Mendelian diseases: gene discovery and diagnostics

Lecture plan

- Disease, syndrome and other definitions
- Establishing the genetic basis of a diseases
- Mendelian diseases: overview and inheritance types
- Penetrance, relative risk, odds ratio
- Mapping disease genes in pre- and post-genome era
- Interpretation of sequence variants in monogenic disease context
- Mendelian disease gene discovery by NGS
- WES diagnostics of Mendelian disorders

The genetic basis of a disease

For **almost all human diseases**, individual susceptibility is, to some degree, influenced by genetic variation

-- Claussnitzer (2020) Nature

(1) Some of differences in DNA, alone or in combinations, might render an individual more **susceptible to one disorder** (for example, a type of cancer), but could render the same individual **less susceptible to develop an unrelated disorder** (for example, diabetes).

(2) The environment (including lifestyle) plays a significant role in many conditions (for example, diet and exercise in relation to diabetes), but our cellular and bodily **responses to the environment may differ according to our DNA**.

(3) The genetics of the immune system, with enormous variation across the population, determines our response to infection by pathogens.

(4) Most cancers result from an **accumulation of genetic changes that occur through the lifetime** of an individual, which may be influenced by environmental factors.

Disease, syndrome and other definitions

Disease (disorder): a medical condition of the body which disrupts the normal functioning and physiological processes. A **genetic disorder** is caused by one or more abnormalities in the genome.

Inherited (hereditary): passed from parents to offspring
Sporadic: a condition that happens by chance (genetic or not)
Genetic: inherited or *de novo*Congenital (*vs.* acquired): a condition that is present at birth
Phenocopy: a phenotypic variation that resembles the expression of a genotype but is caused by environmental conditions

A **syndrome** is a collection of symptoms which are often associated with a particular disorder.

For genetic cases, syndrome \approx disorder.

Examples: CHARGE syndrome (*CHD7*), Down syndrome (trisomy 21), Tourette syndrome (unknown). Stockholm syndrome.

Disease, syndrome and other definitions

1. Mendelian (monogenic) disorders depend on the genotype at a single locus, with inheritance following Mendel's laws of segregation (Cystic fibrosis, Haemophilia A)

2. Complex (multifactorial) disorders: the outcome of a complex interplay of multiple genetic and environmental influences (Туре II diabetes, coronary heart disease (ИБС) and schizophrenia)

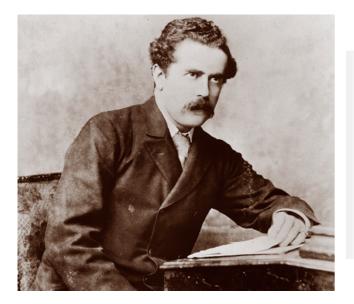
Heritability: the relative contribution of genetic factors to a [disease] phenotype

Disease, syndrome and other definitions

1. Mendelian (monogenic) disorders depend on the genotype at a single locus, with inheritance following Mendel's laws of segregation (Cystic fibrosis, Haemophilia A)

2. Complex (multifactorial) disorders: the outcome of a complex interplay of multiple genetic and environmental influences (Туре II diabetes, coronary heart disease (ИБС) and schizophrenia)

Heritability: the relative contribution of genetic factors to a [disease] phenotype


3. Mitochondrial disorders result from mutations in mtDNA
4. Chromosomal disorders occur when entire chromosomes or parts of chromosomes are missing or changed.

5. Epigenetic disorders are disorders related to changes in the activity of genes, rather than a mutation in the structure of the DNA

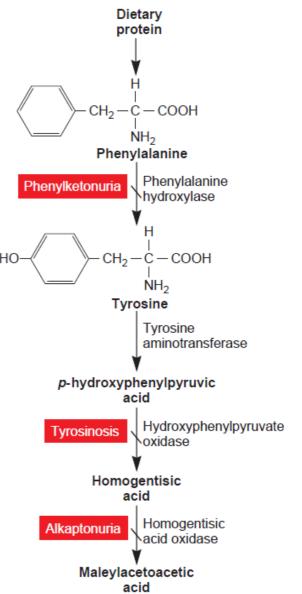
Mendelian vs. complex disorders

Mendelian	Complex
• Individually rare in population	Common in population
• Patterns of inheritance within families: AD, AR, etc.	• Persist in populations
• One or few genes with large effect	 Multiple loci, no single locus is necessary or sufficient
• Caused by alleles with high or complete penetrance	 Combination of genetic, environmental and lifestyle factors
· Allelic heterogeneity	• Complicated allelic architecture
• Examples: cystic fibrosis, familial hypercholesterolemia, inherited cardiomyopathies, rhythm disorders	Examples: coronary artery disease (CAD), atrial fibrillation, hypertension, schizophrenia, heart failure

Alkaptonuria: inborn errors of metabolism

Reprinted from Lancet, vol. ii, 1902, pp. 1616-1620

THE INCIDENCE OF ALKAPTONURIA: A Study in Chemical Individuality

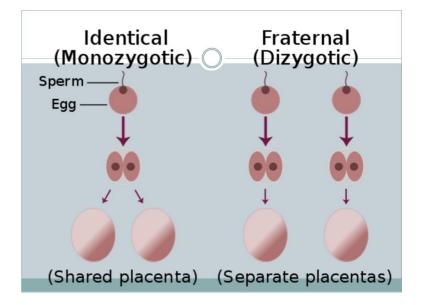

ARCHIBALD E. GARROD

Physician to the Hospital for Sick Children, Great Ormondstreet, Demonstrator of Chemical pathology at St. Bartholemew's Hospital

All the more recent work on alkaptonuria has tended to show that the constant feature of that condition is the excretion of homogentisic acid, to the presence of which substance the special properties of alkapton urine, the darkening with alkalies and on exposure to air, the power of staining fabrics deeply, and that of reducing metallic salts, are

Abnormal levels of homogentisic acid (aka *alkapton*), which is excreted in the urine, causing it to appear black on exposure to air **Alkaptonuria (AKU)** is inherited and follows an autosomal recessive pattern.

Sir Archibald Garrod (1902): mutation \rightarrow loss of enzyme \rightarrow inborn error of metabolism



Brooker – Genetics, Analysis and Principles

Establishing the genetic basis of a disease

Monozygotic twins (MZ) develop from one zygote, which splits and forms two embryos.Dizygotic twins (DZ) develop from separate eggs, each egg is fertilized by its own sperm cell

	Concor	Concordance		
Disease type	MZ	DZ		
Monogenic	100%	50%		
Complex	70%	25%		
Non-genetic	X%	X%		

Establishing the genetic basis of a disease

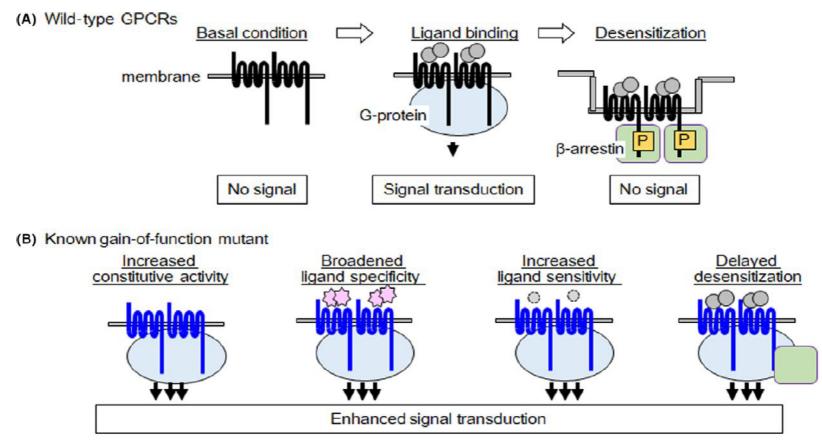
Familial aggregation: does a disease run in families more often than would be expected by chance? Relatives share gene variants, but also share environment (diet, upbringing)

- Segregation patterns (type of inheritance)
- Twin studies (also separated monozygotis twins)
- Adoption studies: affected parents or affected offspring
- **Descriptive [genetic] epidemiology**: international variation in disease risks; migrant studies; admixture studies

Case types	Schizophrenia cases among biological relatives	Schizophrenia cases among adoptive relatives
Index cases (47 chronic schizophrenic adoptees)	44/279 (15.8%)	2/111 (1.8%)
Control adoptees (matched for age, sex, social status of adoptive family, and number of years in institutional care before adoption)	5/234 (2.1%)	2/117 (1.7%)

The study involved 14,427 adopted persons aged 20–40 years in Denmark; 47 of them were diagnosed as chronic schizophrenic. The 47 were matched with 47 non-schizophrenic control subjects from the same set of adoptees. [Data from Kety SS, Wender PH, Jacobsen B et al. (1994) *Arch. Gen. Psychiatry* 51, 442–455.]

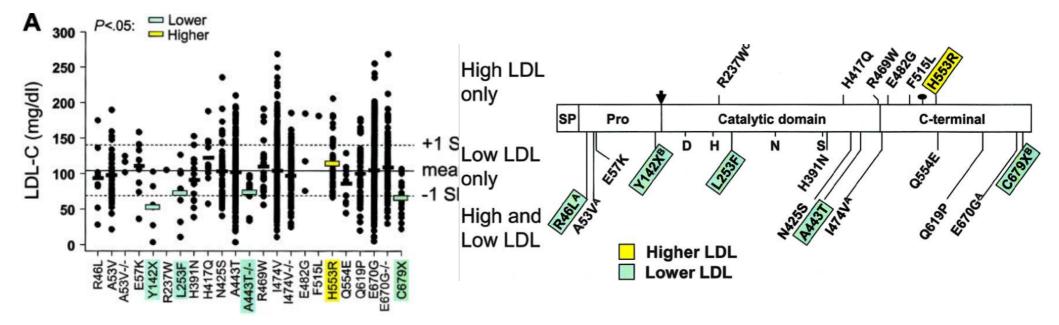
Loss-of-function: the product has reduced or no function *Examples*: transcription factors; disruption of catalytic function in an enzyme


- Protein-truncating and missense variants?
- Recessive, but in some cases (haploinsufficiency) also dominant

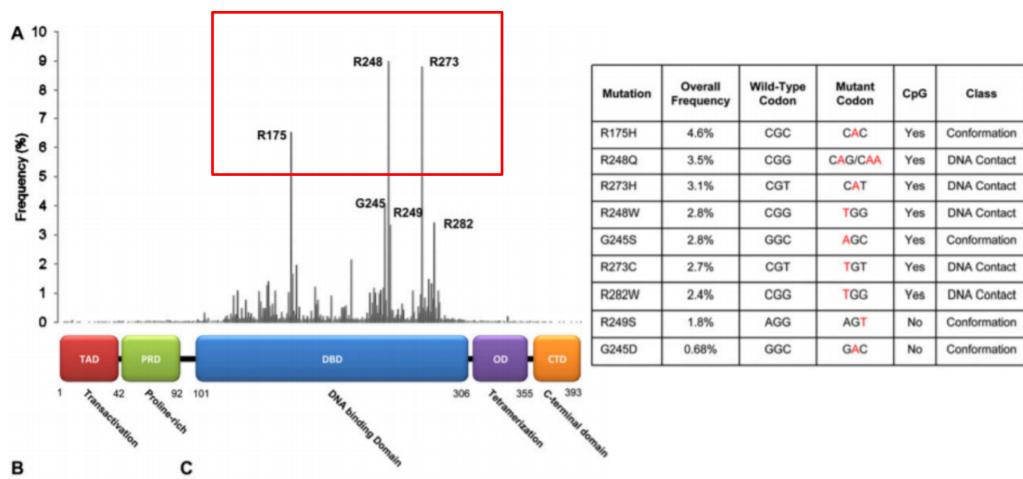
Gain-of-function: the product does "something positively abnormal"

