Donate Weghorn ${ }^{1,9}$, Daniel J Balick ${ }^{1,9}$, Daniel M Jordan ${ }^{3,9}$, David Nusinow ${ }^{1}$, Kaitlin E Samocha ${ }^{4,5}$, Anne O'Donnell-Luria ${ }^{4,6}$, Daniel G MacArthur ${ }^{2,4}$, Mark J Daly ${ }^{2,4}$, David R Beier ${ }^{7,8}$ \& Shamil R Sunyaev ${ }^{1,2}$ VOLUME 49 | NUMBER 5 | MAY 2017 NATURE GENETICS

Q : do we observe all S values?

gnomAD

genome aggregation database
Populations and subpopulations in gnomAD

gnomAD

genome aggregation database

KCNQ1 potassium voltage-gated channel subfamily Q member 1

Genome build GRCh37 / hg19
Ensembl gene ID ENSG00000053918.11
Ensembl canonical transcript (3) ENST00000155840.5
Other transcripts ENST00000335475.5, ENST00000526095.1, and 3 more
Region 11:2465914-2870339
External resources Ensembl, UCSC Browser, and more

Constraint e

Category	Expected.SNV/	Observed.SNVs	Constraint metrics	
Synonymous	1.76 .7	206	$\begin{aligned} & Z=-1.73 . \\ & o / e=1.17 .(1.04-1.31) \end{aligned}$	$0 _\square_{1}$
Missense	397.8	295	$\begin{aligned} & \mathrm{Z}=1.83 . \\ & \mathrm{o} / \mathrm{e}=0.74(0.67 .-0.82) \end{aligned}$	0 - ${ }^{1}$
pLoF	31.3	17	$\begin{aligned} & \mathrm{pLI}=0 \\ & \mathrm{o} / \mathrm{e}=0.54(0.37 .-0.81) \end{aligned}$	1

gnomAD

125,748 exomes + I5,708 genomes

genome aggregation database

ClinVar variants

\checkmark pLoF only \triangle Missense/Inframe indel only \checkmark Synonymous only \checkmark other only
\square Only show ClinVar variants that are in gnomAD

Data displayed here is from ClinVar's March 28, 2021 release.

gnomAD variants

- (1)avaid

Export variants to CSV Configure table

Note Only variants located in or within 75 base pairs of a coding exon are shown here. To see variants in UTRs or introns, use the region view.
 consequences in a specific transcript, use the transcript view.

Variant.ID	- Source	HGVS Consequence	VEP Annotation	LoF.-Curation	Clinical. Significance	Flags	Allele Count	Allele Number	Allele Freguency	Number of Homozygote
11-2869222-G-A	E	p.Glu674Lys	O missense				1	147396	$6.78 \mathrm{e}-6$	(
11-2869219-G-A	E 6	p.Asp673Asn	O missense		Uncertain significance		10	186262	$5.37 \mathrm{e}-5$	¢
11-2869218-C-T	E	p.Pro672Pro	- synonymous		Likely benign		4	154888	$2.58 \mathrm{e}-5$	(
11-2869213-G-A	E	p.Gly671 Ser	O missense		Uncertain significance		1	159214	$6.28 \mathrm{e}-6$	C
11-2869211-G-A	E	p.Arg670Lys	O missense		Uncertain significance		4	162258	$2.47 \mathrm{e}-5$	(
11-2869209-G-C	E	p.Arg669Ser	O missense		Uncertain significance		1	161600	$6.19 \mathrm{e}-6$	(
.4 nnmmon -man	-		-.			Hex		, rrere	-n. -	

gnomAD
 I25,748 exomes + 15,708 genomes

genome aggregation database

The total number of variants observed in each functional class for exomes (g) and genomes (h).

gnomAD
 I25,748 exomes + 15,708 genomes

genome aggregation database

(d) The mutability-adjusted proportion of singletons (MAPS)
(f) The proportion of all possible variants

Karczewski biorXiv http://dx.doi.org/10.1101/531210

gnomAD Variant frequency in 125,748 exomes

genome aggregation database

nature

Predicting the clinical impact of human mutation with deep neural networks

Laksshman Sundaram ${ }^{()^{1,2,3,6},}$ Hong Gao ${ }^{1,6}$, Samskruthi Reddy Padigepati $\odot^{1,3}$, Jeremy F. McRae \odot^{1}, Yanjun Li 0^{3}, Jack A. Kosmicki¹,4, Nondas Fritzilas¹, Jörg Hakenberg ${ }^{(1)}$, Anindita Dutta¹, John Shon¹, Jinbo Xu 5, Serafim Batzloglou ${ }^{1}$, Xiaolin Li \odot^{3} and Kyle Kai-How Farh ${ }^{\left({ }^{1 *}\right.}{ }^{\text {* }}$