Examples: transcription factors; gain-of-function mutations in G-protein–coupled receptors (GPCRs)

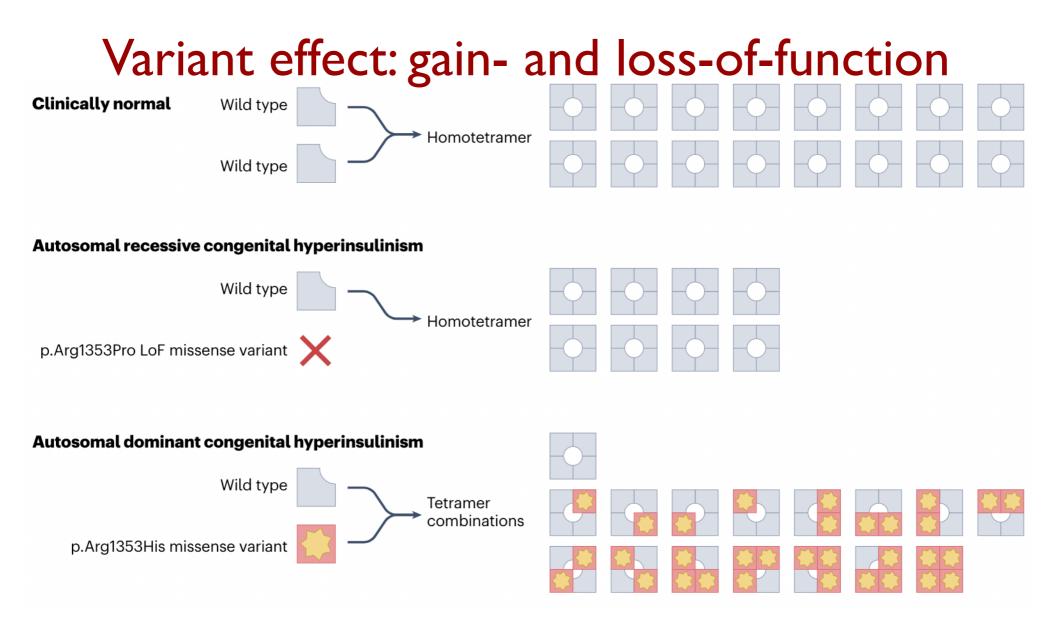
- Mostly missense variants, but also frameshift, inframe deletions
- Presence of a normal allele cannot prevent the mutant allele from behaving abnormally ⇒ dominant?


- **G-protein–coupled receptors** are sensors for internal stimuli: hormones, ions and chemokines; light, odour and taste. GPCRs play particularly important roles in the endocrine system.
- Human genome contains >700 GPCRs
- Implicated in various human disorders, including endocrine diseases

Fukami (2018) Clin Endocrinol


Serine protease *PCSK9* (Proprotein convertase subtilisin/kexin type 9) regulates low density lipoprotein cholesterol (LDL-C) levels, has both types of variants

High LDL-C level \Rightarrow atherosclerosis \Rightarrow cardiac infarction or stroke

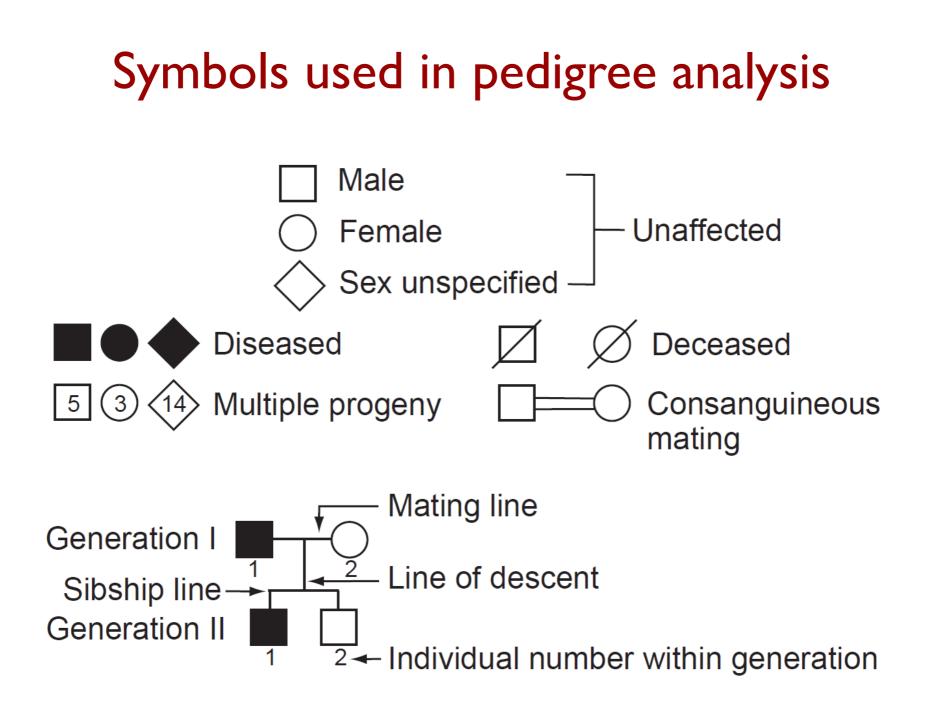

Kotowski (2006) Am J Hum Genet

TP53 mutational spectrum in human cancers

Gain-of-function

William A. Freed-Pastor (2012) Genes & Development

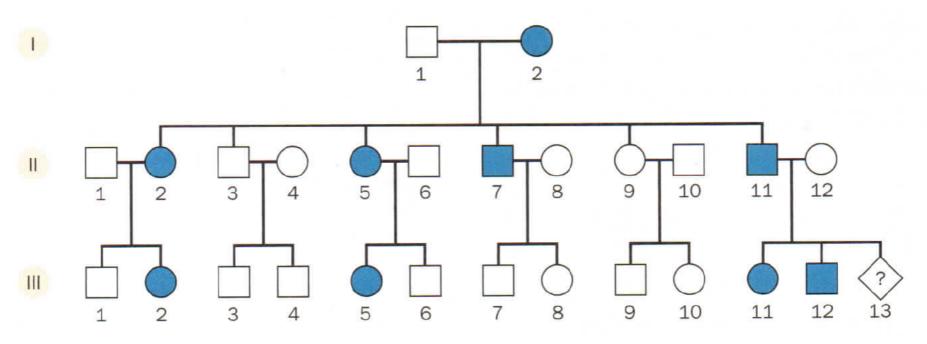
K_{ATP} **channel-related congenital hyperinsulinism**: blood sugar regulation by pancreatic β-cells depends on the normal function of an octameric KATP channel (4xKir6.2 proteins + 4xSUR1 proteins), respectively encoded by the KCNJ11 and ABCC8 genes (top; Kir6.2 not depicted for simplicity). ATP-mediated closure of the K_{ATP} channel causes insulin release. p.Arg1353Pro: a non-functional recessive loss of function (LoF) (haplosufficiency; middle). p.Arg1353His results in a stable abnormal SUR1 protein that interferes with the wild type (WT) protein and has a dominant negative effect (bottom)


Zschocke (2023) Nat Rev Genet

Principle	Basic mechanism	Detailed mechanism	Disease/trait	Gene(s)	Refs.
Protein activation and/or loss of	Ligand-independent signalling increase	Constitutive activation by intermolecular cross-linking or loss of negative regulation	Osteoglophonic dysplasia, encephalocutaneous lipomatosis	FGFR1	171,172
protein control	Ligand-dependent signalling increase	Increased binding affinity for physiological or non-physiological ligands	Pfeiffer syndrome	FGFR1	173
	Uncontrolled enzyme function	Intracellular autoactivation of the normally blocked serine protease domain	Periodontal Ehlers-Danlos syndrome	C1R, C1S	57
	Uncontrolled ion channel function	Loss of gating	Paramyotonia congenita, hypokalaemic and hyperkalaemic periodic paralysis	SCN4A	90
			Long QT syndrome type 3	SCN5A	91
	Transcription factor binding promiscuity	Mixed gain and loss of transcription factor binding specificity	Congenital dyserythropoietic anaemia type IV	KLF1	58
	Activation of other protein functions	Decrease in the activation threshold of the pyrin inflammasome	Familial Mediterranean fever	MEFV	70
Loss of expression	Ectopic gene expression	Promoter activation	Exercise-induced hyperinsulinism	SLC16A1	59
control		Enhancer activation	Pre-axial polydactyly	SHH	60
	Alteration of splicing	Disruption of alternative splicing	Apert and Pfeiffer syndromes	FGFR2	61
			Frasier syndrome	WT1	63
	Alteration of topologically associating domains	Novel regulatory landscape, enhancer adoption	Acropectoral syndrome	SHH	153
Non-specific effects of abnormal gene product	Abnormal mRNA effects	Detrimental interaction with repeat RNA- binding proteins, aberrant repeat-associated non-ATG translation	Myotonic dystrophy	DMPK, CNBP	64
	Toxic protein effect	Coding triplet repeat expansion (polyglutamine disorders)	Huntington disease	HTT	69
		Protein aggregation disorders (amyloidoses)	Hereditary transthyretin-related amyloidosis	TTR	66
Other functional effects	Novel protein function	Different substrate binding based on size of active centre	ABO blood groups	ABO	71

Table 1 | Examples of different gain of function effects

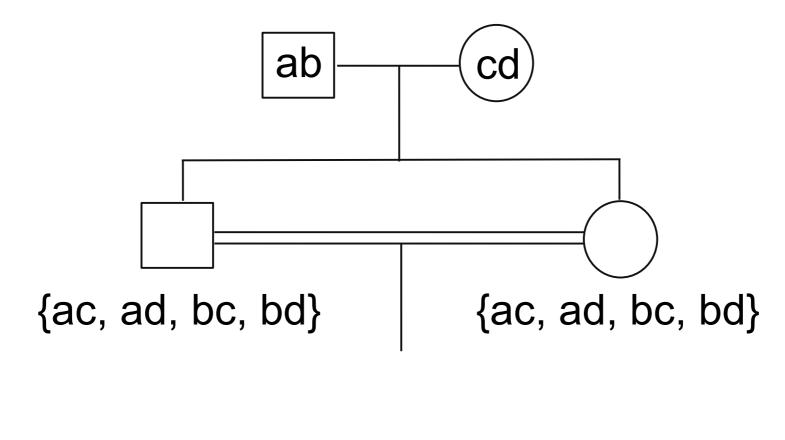
Note that this table is not exhaustive, and additional gain of function (GoF) mechanisms are well recognized, for example in tumour development.


Zschocke (2023) Nat Rev Genet

Hartwell – Genetics. From genes to genomes

Autosomal dominant inheritance

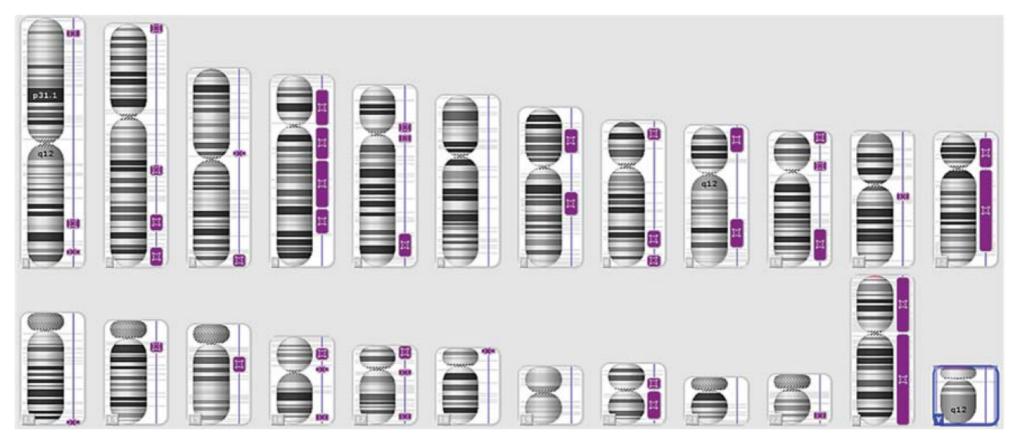

- An affected person (proband) usually has at least one affected parent
- It affects either sex
- A child with one affected and one unaffected parent has a 50% chance of being affected
- Causal variant is gain-of-function or loss-of-function if gene is haploinsufficient; often, *de novo*


Strachan, Read – Human Molecular Genetics

Autosomal recessive inheritance

- Affected people are usually born to unaffected parents, who are usually asymptomatic carriers
- It affects either sex
- A child has a 25% chance of being affected
- Causal variant is loss-of-function
- There is an increased incidence of parental consanguinity

Consanguinity and homozygosity



{..., ba, bd, da, dd, ... }

Exercise: list all possible genotypes for the consanguineous offspring and calculate probability of homozygosity, aka the inbreeding coefficient F

Consanguinity and homozygosity

Regions of homozygosity (ROH): genome segments showing continuous homozygosity (with no intervening heterozygosity)

Fig. 1. ROH detected by SNP microarray analysis (Affymetrix Cytoscan HD) in a male child who was the offspring of a brother-sister mating. Each block on the right of the chromosome represents a genomic region at least 3 Mb in size. The laboratory-reported autosomal Froh was >21%.

Sund & Rehder (2014) Hum Hered

Variant effect: recessive and dominant

Dominant:

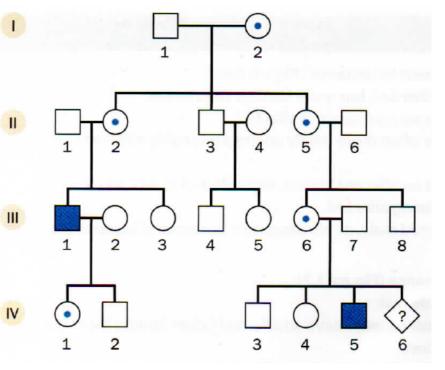
- -- Effect observed both in homozygotes and heterozygotes
- -- Variant frequency ~ disease incidence
- -- Transmitted from one parent or de novo

Examples:

- Trp2332Ter in *CHD7*, CHARGE syndrome
- Arg5179His in KMT2D (aka MLL2), Kabuki syndrome

Recessive:

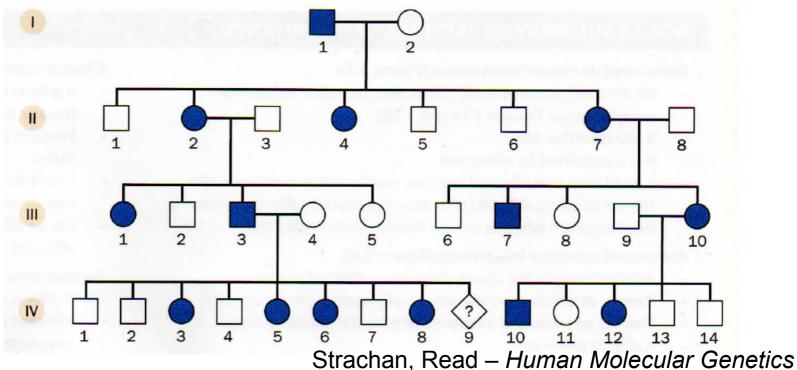
- -- Effect observed in homozygotes only
- -- Variant frequency >> disease incidence
- -- Transmitted from both parents


Examples:

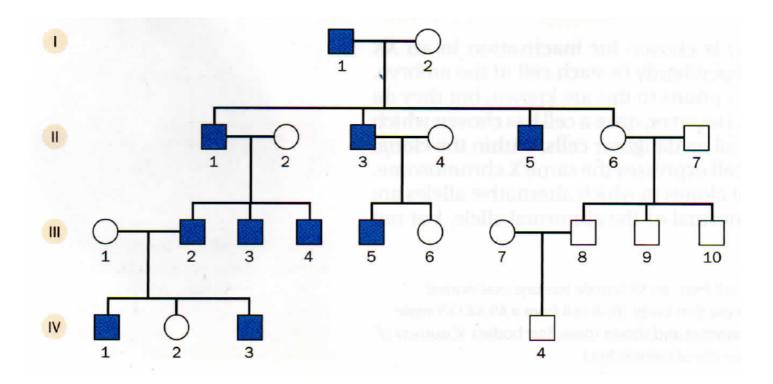
- Ex24:p.F508del in CFTR, cystic fibrosis
- Ex2:c.35delG in *GJB2*, hearing loss

X-linked recessive inheritance

Recall X-chromosome patterns in men and women


- It affects mainly males
- Affected males are usually born to unaffected (carrier) parents
- A mother is normally an asymptomatic carrier
- Females may be affected if
- the father is affected and the mother is a carrier,
- or occasionally as a result of nonrandom X-inactivation.
- There is no male-to-male transmission in the pedigree

Strachan, Read – Human Molecular Genetics


X-linked dominant inheritance

- It affects either sex, but more females than males Q: why? (See below)
- Usually at least one parent is affected
- Females are often more mildly and more variably affected than males Q: why?
- The child of an affected female, regardless of its sex, has a 50% chance of being affected.
- For an affected male, all his daughters but none of his sons are affected.

Y-linked inheritance

- It affects only males
- Affected males always have an affected father
- unless this is a *de novo* mutation
- All sons of an affected man are affected

Strachan, Read – Human Molecular Genetics

Exercise

Earlier you found examples of disease-associated mutations for these annotation types:

- Stop-gain
- Synonymous
- Missense
- Splice-site
- Frameshift indel

What is the inheritance mode for each disease mutation? Provide references to the papers explaining the mutation discovery and/or molecular mechanism.

Mendelian diseases: overview

Mendelian (monogenic) diseases depend on the genotype at a single locus (or gene), with inheritance following Mendel's laws of segregation, independent assortment and dominance.

Mendelian inheritance patterns, prevalence per 1,000 births*

- Autosomal dominant 1.40
- Autosomal recessive $1.84 + F \times 650$ (consanguinity-related)
- X-linked recessive 0.05
- X-linked dominant N/A
- Y-linked N/A
- Unknown 1.16

Overall prevalence: ~0.4% of live births

* Ref: Blencowe (2018) J Community Genet

Mendelian diseases: overview

The Online Mendelian Inheritance in Man (OMIM) database currently lists 6,209 single gene disorders and traits (updated 8 November 2022), and these represent more than 70% of the 'rare diseases' (conditions with a prevalence of <1:2,000) that, in total, are estimated to affect 4–5% of the global general population.

A substantial number of genes traditionally associated with either dominant or recessive diseases are now linked to both inheritance patterns, based on functionally different pathogenic variants. Indeed, of the 4,658 autosomal disease genes currently listed in OMIM, about 53% (n = 2,464) are associated with dominant conditions, 35% (n = 1,643) with recessive conditions and 12% (n = 551) with both patterns of inheritance

Mendelian diseases: OMIM

Number of Entries in OMIM (Updated April 14th, 2023) :

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	16,130	764	51	37	16,982
Gene and phenotype, combined +	26	0	0	0	26
Phenotype description, molecular basis known #	6,197	372	5	34	6,608
Phenotype description or locus, molecular basis unknown %	1,390	113	4	0	1,507
Other, mainly phenotypes with suspected mendelian basis	1,645	102	3	0	1,750
Totals	25,388	1,351	63	71	26,873

Inheritance pattern	Disease	Gene/region	Nature of variants	Estimated frequency
Autosomal dominant	Glut1 deficiency (De Vivo disease)	SLC2A1	Mutations reduce or eliminate function	Rare, approximately 1/90000
	Osteogenesis imperfecta (brittle bone disease)	COL1A1 or COL1A2 (90%) (also CRTAP or P3H1)	COL1A1/COL1A2 – usually missense mutations that lead to protein (collagen) of altered structure	6–7/100000
	Achondroplasia	FGFR3	Activating point mutations	1/15000 to 1/40000
Autosomal recessive	Phenylketonuria	PAH	Many different mutations, including missense, non-sense, splicing mutations	1/10000 to 1/15000
	Cystic fibrosis	CFTR	Over 2000 different variants known	1/2500 to 1/3500 in Caucasians, less common in other ethnic groups
	Sickle-cell anaemia	HBB	Various missense variants, gene deletions	1/70000 to 1/80000 in the U.S.A., more common in other countries
X-linked recessive	Haemophilia A	F8	Missense and nonsense mutations	1/4000 to 1/5000 males
	Duchenne muscular dystrophy	DMD	Usually deletions or duplications	1/3500 to 1/5000 (Duchenne and Becker muscular dystrophy together)
X-linked dominant	Fragile X syndrome	FMR1	CGG trinucleotide repeat expansion	1/4000 (males), 1/8000 (females)
	Rett syndrome	MECP2	Missense mutations, abnormal epigenetic regulation	1/8500 females
	X-linked hypophosphatemic rickets	PHEX	Deletions, insertions, missense, nonsense, splicing mutations	1/20000
Y-linked	Nonobstructive spermatogenic failure	USP9Y	Most commonly deletions	1/2000 to 1/3000

Huntington disease (HD) is one of the trinucleotide repeat expansion disorders where the CAG repeat encodes a polyglutamine tract within the coding region of the huntingtin gene *HTT* on chromosome 4p16. It is a progressive neurodegenerative disorder with patients suffering from progressive neural cell loss and atrophy. Symptoms start with personality and mood changes, followed by a steady deterioration of physical and mental abilities. The function of the huntingtin protein is unclear, but it is essential for development.