Human population allele frequency
Q: Explain: " $\sim 50 \%$ of all newly arising human missense variants are filtered by purifying selection at common allele frequencies"

gnomAD

LOEUF: intolerance to pLoF variation

«We classify human protein-coding genes along a spectrum representing intolerance to inactivation»

- pLoF, putative loss-of-function \approx PTV (protein-truncating variants)
- LOFTEE tool: a high confidence set of $443,769 \mathrm{pLoF}$ variants (413,097 in the canonical transcripts of 16,694 genes)
- A median of 17.3 expected pLoF variants per gene, at least one pLoF in 95.8% of all genes
- LOEUF: observed / expected pLoF variants, binned into deciles of $\sim 1,920$ genes each
- 1,752 genes that are likely tolerant to biallelic inactivation.
- 1,266 with no observed pLoFs (obs lof=0, some have quite $\stackrel{\text { lar }}{ }$

Exercise*: retrieve genes with obs_lof=0

gnomAD

LOEUF: intolerance to pLoF variation

ARPC4 actin related protein $2 / 3$ complex subunit 4

Category	Exp. SNY	Obs. SNVs	Constraint metrics	
Synonymous	37.7.	31	$\begin{aligned} & \mathrm{Z}=0.86 \\ & \mathrm{o} / \mathrm{e}=0.82(0.62-1.11) \end{aligned}$	$0 _\mathrm{O}_{1}$
Missense	106	42	$\begin{aligned} & \mathrm{Z}=2.21 . \\ & \mathrm{o} / \mathrm{e}=0.4(0.31-0.51) \end{aligned}$	$0 \text { ㅇ } 1$
pLoF	11.3.	0	$\begin{aligned} & \mathrm{pLI}=0.97 . \\ & \mathrm{o} / \mathrm{e}=0.0-0.27) \end{aligned}$	0 은

ARPC3 actin related protein $2 / 3$ complex subunit 3

	Category	Exp. SNV Obs. SNV	Constraint metrics

	Synonymous	31.3.	21	$\begin{aligned} & \mathrm{Z}=1.45 \\ & \text { o/e }=0.67 .(0.47 .-0.97) \end{aligned}$	$0-1$
	Missense	91.6	81	$\begin{aligned} & Z=0.39 . \\ & \text { o/e }=0.88(0.74-1.06) \end{aligned}$	0 - ${ }_{1}$
	pLoF	11.4	3	$\begin{aligned} & \mathrm{pLI}=0.22 \\ & \mathrm{o} / \mathrm{e}=0.26(0.12-0.68) \end{aligned}$	$0 \bigcirc 1$

PCSK9 proprotein convertase subtilisin/kexin type 9

Category Exp. SNV Ons. Onvs Constraint metrics

Synonymous	187.5	170	$\begin{aligned} & Z=1.01 . \\ & o / e=0.91(0.8-1.03) \end{aligned}$	$0 ـ 1$
Missense	435	419	$\begin{aligned} & \mathrm{Z}=0.27 . \\ & \mathrm{o} / \mathrm{e}=0.96(0.89-1.04) \end{aligned}$	$0 \text { ob }$
pLoF	26.9.	26	$\begin{aligned} & \mathrm{pLI}=0 \\ & \mathrm{o} / \mathrm{e}=0.97 .(0.71-1.34) \end{aligned}$	$0 ـ 0_{1}$

APOBEC1 apolipoprotein B mRNA editing enzyme
Category Exp. SNV Obs. ONV Constraint metrics

Synonymous	46.7.	42	$\begin{aligned} & Z=0.54 \\ & \text { o/e }=0.9(0.7-1.16) \end{aligned}$	$0 _{ }_{1}$
Missense	134.2	109	$\begin{aligned} & \mathrm{Z}=0.77 . \\ & \text { o/e }=0.81 .(0.69-0.95) \end{aligned}$	$0 \mathrm{C}_{1}$
pLoF	12.1	12	$\begin{aligned} & \mathrm{pLI}=0 \\ & \mathrm{o} / \mathrm{e}=0.99 .(0.63-1.59) \end{aligned}$	$0 . \mathrm{O}_{1}$