Inheritance follows an autosomal dominant pattern, caused by a gain-of-function associated with the repeat expansion. Unaffected individuals carry between 9 and 35 CAG repeats, incomplete penetrance occurs in carriers of 36–39 repeats, while the disease is fully penetrant when 40 or more repeats are present. Alleles containing 250 and more repeats have been reported. While repeat alleles of 9–30 are almost always transmitted without change to the next generation, larger alleles show instability, both in somatic tissues and in the germline, with a tendency towards expansion from one generation to the next. There is a correlation between the number of repeats and the severity of disease and also an inverse correlation between the number of repeats and the age of disease onset. The degree of repeat instability is also largely proportional to the number of repeats, and is also affected by the sex of the transmitting parent, with larger expansions occurring in male transmission. This leads to 'anticipation' where an apparently healthy individual might have a child with late onset HD and a grandchild with more severe symptoms and an earlier onset, and so on.

Achondroplasia (ACH) is the most common form of dwarfism in humans and is inherited in an autosomal dominant fashion with 100% penetrance. Individuals with ACH have shortened limbs, a large head, and a trunk of relatively normal size. ACH is caused by specific variants in *FGFR3*, the gene for fibroblast growth factor (FGF) receptor 3 (*FGFR3*), on chromosome 4p16.

Almost all individuals with ACH are heterozygous for a variant p.Gly380Arg in the mature protein. 80% of ACH cases are due to spontaneous, *de novo* mutations, often occurring during spermatogenesis. *FGFR3* is a transmembrane receptor protein which binds to FGF ligands and triggers intracellular signalling processes. One of these processes is the inhibition of chondrocyte proliferation in the growth plate of long bones. The p.Gly380Arg variant in FGFR3 generates a constitutively active version of the receptor which can be further activated by binding of FGF. Therefore, this variant acts as a gain-of-function mutation. Consequently, chondrocyte proliferation in growth plates is constitutively inhibited. While one such variant allele (in the heterozygous state) leads to ACH, homozygosity is lethal before birth or perinatally.

Interestingly, loss-of-function variants in FGFR3 have also been described which cause a different condition, **camptodactyly**, tall stature and hearing loss (CATSHL) syndrome. This is an example where different variants of the same gene result in different phenotypes, so-called 'allelic disorders'.

Cystic fibrosis (CF) mostly affects the lungs (resulting in breathing difficulty and frequent lung infections) and the pancreas, but the liver, kidney, intestines and male reproductive system are also frequently affected. It is the most common lethal genetic disease among Caucasians, and is inherited in an autosomal recessive pattern.

CF is caused by pathogenic variants in the *CFTR* gene, which encodes the CF transmembrane conductance regulator, a transmembrane protein which functions as a selective chloride channel. If the CFTR protein does not function properly, the chloride balance between the inside and outside of cells becomes disrupted, leading to the build-up of mucus in narrow passages in affected organs such as the lungs. The *CFTR* gene is located on chromosome 7q31 and encodes a protein of 1480 amino acids with >2000 pathogenic variants have been identified in its sequence. These variants fall into different classes (e.g. those where protein synthesis is defective, those where reduced amounts of normal protein is made, and others). As long as an individual carries one functional allele of *CFTR*, they may show no or only very mild symptoms, but an individual carrying two pathogenic variants will display symptoms that depend on the amount of functional protein generated.

The most common pathogenic variant, representing approximately 70% of Caucasian CF alleles, is a deletion p.Phe508del. This particular variant leads to the synthesis of a protein which does not fold properly into its 3D shape, and is degraded by the cell before it can reach the membrane, therefore representing a loss of function.

Use OMIM to find example of a disease for each type of inheritance:

- •Autosomal dominant
- •Autosomal recessive
- •X-linked recessive
- •X-linked dominant
- •Y-linked
- •Mitochondrial

For each case, prepare an example of a related gene and causal mutation in the gene

Complications to the Mendelian inheritance

- Locus heterogeneity: the same clinical phenotype can result from mutations at anyone of several different loci.
- Allelic heterogeneity: many different mutations within a given gene cause same disease
- Clinical heterogeneity: mutations in the same gene produce two or more different diseases in different people. Note: not the same as **pleiotropy**

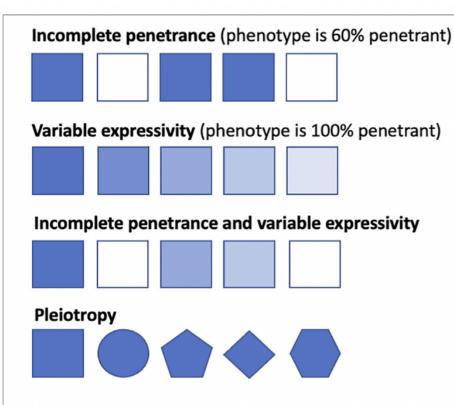
Example: mutations in the *HPRT* gene can produce either a form of gout (подагра) or Lesch-Nyhan syndrome: severe mental retardation with behavioral problems [OMIM:300322].

• Incomplete penetrance*: a person who has the disease genotype does not manifest the disease. In particular, age-related penetrance in late-onset diseases.

* **Penetrance** of a disease-causing mutation is the proportion of individuals with the mutation who exhibit clinical symptoms

Complications to the Mendelian inheritance

- Variable expression: different family members show different features of the disease
- **Imprinting**: mutation has effect only when inherited from a parent of particular sex.


Examples:

– autosomal dominant inheritance of *paragangliomas*[OMIM:168000]; only if inherited from father.

– Beckwith-Wiedemann syndrome [OM1M:130650], only in babies who inherit it from their mother

- **Phenocopy**: disease without causal genotype. Example: deafness
- *De novo* mutations complicate Mendelian inheritance
- Mosaicism in germ-line of somatic cells

Penetrance: definition

FIGURE 1 Conceptual representation of penetrance, expressivity, and pleiotropy. Squares represent individuals with the same genotype, with shaded squares indicating the individual displays the related phenotype and non-shaded squares indicating the individual does not display the related disease phenotype. Line one shows incomplete penetrance, where 60% of the individuals display the related phenotype. Line two shows that all individuals display the related phenotype, from severe manifestations to milder presentations. Line three shows incomplete penetrance and variable expressivity, where the genotype varies both in the severity of presentation and in penetrance across the population. Line four shows pleiotropy, whereby different phenotypes are caused by variants (represented by different shapes) in one gene.

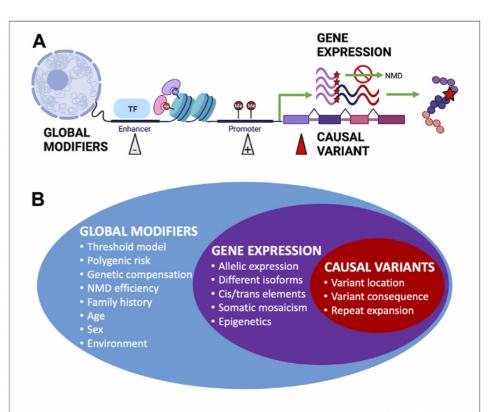
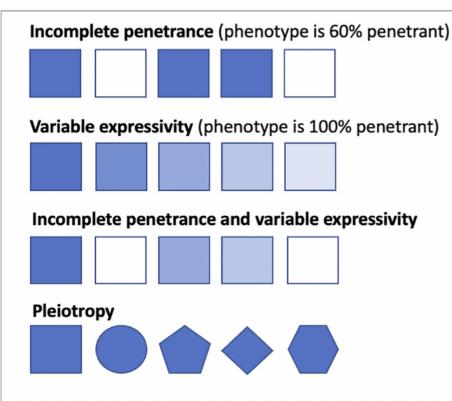



FIGURE 2 | Factors affecting penetrance and expressivity. (A) Examples of different biological mechanisms that can affect the overall penetrance and expressivity of monogenic disease-causing genetic variants. Figure created using BioRender.com. (B) Summary of factors affecting penetrance and expressivity across the genome, from global modifiers that can have wideranging overall effects to expression of the gene containing causal variants and to specific causal variants that have more distinctive effects.

Kingdom and Wright (2022) Frontiers Genet

Penetrance: definition

FIGURE 1 Conceptual representation of penetrance, expressivity, and pleiotropy. Squares represent individuals with the same genotype, with shaded squares indicating the individual displays the related phenotype and non-shaded squares indicating the individual does not display the related disease phenotype. Line one shows incomplete penetrance, where 60% of the individuals display the related phenotype. Line two shows that all individuals display the related phenotype, from severe manifestations to milder presentations. Line three shows incomplete penetrance and variable expressivity, where the genotype varies both in the severity of presentation and in penetrance across the population. Line four shows pleiotropy, whereby different phenotypes are caused by variants (represented by different shapes) in one gene.

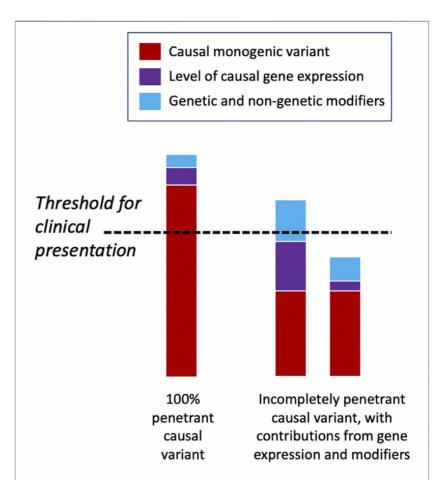
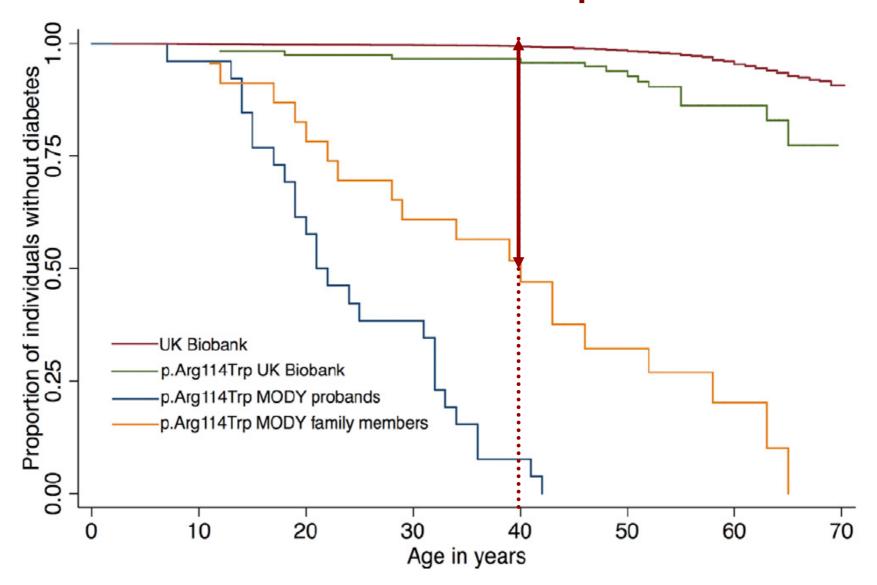



FIGURE 4 | Threshold model of disease. Some deleterious monogenic variants are sufficient to cause the disease alone and do not need any genetic modifiers to cause the disease phenotype. Other monogenic variants may be incompletely penetrant and only display a disease phenotype when accompanied by other genetic or non-genetic factors that raise them above the clinical threshold for disease presentation. In the latter scenario, individuals may have the same underlying causal variant but have very different phenotypic presentations depending upon their modifying factors.

Kingdom and Wright (2022) Frontiers Genet

Penetrance: examples

Comparison of Penetrance Estimate for *HNF4A* p.Arg114Trp in UK Biobank versus Previously Published Estimates from MODY Cohort Studies

Wright (2019) AJHG

Penetrance: ClinVar examples

Gene, variant, ClinVar II	D Disease	Penetrance
BRCA1 DNA Repair Associated <i>BRCA1</i> p.Arg1699Gln SCV000210198.11	Breast cancer, ovarian cancer	A study of 4,024 individuals from 129 families (Moghadasi 2017): a 20% risk of breast cancer and a 6% risk of ovarian cancer by age 70. Lifetime risks associated with typical BRCA1 variants are estimated to be 57 to 87% for female breast cancer and 24 to 54% for ovarian cancer (Claus 1996, Antoniou 2003, King 2003, Risch 2006, Chen 2007)
Homeostatic Iron Regulator <i>HFE</i> p.Cys282Tyr SCV000221190.3	Hemochromatosis	Biochemically, 82% of p.Cys282Tyr homozygotes were shown to have elevated transferrin saturation (Pederson 2009); however, <5% of individuals with biallelic pathogenic HFE variants exhibit clinical symptoms of HH (Beutler 2002, Gurrin 2009)
Leucine Rich Repeat Kinase 2 <i>LRRK2</i> p.Gly2019Ser SCV000640135.3	Parkinson's disease	This variant is clearly defined as a Parkinson's disease (PD) causative allele and is the most common known genetic cause of PD, having been observed in ~5% of familial and ~1-2% of sporadic PD cases (PMID: 18986508, 15726496, 22575234, 15680455). This variant exhibits age-dependent penetrance, with the probability of becoming affected increasing from 20% at age 50 years to 80% at age 70 years (PMID: 18986508, 15726496).

JAMA | Original Investigation

Population-Based Penetrance of Deleterious Clinical Variants

Iain S. Forrest, BS; Kumardeep Chaudhary, PhD; Ha My T. Vy, PhD; Ben O. Petrazzini, BS; Shantanu Bafna, MS; Daniel M. Jordan, PhD; Ghislain Rocheleau, PhD; Ruth J. F. Loos, PhD; Girish N. Nadkarni, MD; Judy H. Cho, MD; Ron Do, PhD

Key Points

Question What is the population-based penetrance of pathogenic and loss-of-function clinical variants?

Findings This cohort study included 72 434 participants from 2 biobanks who had alleles for pathogenic or loss-of-function variants reported for 157 diseases. Among the 5360 pathogenic/loss-of-function variants, 4795 (89%) were associated with less than or equal to 5% risk difference for disease in individuals with the variant allele; pathogenic variants were associated with 6.9% mean penetrance and benign variants were associated with 0.85% mean penetrance.

Meaning In these biobanks, the estimated penetrance of pathogenic/loss-of-function variants varied, but was generally associated with a small increase in the risk of disease.

Penetrance, relative risk, odds ratio

	Diseased	Healthy
Mutation	D_{m}	$H_{\rm m}$
No mutation	$D_0^{}$	H_{0}

Disease risk: probability of disease with mutation: $\frac{D_m}{D_m + H_m}$

– Similar to penetrance

– Does not account for risk without mutation

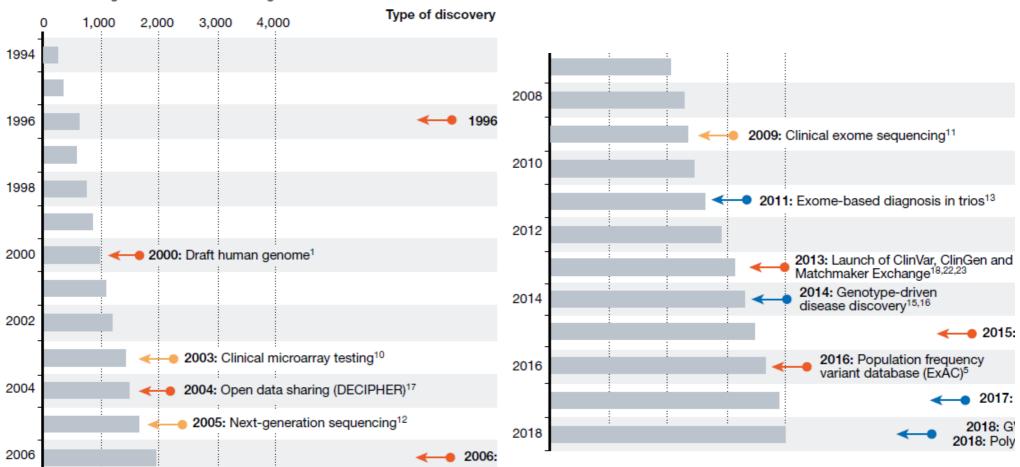
Risk ratio: $RR = \frac{D_m(D_0 + H_o)}{D_0(D_m + H_m)}$ Exercise: When $OR \approx RR$?

Odds ratio:
$$OR = \frac{D_m / H_m}{D_0 / H_0} = \frac{D_m H_0}{D_0 H_m}$$
 // Odds of an event: *p*/(1-*p*)

Exercise: calculate OR, RR values for $D_m = 60$, $H_m = 40$, $D_0 = 2$, $H_0 = 48$

MAF and OR: UK Biobank examples

Gene	UKB ID	Position (GRCh37)	HGVS	MAF White British (%)	Significantly Associated Trait(s) in UKB (Units)	Odds Ratio or Beta [95% CI]	p value	Linked Disease (Mode of Inheritance)
ACSF3	dbSNP: rs141090143	chr16: 89220556 C>T	GenBank: NM_174917: c.C1672T:p.R558W	0.632	ease of sunburn (number of episodes)	0.31 [0.20, 0.42]	4×10^{-10}	combined malonic and methylmalonic aciduria (AR)
AR	dbSNP: rs137852591	chrX: 66941751 C>G	GenBank: NM_000044: c.C2395G:p.Q799E	0.129	skeletal mass (SD)	-0.16 [-0.21, -0.11]	1×10^{-10}	partial androgen insensitivity syndrome (XLR)
					height (cm)	-0.85 [-1.27, -0.43]	1×10^{-8}	
	dbSNP: rs1800053	chrX: 66931295 C>A	GenBank: NM_000044: c.C1937A:p.A646D	0.269	balding pattern (males only)	-0.13 [-0.17, -0.08]	1×10^{-8}	partial androgen insensitivity syndrome (XLR)
ERCC4	dbSNP: rs121913049	chr16: 14041848 C>T	GenBank: NM_005236: c.C2395T:p.R799W	0.060	ease of sunburn (number of episodes)	0.98 [0.64, 1.33]	2×10^{-8}	xeroderma pigmentosum (AR)
FLG	dbSNP: rs150597413	chr1: 152277622 G>T	GenBank: NM_002016: c.C9740A:p.S3247X	0.369	eczema	1.66 [1.40, 1.98]	9×10^{-8}	ichthyosis vulgaris (AD)
	dbSNP: rs138726443	chr1: 152280023 G>A	GenBank: NM_002016: c.C7339T:p.R2447X	0.446	eczema	1.96 [1.69, 2.27]	5×10^{-16}	ichthyosis vulgaris (AD)
GCK	dbSNP: rs104894006	chr7: 44189591 G>A	GenBank: NM_000162: c.C556T:p.R186X	0.001	maturity-onset diabetes of the young	68 [14, 325]	2×10^{-8}	diabetes mellitus (AD)

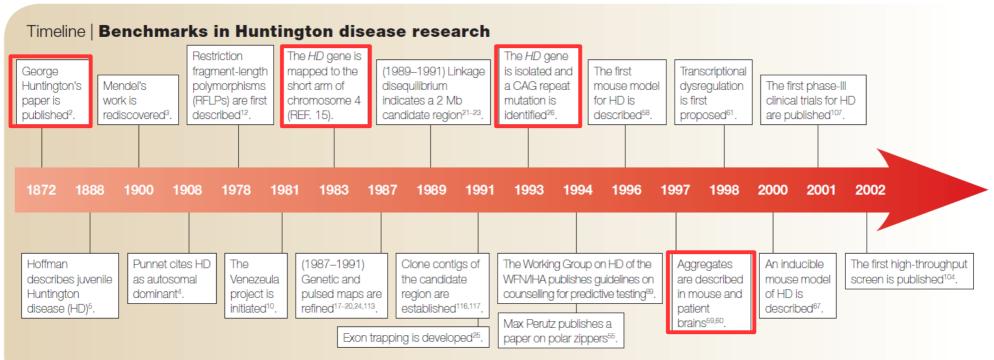

Wright (2019) AJHG

Disease gene discovery

- Rare clinical observations: difficult to observe recurrence required for Mendelian patterns
- *De novo* mutations: no segregation in families // dominant or compound heteterozygotes in case of recessive
- Causal mutations, not genes, are needed: functional assays needed; bias towards obvious variants
- All abovementioned complications to Mendelian inheritance: locus, allelic and clinical heterogeneity; incomplete penetrance and variable expression; imprinting, phenocopies and mosaicism

Disease gene discovery

Rare (monogenic) disease



Genes harbouring variants causal for monogenic disease

Claussnitzer (2020) Nature

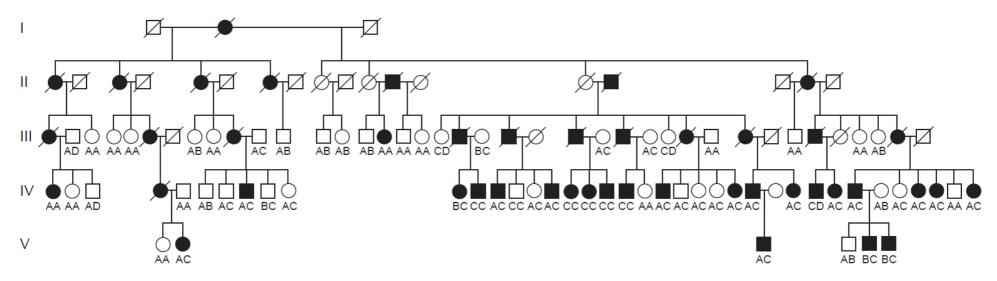
Huntington disease gene discovery

- Late-onset (30-45 years old) neurodegenerative, progress ~15-20 years
- Psychiatric disturbances, motor impairments and a cognitive decline
- Dominant inheritance, no sporadic forms
- First genetic disease locus to be mapped to a chromosome (1983)
- Still (2018) no treatment besides symptomatic

WFN/IHA, World Federation of Neurology and the International Huntington Association.