Although oe is a continuous value, we understand that it can be useful to use a threshold for certain applications. In particular, for the interpretation of Mendelian diseases cases, we suggest using the upper bound of the oe $\mathrm{Cl}<0.35$ as a threshold if needed. Again, ideally oe should be used as a continuous value rather than a cutoff and evaluating the oe

gnomAD
 LOEUF: intolerance to pLoF variation

genome aggregation database

Figure 3 | The functional spectrum of pLoF impact
Karczewski biorXiv http://dx.doi.org/10.1101/531210

gnomAD

LOEUF: intolerance to pLoF variation

genome aggregation database

Disease applications of constraint. (a) The rate ratio is defined by the number per patient of de novo variants in intellectual disability / developmental delay (ID/DD) cases divided by the rate in controls. pLoF variants in the most constrained decile of the genome are approximately 11 -fold more likely to be found in cases compared to controls. (c) Autism cases. pLoF variants in the most constrained decile of the genome are approximately 4-fold more likely to be found in cases compared to controls.

gnomAD

Structural variants in 14,89 I genomes

Structural variants (SVs): genomic rearrangements that alter segments of DNA $\geq 50 \mathrm{bp}$

- Unbalanced (copy number variants, CNVs) and balanced (inversions, translocations) + more exotic Svs
- Method: four orthogonal signatures, 498,257 distinct SVs
- After filtering: 382,460 unique, completely resolved SVs from 12,549 unrelated genomes

SVs per genome:

- 1000 Genomes:
- GTEx project: 3,441
- gnomAD-SV:

3,658

- Long-read WGS: 24,825

SV Sites Discovered

gnomAD

Structural variants in 14,891 genomes
genome aggregation database

Figure 2| Complex SVs are abundant in the human genome

gnomAD

Structural variants in $14,89 \mid$ genomes

genome aggregation database

Average genome: 8,202 SVs

- Small (median SV size=374 bp)
- ...and rare (92% are $\mathrm{AF}<1 \%$)
- 46.4\% are singletons
- Eight genes altered by rare SVs
- Large ($\geq 1 \mathrm{Mb}$), rare autosomal SVs in 3.1% of genomes

Homozygous SVs

Rare SVs

gnomAD
 Structural variants in 14,891 genomes

(b) At least one pLoF or CG SV was detected in 40.4% and 23.5% of all autosomal genes, respectively. (c) Up to 1.3% of genomes in gnomAD-SV harbored a very rare ($\mathrm{AF}<0.1 \%$) pLoF SV in a medically relevant gene across several gene lists.

gnomAD
 Structural variants in 14,89 I genomes

d

(d) We found $\mathbf{3 0 8}$ rare autosomal $\mathrm{SVs} \geq \mathbf{1 M b}$, revealing that $\sim 3.1 \%$
of genomes carry a large, rare chromosomal abnormality.

Structural variants in 20 genomes by Delly

ClinVar: open database of disease mutations

ClinVar: an open archive of variants with

- clinical phenotypes
- evidence
- interpreted clinical significance.

Submitted variants are classified by

- type of submitter
- number of agreeing submissions
- the variant interpretation guidelines used

A key strength of this archive is the aggregation of data from multiple clinical laboratories, providing a growing record of support for each interpretation, in which the provenance for each interpretation is maintained. A benefit of this aggregation process is that disagreements about the significance of variants are collated and reported.

ClinVar: open database of disease mutations

Submitted interpretations and evidence

Interpretatior (Last evaluated)	Review status (Assertion criteria)	Condition (Inheritance)	Submitter	Supporting information (See all)
Pathogenic (Dec 30, 2016)	criteria provided, single submitter (ACMG Guidelines,	not provided Allele origin: germline	PreventionGenetics Accession: Scvoo0806334.1 Submitted: (Jan 29, 2018)	Evidence details

NM_000059.3(BRCA2):c.3909C>A (p.Gly1303=)

Likely benign

啇
Review status:
sudmissions: $\quad \angle$ (mostrecent: Jun $\angle y, \angle U 1)$
Last evaluated: Jun 29, 2017
Accession: VCV000051559.2
Variation ID: 51559
Description:
single nucleotide variant