Bates (2005) Nat Rev Genet

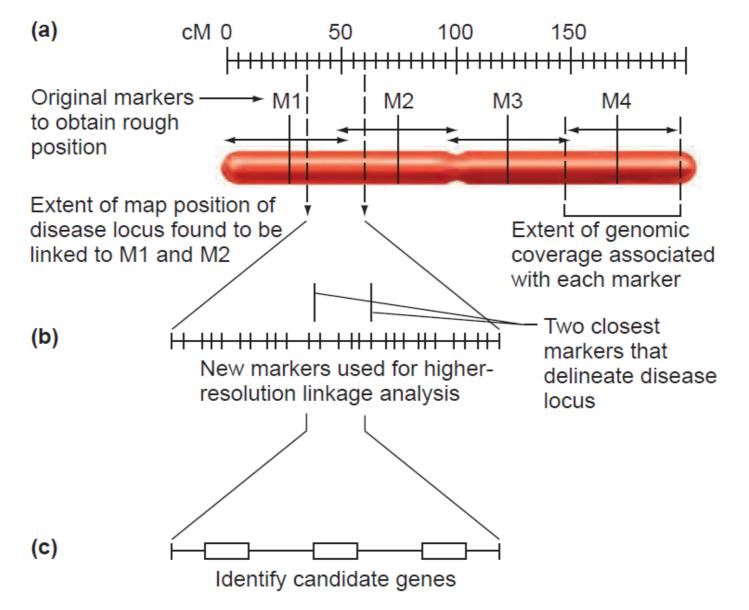
Huntington disease gene discovery


- High incidence of HD in Venezuela, single founder
- 1983, James Gusella Lab: eighth polymorphic marker studied mapped the HD to the ~4cM telomeric fragment of chr4
- No technology to "walk" along a chromosome for >100-200kbp
- Collaboration to map and clone the HD gene
- 1993: the *HTT* (huntingtin) gene cloned by the joint effort of 9 labs; 10,366 transcript with a **CAG-triplet (Gln) repeat** in exon 1 that was polymorphic on normal chromosomes and expanded in HD
- 1993–1996: **The (CAG)_N ranges**: 6–35 benign; >40 are fully penetrant and cause HD within a normal lifespan; >70: juvenile offset
- Paternal only anticipation: (CAG)_N expands during transmission
- Poly-Gln repeats in the pathogenic range spontaneously aggregate into amyloid fibrils ⇒ neuronal degeneration
- Testing in childhood for adult-onset untreatable disorders holds the potential of more harm than benefit

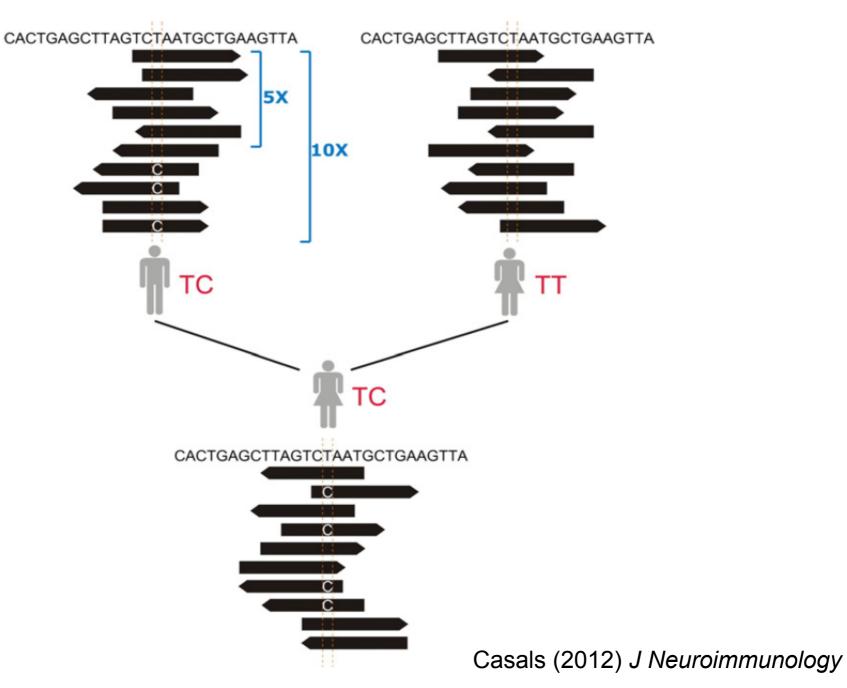
Mendelian disease gene discovery by linkage

- Multiple pedigrees with affected and unaffected members
- Map of polymorphic DNA markers with known genetic distances

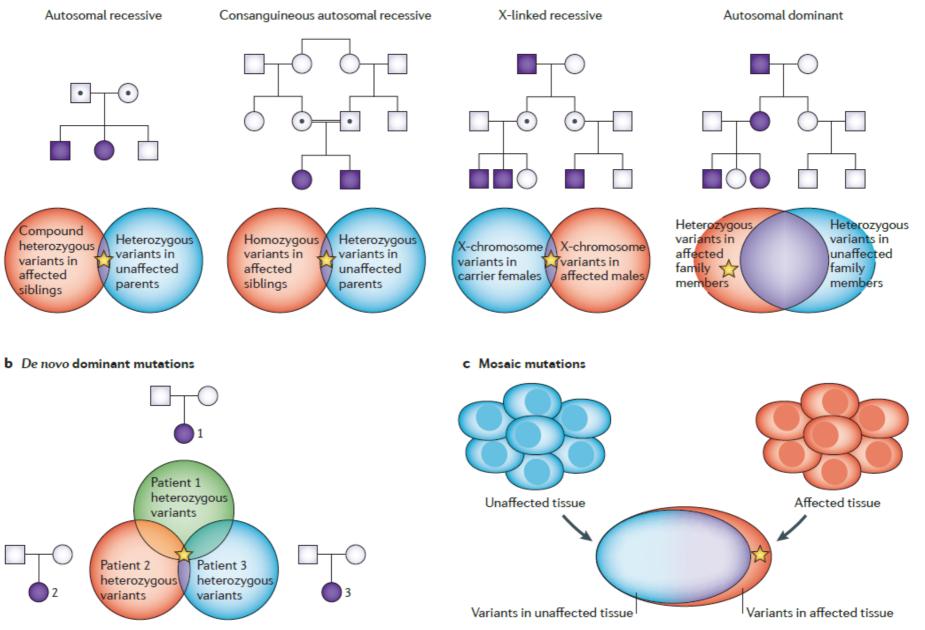
1. Find DNA markers that cosegregate (are in linkage) to the disease trait in pedigrees, identify putative region of the disease gene


- 2. Sequence the genes within the linked locus to identify disease-causing alleles, check alleles in healthy individuals
- 3. Conduct confirmatory functional studies in cellular and animal models

Detection of locus responsible for Huntington disease


Hartwell – Genetics. From genes to genomes

Mendelian disease gene discovery by linkage


From phenotype to chromosomal location to guilty gene

Hartwell – Genetics. From genes to genomes

42

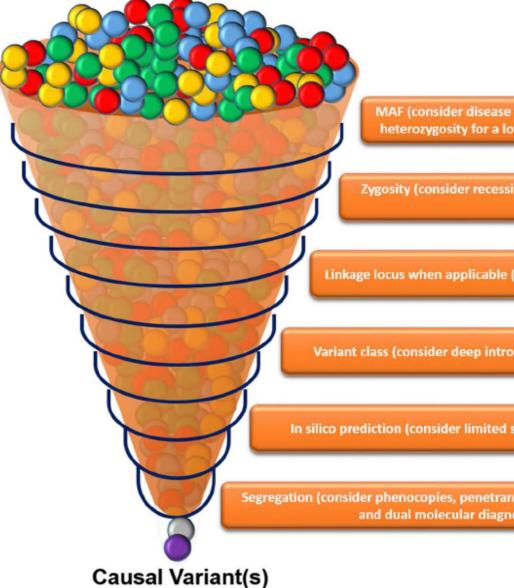
a Inherited mutations

Boycott (2013) Nat Rev Genet

SNVs	Average	Deviation
PTV HIGH	97	6
Missense	6291	139
<i>MODERATE</i> Synonymous		
LOW	7192	88
Other MODIFIER	561	13
Indels		
Frameshift	69	3
Other	41	3

Variants in an individual ExAC exome

Lek (2016) Nature


Variant prioritization: «needle in the haystack» problem, determining which variants identified in the course of whole-exome or whole-genome sequencing are most likely to damage gene function and underlie the disease phenotype.

SNVs	Average	Deviation
PTV <i>HIGH</i>	97	6
Missense	6291	139
<i>MODERATE</i> Synonymous		
LOW	7192	88
Other MODIFIER	561	13
Indels		
Frameshift	69	3
Other	41	3

Variants in an individual ExAC exome

Lek (2016) Nature

Genomic Variants

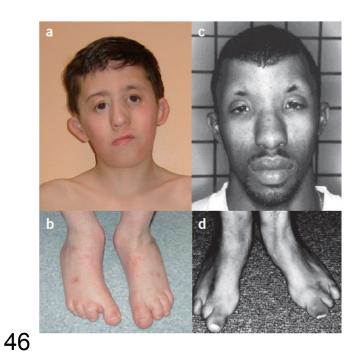
MAF (consider disease frequency, penetrance, possibility of compound heterozygosity for a low frequency allele and a loss of function allele)

Zygosity (consider recessive mutations in a known dominant disease gene

Linkage locus when applicable (consider pitfalls of positional mapping)

Variant class (consider deep intronic and exonic splicing variants)

In silico prediction (consider limited sensitivity and specificity)


Segregation (consider phenocopies, penetrance, variable phenotype, and dual molecular diagnosis)

Alkuraya (2016) Hum Genet

Exome sequencing identifies the cause of a mendelian disorder

Sarah B Ng^{1,10}, Kati J Buckingham^{2,10}, Choli Lee¹, Abigail W Bigham², Holly K Tabor^{2,3}, Karin M Dent⁴, Chad D Huff⁵, Paul T Shannon⁶, Ethylin Wang Jabs^{7,8}, Deborah A Nickerson¹, Jay Shendure¹ & Michael J Bamshad^{1,2,9}

We demonstrate the first successful application of exome sequencing to discover the gene for a rare mendelian disorder of unknown cause, Miller syndrome (MIM%263750). For four affected individuals in three independent kindreds, we captured and sequenced coding regions to a mean coverage of 40× and sufficient depth to call variants at ~97% of each targeted exome. Filtering against public SNP databases and eight HapMap exomes for genes with two previously unknown variants in each of the four individuals identified a single candidate gene, *DHODH*, which encodes a key enzyme in the pyrimidine *de novo* biosynthesis pathway. Sanger sequencing confirmed the presence of *DHODH* mutations in three additional families with Miller syndrome. Exome sequencing of a small number of unrelated affected individuals is a powerful, efficient strategy for identifying the genes underlying rare mendelian disorders and will likely transform the genetic analysis of monogenic traits.