ClinVar: open database of disease mutations

Category of analysis	Current total (May 13, 2020)
Records submitted	1141302
Records with assertion criteria	969361
Records with an interpretation	1119301
Total genes represented	32838
Unique variation records	745458
Unique variation records with interpretations	733504
Unique variation records with assertion criteria	635153
Unique variation records with practice guidelines (4 stars)	656
Unique variation records from expert panels (3 stars)	10911
Unique variation records with assertion criteria, multiple submitters, and no conflicts (2 stars)	101805
Unique variation records with assertion criteria (1 star)	488040
Unique variation records with assertion criteria and a conflict (1 star)	33741
Unique variation records with conflicting interpretations	34051
Genes with variants specific to one gene	11064
Genes with variants specific to one protein-coding gene	10971
Genes included in a variant spanning more than one gene	33087
Variants affecting overlapping genes	27744
Total submitters	1565

ClinVar: open database of disease mutations

Accession: VCV000053510
Variation: NM_000492.3(CFTR):c.254G>T (p.Gly85Val)
Gene:
CFTR
Condition: Cystic fibrosis

Clinical Significance (Interpretation): Review status (Assertion criteria): submitter

Review status (Assertion criteria)	\%	Clinical significance (Interpretation)	\%
Criteria provided, single submitter	67.7	Uncertain significance; not provided	46.7
Criteria provided, multiple submitters,	15.4	Benign, Likely benign	28.4
no conflicts		Pathogenic, Likely pathogenic	19.7
No assertion criteria provided, no assertion provided	10.0	Conflicting interpretations	4.6
Criteria provided, conflicting		Risk factor, drug response, association	0.2
interpretations	4.6		
Reviewed by expert panel	2.2	Release 16/09/2019, 498,741 unique entries	

ClinVar: open database of disease mutations

Change in ClinVar Variant Classification from May 2016 to September 2017. In the study period, 7,615 ClinVar variants changed classification. Overall, most of the re-classification in ClinVar feeds into "conflicting interpretation," B/LB and VUS, and away from P/LP.

Exercise

Use ClinVar (OMIM) to find and save one example of disease-associated pathogenic mutation for each annotation type:

- stop-gain
- synonymous
- missense
- splice-site
- frameshift indel

Now use gnomAD to get population frequencies for these variants

dbSNP: a free archive for genetic variation

NCBI Variation Summary

Description:
Summary of human variation data available from dbSNP and dbVar.

Report date: Tuesday, April 21, 2020
Total Variants:

- SubSNP count: $1,803,563,957$
- RefSNP count: 660,773,127
- Variant Call count: $36,118,602$
- Variant Region count: 6,023,949
dbVar is NCBI's database of human genomic Structural Variation - large variants >50 bp including insertions, deletions, duplications, inversions, mobile elements, translocations, and complex variants

Organism	Common Name	$\begin{aligned} & \text { Taxon } \\ & \text { ID } \end{aligned}$	dbSNP	dbVar
Homo sapiens	human	9606	Last Updated: Build 151 (Mar 22, 2018) RefSNP Count: 660.8 Million SubSNP Count: 1803.6 Million Assembly: GRCh37.p13, GRCh38.p7 Data: Search, FTP Genome Data Viewer: GRCh37.p13, GRCh38.p7	Last Updated: Apr 19, 2020 Variant Regions: 6 Million Variant Calls: 35.9 Million Assembly: GRCh37, GRCh37.p13, GRCh38, GRCh38.p12, GRCh38.p13, GRCh38 NCBI36 Data: Search, FTP dbVar Browser: GRCh37, GRCh38, NCBI34, NCBI35, NCBI36

The Genome Russia Project

Original Article
Genome-wide sequence analyses of ethnic populations across Russia

Daria V. Zhernakova ${ }^{\mathrm{a}, \mathrm{b}, *}$, Vladimir Brukhin ${ }^{\mathrm{a}}$, Sergey Malov ${ }^{\mathrm{a}, \mathrm{c}}$, Taras K. Oleksyk ${ }^{\mathrm{a}, \mathrm{d}, \mathrm{r}}$, Klaus Peter Koepfli ${ }^{\text {a,e }}$, Anna Zhuk ${ }^{\text {a,f }}$, Pavel Dobrynin ${ }^{\text {a,e, }}$, Sergei Kliver ${ }^{\text {a }}$, Nikolay Cherkasov ${ }^{\text {a }}$, Gaik Tamazian ${ }^{\text {a }}$, Mikhail Rotkevich ${ }^{\text {a }}$, Ksenia Krasheninnikova ${ }^{\text {a }}$, Igor Evsyukov ${ }^{\text {a }}$, Sviatoslav Sidorov ${ }^{\mathrm{a}}$, Anna Gorbunova ${ }^{\mathrm{a}, \mathrm{g}}$, Ekaterina Chernyaeva ${ }^{\mathrm{a}}$, Andrey Shevchenko ${ }^{\mathrm{a}}$, Sofia Kolchanova ${ }^{\text {a,d }}$, Alexei Komissarov ${ }^{\text {a }}$, Serguei Simonov ${ }^{\text {a }}$, Alexey Antonik ${ }^{\text {a }}$, Anton Logachev ${ }^{\text {a }}$, Dmitrii E. Polev ${ }^{\mathrm{h}}$, Olga A. Pavlova ${ }^{\mathrm{h}}$, Andrey S. Glotov ${ }^{\mathrm{u}}$, Vladimir Ulantsev ${ }^{\mathrm{i}}$, Ekaterina Noskova ${ }^{\mathrm{i}, \mathrm{j}}$,
Tatyana K. Davydova ${ }^{\text {s }}$, Tatyana M. Sivtseva ${ }^{\mathrm{k}}$, Svetlana Limborska ${ }^{1}$, Oleg Balanovsky ${ }^{\mathrm{m}, \mathrm{n}, \mathrm{o}}$, Vladimir Osakovsky ${ }^{\mathrm{k}}$, Alexey Novozhilov ${ }^{\mathrm{p}}$, Valery Puzyrev ${ }^{\mathrm{q}}$, Stephen J. O'Brien ${ }^{\mathrm{a}, \mathrm{t}, *}$

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history.

The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of $\mathbf{2 6 4}$ healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show $58^{\text {allele frequency divergence from neighboring population. Zhernakova (2019) Genomics }}$

The Genome Russia Project

A
rs4988235 (MCM6) Lactose intolerance

B
rs9923231 (VKORC1) Warfarin response

86\%

D
rs3816539 (DHDDS) Retinitis pigmentosa

96\%

Fig. 3. Differences in Genome Russia allele frequencies of SNPs in notable genes with important phenotypes differentiate among Eurasian ethic groups. Allele frequencies for populations of Pskov and Novgorod (combined) and Yakut are shown together with allele frequencies of 1000G populations: Europeans (CEU), Finnish (FIN), East Asians (EAS) and South Asians (SAS) for four SNPs: (a) rs4988235, located in MCM6 gene. This SNP is associated with adult type lactose intolerance. G allele tags the lactose intolerant haplotype [58,59]; (b) rs9923231, located in VKORC1 gene. This SNP is associated with Warfarin response. T allele carriers need reduced dose of warfarin; (c) rs16891982 located in SLC45A2 gene. G allele related to lighter skin pigmentation; (d) rs3816539 located in DHDDS gene. A allele is associated with retinitis pigmentosa.

OPEN ACCESS
Edited by:
Tatiana V. Tatarinova,
University of La Verne, United States

Targeted Sequencing of 242 Clinically Important Genes in the Russian Population From the Ivanovo Region

Vasily E. Ramensky ${ }^{1,2 *}$, Alexandra I. Ershova ${ }^{1}$, Marija Zaicenoka ${ }^{3}$, Anna V. Kiseleva ${ }^{1}$, Anastasia A. Zharikova ${ }^{1,2}$, Yuri V. Vyatkin ${ }^{1,4}$, Evgeniia A. Sotnikova ${ }^{1}$, Irina A. Efimova ${ }^{1}$, Anastasia A. Zharikova, 1,2, Yuri V. Vyatkin ${ }^{1,4}$, Evgeniia A. Sotnikova ${ }^{1}$, Irina A. Efimo Mikhail G. Divashuk ${ }^{1,5}$, Olga V. Kurilova ${ }^{1}$, Olga P. Skirko ${ }^{1}$, Galina A. Muromtseva ${ }^{1}$, Olga A. Belova ${ }^{6}$, Svetlana A. Rachkova ${ }^{6}$, Maria S. Pokrovskaya ${ }^{1}$, Svetlana A. Shalnova¹, Alexey N. Meshkov ${ }^{1+}$ and Oxana M. Drapkina ${ }^{1+}$
${ }^{1}$ National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia, ${ }^{2}$ Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, ${ }^{3}$ Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia, ${ }^{4}$ Novosibirsk State University, Novosibirsk, Russia, ${ }^{5}$ All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia, ${ }^{6}$ Cardiology Dispensary, Ivanovo, Russia