30

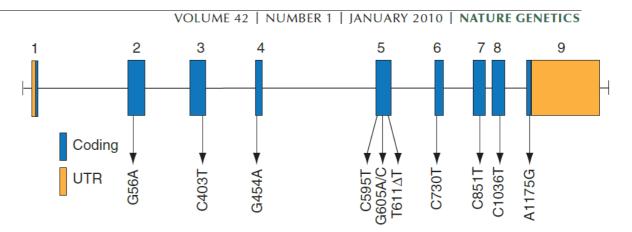
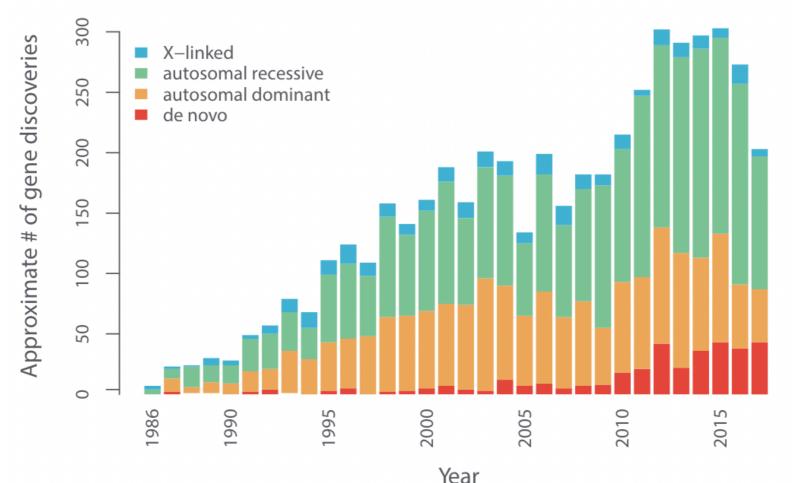
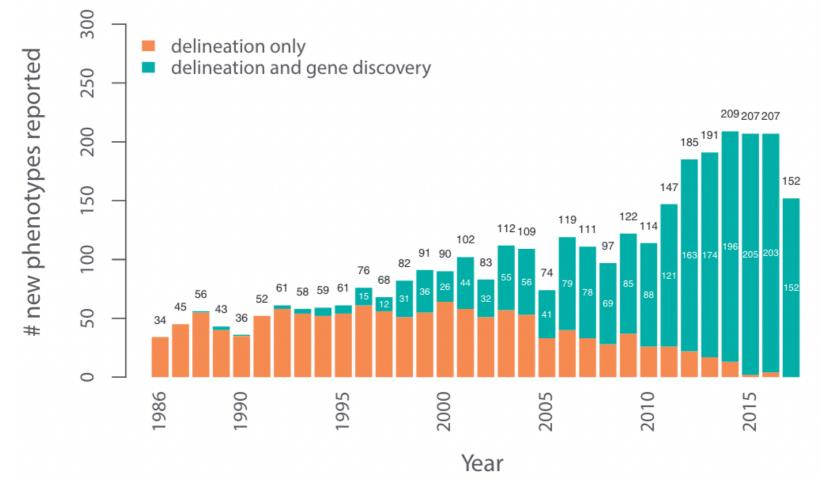


Figure 1. Clinical characteristics of an individual with Miller syndrome and an individual with methotrexate embryopathy.Figure 2. Genomic structure of the exons encoding the open reading frame of *DHODH*. Arrows indicate the locations of 11 different mutations found in 6 families with Miller syndrome.


Table 2 Mendelian disease-gene identifications by exome sequencing					Number exome
Year	Disorder	МІ	Location	Gene	sequenced
2010					
1	Miller syndrome	AR	16q22	DHODH	4
2	Autoimmune lymphoproliferative syndrome	AR	11q13.3	FADD	1
3	Nonsyndromic hearing loss	AR	1p13.3	GPSM2	1
4	Combined hypolipidemia	AR	1p31.1–p22.3	ANGPTL3	2
5	Perrault syndrome	AR	5q21	HSD17B4	1
6	Complex I deficiency	AR	3q21.3	ACAD9	1
7	Hyperphosphatasia mental retardation syndrome	AR	1p36.11	PIGV	3
8	Sensenbrenner syndrome	AR	2p24.1	WDR35	2
9	Cerebral cortical malformations	AR	19q13.12	WDR62	3
10	3MC syndrome	AR	3q27-q28	MASP1	2
11	Kabuki syndrome	AD	12q13.12	MLL2	10
12	Schinzel–Giedion syndrome	AD	18q21.1	SETBP1	4
13	Spinocerebellar ataxia	AD	20p13	TGM6	4
14 2011	Terminal osseous dysplasia	XLD	Xq28	FLNA	2
15	Nonsyndromic mental retardation	AR	19p13.12	TECR	6
16	Retinitis pigmentosa	AR	1p36.11	DHDDS	4

Rabbani (2012) J Hum Genet


Table 1 Landmark events from DNA structure identification to new NGS reports

Year	Event	Reference
1953	Watson and Crick infer DNA's structure	Watson and Crick ⁶⁵
1964	The first nucleotide sequence of the gene encoding yeast alanine tRNA was reported	Holley <i>et al.</i> ⁹
1977	Initial DNA sequencing methods were introduced by Sanger, Maxam and Gilbert	Sanger et al. ¹⁰
		Maxam and Gilbert ¹¹
1980	First human linkage map based on restriction fragment length polymorphism	Botstein et al.66
1983	First dominant disease locus on the basis of linkage	Gusella et al.15
1985	Mullis discovered PCR technique	Mullis <i>et al.</i> ⁶⁷
1986	The idea of human genome sequencing was proposed	Smith <i>et al.</i> ⁶⁸
	The first human disease gene was cloned	Royer-Pokora <i>et al.⁶⁹</i>
1987	The first homozygosity mapping was done	Lander and Botstein ¹⁶
1989	First positional cloning of a recessive disease gene on the basis of linkage	Riordan <i>et al.</i> ¹⁴
1993	A first-generation physical map of the human genome	Cohen et al.70
1995	First-genome sequence of an organism (Hemophilus influenza) was reported	Fleischmann et al. ⁷¹
1999	First human chromosome was sequenced	Dunham <i>et al.</i> ⁷²
2000	Fruit fly genome was sequenced	Adams et al.73
	First assembly of the human genome was completed	Myers <i>et al.</i> ⁷⁴
2001	The first draft of human genome sequence was published	Venter <i>et al.</i> ⁷⁵
		Lander <i>et al.</i> ⁷⁶
2003	The human genome sequence was completed	Jasny and Roberts 2003
2004	Massively parallel sequencing platforms giving rise to the 'next-generation sequencing' were introduced	http://www.genome.gov/12513210
2005	The first NGS instrument was on market	Margulies <i>et al.</i> ⁷⁷
2008	First individual genome based on NGS was published	Wheeler et al.78
2009	Proof of principle: disease-gene identification by WES	Ng et al. ⁷⁹
2010	The first successful application of WES to identify the gene for a rare Mendelian disorder	Ng et al. ¹²

Approximate number of gene discoveries per year for mendelian conditions (MCs) by mode of inheritance. Until 2010, the vast majority of gene discoveries for MCs were for inherited conditions (_x005F_x0018_97% before 2010; _x005F_x0018_89% from 2010–2016; and _x005F_x0018_79% in 2017), so still, most MCs known to date (_x005F_x0018_90%–93%) are predominately due to inherited variants. Modes of inheritance were inferred by text analysis of OMIM entrieszschocke (2023) *Nat Rev Genet*

Impact of ES and NGS on the rate and method of syndrome delineation. Classical syndrome delineation (orange) is phenotype driven and proceeds by ascertaining multiple individuals with overlapping clinical findings and then identifying of the underlying gene. In contrast, for genotype-driven syndrome delineation (teal), persons with overlapping clinical findings are identified only after discovery that they share pathogenic variants in the same candidate gene. Zschocke (2023) *Nat Rev Genet*

50

Disease genetics in the post-genome era

Microarrays and NGS

- Detection of structural variation
- NGS has enabled the full range of causal genetic variation
- Reduced reliance on multiplex pedigrees in favour of collections of affected cases, often with parents, has proven decisive in identifying new dominant disorders

Functional assays

- Highly parallelized in vitro cellular assays that allow assessment of the functional effects of all variants in a disease-associated gene can transform interpretation of novel variants
- Functional analysis of disease-relevant tissues from patients using RNA sequencing and DNA methylation assays can identify previously cryptic causal genetic variants outside of protein-coding genes

Disease genetics in the post-genome era

Reference datasets: increasing availability of population genetic variation catalogs (ExAC, gnomAD)

- The confident exclusion of common genetic variants too common
- Addressing the overestimation of disease penetrance arising from multiplex pedigrees
- Efforts to identify the genetic and environmental modifiers responsible

Data sharing

- A more systematic approach to information sharing (Matchmaker Exchange, DECIPHER and GeneMatcher, MyGene2)
- Databases of genes associated with rare disorders (for example, OMIM and ORPHANET),
- Databases of clinically interpreted variants (ClinVar and ClinGen)

Bioinformatics

• *In silico* analysis and prioritization of the discovered genetic variants

Claussnitzer (2020) Nature

Disease genetics in the post-genome era

General complications:

- Rare diseases: small number of cases and/or families
- Variable penetrance
- Unknown mode of inheritance
- Locus heterogeneity, phenotypic heterogeneity
- *De novo* or inherited variants (sporadic vs family cases)
- Allele frequency can be deceiving
- *In silico* prediction algorithms are limited

Whole exome sequencing (WES) limitations:

- Many non-coding variants not detected
- Difficulties in detecting structural variants and CNVs
- False negative (coverage) and false positive variant calls
- Large number of candidate variants, filtering required **Whole genome sequencing (WGS) limitations:**
- Too much data, even more filtering required
- Sequencing and processing costs

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

The clinical significance of any given sequence variant falls along a gradient, ranging from those in which the variant is almost certainly pathogenic for a disorder to those that are almost certainly benign.