Ivanovo population: 242 genes, I 685 samples

	Rare, $\mathrm{AF}<0.1 \%$			
Known	Novel (Not in NWR)	Known	Novel (Not in NWR)	
Protein truncating variants	112	$70(69)$	34	$2(2)$
Strictly damaging missense variants	907	$193(190)$	346	$7(5)$
Other missense	1957	$395(379)$	1170	$4(4)$
Inframe indels	49	$15(15)$	22	$1(1)$
Other variants	3227	$657(635)$	2696	$14(3)$
Total	6252	1330	4268	28

Ivanovo population: 242 genes, I 685 samples

Ivanovo population: 242 genes, I 685 samples

Known pathogenic variants that are significantly more common in Ivanovo

Gene	Disease	Variant	HGVS	gnomAD	Ivanove AC	$\begin{gathered} \text { O Ivanov } \\ 0 \text { AF } \end{gathered}$	Ivanovo/ gnomAD
KCNQ1	Long QT syndrome (AD, OMIM:192500)	rs1337409061	ENSP00000155840.2:p.Thr96Arg	$3.459 \mathrm{E}-05$		30.00089	25.7
MYBPC3	Hypertrophic cardiomyopathy (AD, OMIM:115197)	rs376395543	ENST00000545968.1:c.26-2A>G	$5.1837 \mathrm{E}-05$		30.00089	17.2
	Glycogen storage disease (Pompe disease) (AR,						
GAA	OMIM:232300)	rs375470378	ENST00000302262.3:c.1552-3C>G	0.0002713		80.00237	8.8
GLB1	GM1-gangliosidosis (AR, OMIM:253010, 230600)	rs376663785	ENSP00000306920.4:p.Tyr270Asp	$4.6641 \mathrm{E}-05$		40.00119	25.4
	Merosin-deficient congenital muscular dystrophy type 1A						
LAMA2	(AR, OMIM:607855) Combined oxidative	rs398123387	ENST00000421865.2:c.7536del	$1.7651 \mathrm{E}-05$		40.00119	67.2
MTOI		rs201544686	ENSP00000402038.2:p.Arg517His	0.0002322		60.00178	7.7
SCO2	Mitochondrial complex IV deficiency (AR, OMIM:604377)	rs74315511	ENSP00000444433.1:p.Glu140Lys	0.0001784		40.00119	6.7
	Mitochondrial complex IV deficiency, Leigh syndrome						
SURF1	(AR, OMIM:220110)	rs782316919	ENST00000371974.3:c.845_846del	0.0001476		40.00119	8.0
ALMS1	Alstrom syndrome (AR, OMIM:203800)	rs797045228	ENST00000264448.6:c.4150dup	$4.675 \mathrm{E}-05$		30.00089	19.0
ALMS1	Alstrom syndrome (AR, OMIM:203800)	rs747272625	ENST00000264448.6:c.11310_11313،	$5.34 \mathrm{E}-05$		30.00089	16.7

APOB and hypobetalipoproteinemia

HGNC Approved Gene Symbol: APOB
Cytogenetic location: 2 p24.1 Genomic coordinates (GRCh38): 2:21,001,428-21,044,072 (from NCBI)

Gene-Phenotype Relationships

$\left.$| Location | Phenotype | Clinical synopses | Phenotype
 MIM number | Inheritance |
| :--- | :--- | :--- | :--- | :--- | | Phenotype |
| :--- |
| mapping key | \right\rvert\, | 2 p 24.1 | Hypercholesterolemia, familial, 2 | 144010 |
| :--- | :--- | :--- |
| | Hypobetalipoproteinemia | 615558 |

Hypobetalipoproteinemia (FHBL) and abetalipoproteinemia (ABL; 200100) are rare diseases characterized by hypocholesterolemia and malabsorption of lipid-soluble vitamins leading to retinal degeneration, neuropathy, and coagulopathy. Hepatic steatosis is also common. The root cause of both disorders is improper packaging and secretion of apolipoprotein B-containing particles.

As indicated in the listing of allelic variants, a number of mutations resulting in a truncated apolipoprotein B have been found as the basis of hypobetalipoproteinemia. Other patients with this disorder have been found to have reduced concentrations of a full-length apoB100 (Young et al., 1987; Berger et al., 1983; Gavish et al., 1989).

APOB and hypobetalipoproteinemia

Table 6 Variants with confirmed phenotypes. Variant: dbSNP rsID for known variants or chr:pos_ref/alt identifier for novel PTVs. HGVS: variant description. Phenotype: disease phenotype confirmed by evaluation of clinical data; source of clinical data is specified in the parentheses.

Gene	ACMG	Variant	HGVS	Phenotype (Source)

II. Novel protein truncating: 27 variants, 27 carriers

APOB	Yes	chr2:21232683_G/A	ENSP00000233242.1: p.Gln2353Ter	Hypobetalipoproteinemia, LDL-C=1.47 mmol/l (Biochemical assay)
APOB	Yes	chr2:21234967_GA/G	ENSP00000233242.1: p.Phe1591SerfsTer19	Hypobetalipoproteinemia, LDL-C=0.95 mmol/l (Biochemical assay)
APOB	Yes	chr2:21260870_AC/A	ENSP00000233242.1: p.Val166PhefsTer66	Hypobetalipoproteinemia, LDL-C=0.72 mmol/l (Biochemical assay)
MYH7	Yes	chr14:23889261_CT/C	ENSP00000347507.3: p.Lys1173ArgfsTer41	Hypertrophic cardiomyopathy (Medical record)

Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples

Yury A. Barbitoff ${ }^{1,3,4, \boxtimes}$, Darya N. Khmelkova ${ }^{2}$, Ekaterina A. Pomerantseva ${ }^{2}$, Aleksandr V. Slepchenkov ${ }^{3}$, Nikita A. Zubashenko ${ }^{2}$, Irina V. Mironova ${ }^{2}$, Vladimir S. Kaimonov ${ }^{2}$, Dmitrii E. Polev 1, Victoria V. Tsay ${ }^{1,5}$, Andrey S. Glotov ${ }^{1,4}$, Mikhail V. Aseev ${ }^{1,4}$, Oleg S. Glotov ${ }^{1,4,5}$, Arthur A. Isaev ${ }^{2}$, and Alexander V. Predeus ${ }^{3, \boxtimes}$

1. We construct an expanded reference set of genetic variants by analyzing $\mathbf{6 , 0 9 6}$ exome samples collected in two major Russian cities of Moscow and St. Petersburg.
2. An approximately tenfold increase in sample size compared to previous studies allowed us to identify genetically distinct clusters of individuals within an admixed population of Russia.
3. We show that up to $\mathbf{1 8}$ known pathogenic variants are overrepresented in Russia compared to other European countries.
4. We also identify several dozen high-impact variants that are present in healthy donors despite either being annotated as pathogenic in ClinVar or falling within genes associated with autosomal dominant disorders.
5. The constructed database of genetic variant frequencies in Russia has been made available to the medical genetics community through a variant browser available at http://ruseq.ru

Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples

Yury A. Barbitoff ${ }^{1,3,4, \boxtimes}$, Darya N. Khmelkova ${ }^{2}$, Ekaterina A. Pomerantseva ${ }^{2}$, Aleksandr V. Slepchenkov ${ }^{3}$, Nikita A. Zubashenko ${ }^{2}$, Irina V. Mironova ${ }^{2}$, Vladimir S. Kaimonov ${ }^{2}$, Dmitrii E. Polev 1, Victoria V. Tsay ${ }^{1,5}$, Andrey S. Glotov ${ }^{1,4}$, Mikhail V. Aseev ${ }^{1,4}$, Oleg S. Glotov ${ }^{1,4,5}$, Arthur A. Isaev 2, and Alexander V. Predeus ${ }^{3,}{ }^{\boxed{1}}$

We identified several genetically distinct clusters of the study participants. Yellow: most likely represents European part of Russia; gray: represents Caucasus; blue: unites diverse samples from East part of Russia (e.g., originating from Syberia, the "Far East", etc.). Variant frequencies at this website are provided for all three clusters.

RUSeq

MCPH1 NM_024596.5

Полное название

Канонический транскрипт

Количество вариантов (с учетом отфильтрованных)
UCSC Browser
GeneCards
Другое
microcephalin 1
NM_024596.5 Другие транскрипты
403
8:6406615-6648508
MCPH1
Внешние источники

Покрытие

Показано покрытие только кодирующей последовательности

Среднее	Доля образцов выше X
Mean	

Варианты

```
All Missense + LoF 
\(\square\) Добавить отфильтрованные варианты
```

Количество наблюдений, размер выборки и частота аллели приведены для здоровых и больных доноров (здоровый/больной)
Вариант
Хром. Позиция Фильтр Эффект

Вариант	Хром.	Позиция	Фильтр	Эффект	Количество наблюдений	Размер выборки (х2)	Число гомозигот	Частота аллели
8:6406621 G C	8	6406621	PASS	5^{\prime} UTR	0/1	1422 / 8968	$0 / 0$	$0.000 / 0.0001115$
8:6406625 G C (rs754406776).	8	6406625	PASS	5^{\prime} UTR	0/1	1426/8978	$0 / 0$	$0.000 / 0.0001114$
8:6406635 C G	8	6406635	PASS	5^{\prime} UTR	1/0	1428/9002	010	$0.0007003 / 0.000$
8:6406639 G A (rs753805652).	8	6406639	PASS	5^{\prime} UTR	1/0	1432 / 9016	$0 / 0$	$0.0006983 / 0.000$
8:6406643 A C (rs1288007977)	8	6406643	PASS	5^{\prime} UTR	$0 / 1$	1434/9026	$0 / 0$	$0.000 / 0.0001108$
8:6406644 G C (rs755235337)	8	6406644	PASS	5^{\prime} UTR	$0 / 1$	1434/9028	$0 / 0$	$0.000 / 0.0001108$
8:6406660 C T (rs375171907).	8	6406660	PASS	5' UTR	$0 / 1$	1432 / 9042	$0 / 0$	$0.000 / 0.0001106$

Lessons from sequencing

- PCA reveals local subpopulations, variant frequencies may vary
- RuSeq: combines genetic information between clinical laboratories and genomic centers in Russia
- Approximately 10% of variants are novel, enriched with variants with higher impact (PTV, missense)
- Over-represented known pathogenic variants
- Known and expected pathogenic variants detected in healthy donors
- Novel and known variants linked to phenotypes
- Discriminate healthy donors vs. patients in variant frequency estimation!

Summary

- Earlier estimates of nucleotide diversity do not account for human rapid expansion and natural selection. They result in much higher and variable diversity and excess of rare alleles
- Recent large-scale sequencing studies (1000 Genomes, ExAC, gnomAD, UK Biobank) elucidate previously unknown patterns of human genome variation and enable valuable insights into human population and disease genetics
- In particular, variants with population frequency incompatible with recessive inheritance and previously considered as pathogenic are reclassified
- The sample accumulation enables gene-level resolution: gene intolerance measure or selection coefficients for putative loss-offunction (pLoF) variants
- There are few WES- and WGS-based variant prevalence studies in Russian population

Further reading

- Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291
- Cassa, C.A., Weghorn, D., Balick, D.J., Jordan, D.M., et al. (2017). Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat. Genet. 49, 806-810
- Saleheen, D., Natarajan, P., Armean, I.M., Zhao, W., et al. (2017). Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235-239
- Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., et al. (2019). Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv 531210
- Collins, R.L., Brand, H., Karczewski, K.J., Zhao, X., et al. (2019). An open resource of structural variation for medical and population genetics. BioRxiv 578674
- Kiezun, A., Garimella, K., Do, R., Stitziel, N.O., et al. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics 44, 623-630

Further reading

- The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature 526, 68-74
- Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant prioritization and Mendelian disease. Nature Reviews Genetics 18, 599
- Rehm, H.L., Berg, J.S., and Plon, S.E. (2018). ClinGen and ClinVar - Enabling Genomics in Precision Medicine. Human Mutation 39, 1473-1475
- Gao, F., and Keinan, A. (2016). Explosive genetic evidence for explosive human population growth. Current Opinion in Genetics \& Development 41, 130-139
- Shah, N., Hou, Y.-C.C., Yu, H.-C., Sainger, R., Caskey, C.T., Venter, J.C., and Telenti, A. (2018). Identification of Misclassified ClinVar Variants via Disease Population Prevalence. The American Journal of Human Genetics 102, 609619.
- Barbitoff, Y.A., et al. (2022). Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. https://doi.org/10.1101/2021.11.02.21265801
- Zhernakova, D.V., Brukhin, V., Malov, S., Oleksyk, T.K., Koepfli, K.P., et al. (2019). Genome-wide sequence analyses of ethnic populations across Russia.

Genomics.