A five-tier system of classification for variants relevant to Mendelian disease:

- Pathogenic (P)
- Likely pathogenic (LP)
- Benign (B)
- Likely benign (LB)
- Variant of unknown significance (VUS)

We propose that the terms *likely pathogenic* and *likely benign* be used to mean greater than 90% certainty of a variant either being disease causing or benign in order to provide laboratories with a **common, albeit arbitrary, definition**

Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (MPS)

Рыжкова О.П.¹, Кардымон О.Л.², Прохорчук Е.Б.³, Коновалов Ф.А.⁴, Масленников А.Б.⁴ Степанов В.А.⁶, Афанасьев А.А.⁷, Заклязьминская Е.В.⁸, Костарева А.А.⁹, Павлов А.Е.¹⁰, Голубенко М.В.⁶, Поляков А.В.¹, Куцев С.И.¹

¹ ФГБНУ «Медико-генетический научный центр», Москва; e-mail ryzhkova@dnalab.ru

Терминология

Предлагается заменить широко используемые термины «мутация» и «полиморфизм» на термин «вариант нуклеотидной последовательности» со следующими характеристиками:

- патогенный (pathogenic);
- вероятно патогенный (likely pathogenic);
- неопределенного значения (uncertain significance);
- вероятно доброкачественный (likely benign);
- доброкачественный (benign).

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Evidence of pathogenic	Category
Very strong	PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease
	Caveats:
	 Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7)
	 Use caution interpreting LOF variants at the extreme 3' end of a gene
	 Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact
	Use caution in the presence of multiple transcripts
Strong	PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change
	Example: Val \rightarrow Leu caused by either G>C or G>T in the same codon
	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level
	PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history
	Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to nonmaternity.
	PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product
	Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.
	PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls
	Note 1: Relative risk or OR, as obtained from case–control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance.
	Note 2: In instances of very rare variants where case–control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.
Moderate	PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation
	PM2 Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project,

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Evidence of pathogenicity	Category
Very strong	PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease
	Caveats:
	 Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7)
	 Use caution interpreting LOF variants at the extreme 3' end of a gene
	 Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of th protein intact
	Use caution in the presence of multiple transcripts
Strong	PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change
	Example: Val \rightarrow Leu caused by either G>C or G>T in the same codon
	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level
	PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history
	Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to nonmaternity.
	PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product
	Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.
	PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls
	Note 1: Relative risk or OR, as obtained from case–control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance. Note 2: In instances of very rare variants where case–control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.
Moderate	PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation
	PM2 Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project,

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Evidence of benign impact	Çategory.
Stand-alone	BA1 Allele frequency is >5% in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium
Strong	BS1 Allele frequency is greater than expected for disorder (see Table 6)
	BS2 Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age
	BS3 Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing
	BS4 Lack of segregation in affected members of a family
	Caveat: The presence of phenocopies for common phenotypes (i.e., cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation.
Supporting	BP1 Missense variant in a gene for which primarily truncating variants are known to cause disease BP2 Observed in <i>trans</i> with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in <i>cis</i> with a pathogenic variant in any inheritance pattern
	BP3 In-frame deletions/insertions in a repetitive region without a known function
	BP4 Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc.)
	Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant.
	BP5 Variant found in a case with an alternate molecular basis for disease
	BP6 Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation
	BP7 A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved

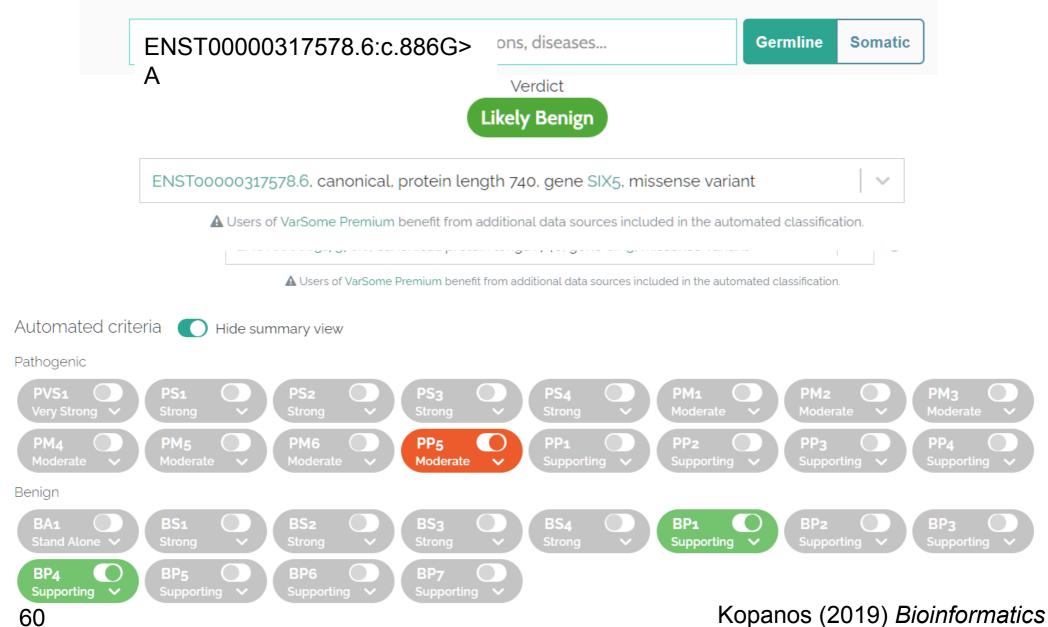
Richards (2015) Genetics in Medicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Table 5 Rules for combining criteria to classify sequence variants

	Pathogenic	(i) 1 Very strong (PVS1) AND	Benign	(i) 1 Stand-alone (BA1) OR
		(a) \geq 1 Strong (PS1–PS4) <i>OR</i>		(ii) ≥2 Strong (BS1–BS4)
		(b) ≥2 Moderate (PM1–PM6) OR	Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1–
		(c) 1 Moderate (PM1–PM6) and 1 supporting		BP7) OR
		(PP1–PP5) OR (d) ≥2 Supporting (PP1–PP5)		(ii) ≥2 Supporting (BP1–BP7)
		(ii) ≥ 2 Strong (PS1–PS4) OR	Uncertain	(i) Other criteria shown above are not met OR
		(iii) 1 Strong (PS1–PS4) AND	significance	(ii) the criteria for benign and pathogenic are
		(a) \geq 3 Moderate (PM1–PM6) <i>OR</i>		contradictory
		(b)2 Moderate (PM1–PM6) AND ≥ 2		
		Supporting (PP1–PP5) OR		
		(c)1 Moderate (PM1–PM6) $AND \ge 4$ supporting (PP1–PP5)		
	Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 		
		 (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR 		
		 (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR 		
		(iv) ≥3 Moderate (PM1–PM6) OR		
		 (v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR 		
5	8	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)		Richards (2015) Genetics in Medic

© American College of Medical Genetics and Genomics ACMG STANDARDS AND GUIDELINES



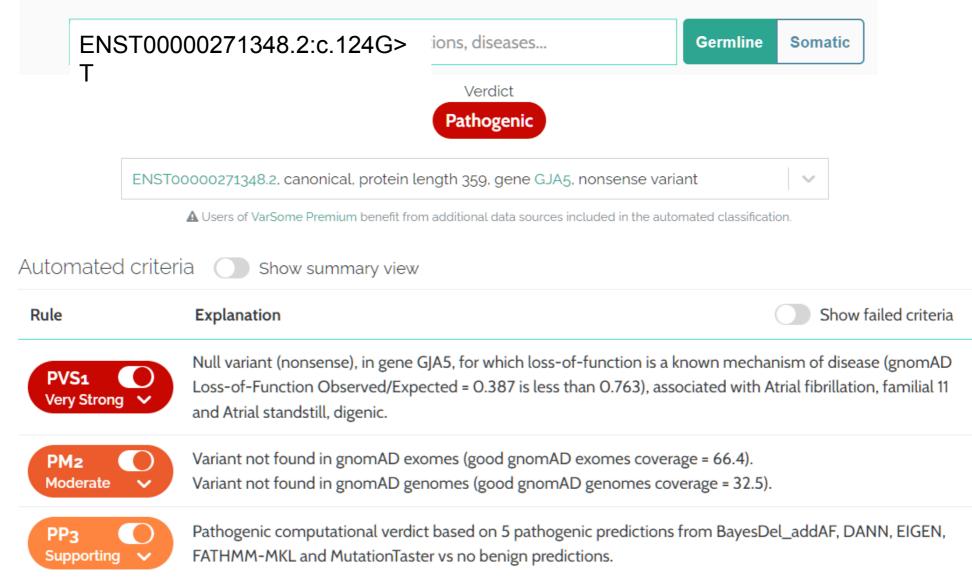
	< Ber	nign 🔶 🧲		Pathogenic		
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4	Richard	ls (2015) Ge	enetics in

The human genetics search engine

Supported by the global community of geneticists

The human genetics search engine

Supported by the global community of geneticists


	ENST00000317578.6:c.886G>	ons, diseases	Germline	Somatic	
	A	Verdict			
		Likely Benign			
	ENST00000317578.6, canonical, protein len	ngth 740, gene SIX5, missense varia	ant	V	
	Lusers of VarSome Premium benefit from a	additional data sources included in the auto	omated classifica	ation.	
Rule	Explanation		(Show fail	ed criteria
	ClinVar classifies this variant as Pathogeni (17357085).	ic, rated O stars, no assertion criteria pro	ovided, with 2 s	ubmissions, 1	publication
PP5 Moderate	UniProt classifies this variant as Pathogen 2, related publications: 17357085.	nic, associated with Branchiootorenal Sy	ndrome 2Bran	chiootorenal S	Syndrome
	Using strength Moderate because of the e	evidence presented by ClinVar and Uni	Prot.		
BP1 Supporting	The gnomAD missense Z-Score= -0.563	is less than 0.647.			
BP4 Supporting	Benign computational verdict based on 10 FATHMM-MKL, LIST-S2, MVP, MutationA MutationTaster and the position is not stre	ssessor, PrimateAI and SIFT vs 2 patho	genic predictio	ns from M-CA	

Kopanos (2019) Bioinformatics

The human genetics search engine

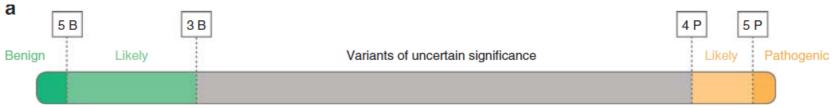
Supported by the global community of geneticists

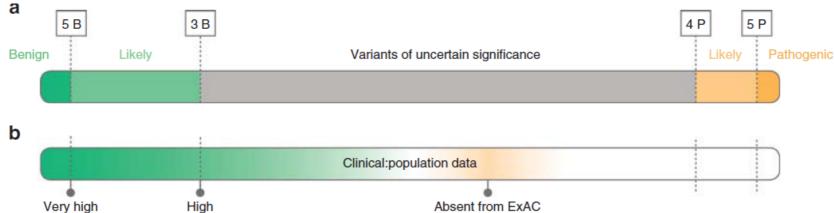
The ACMG–AMP criteria were not capturing certain qualitative considerations. Therefore, we first posed a normative question: **"What kind of evidence, and how much, should be required for a pathogenic classification?"** We first recognized that there are two general types of evidence: clinical and functional.

1. **Clinical evidence** describes the correlation of the variant with disease (or absence of disease) in human populations, and includes observations in affected and unaffected individuals and families.

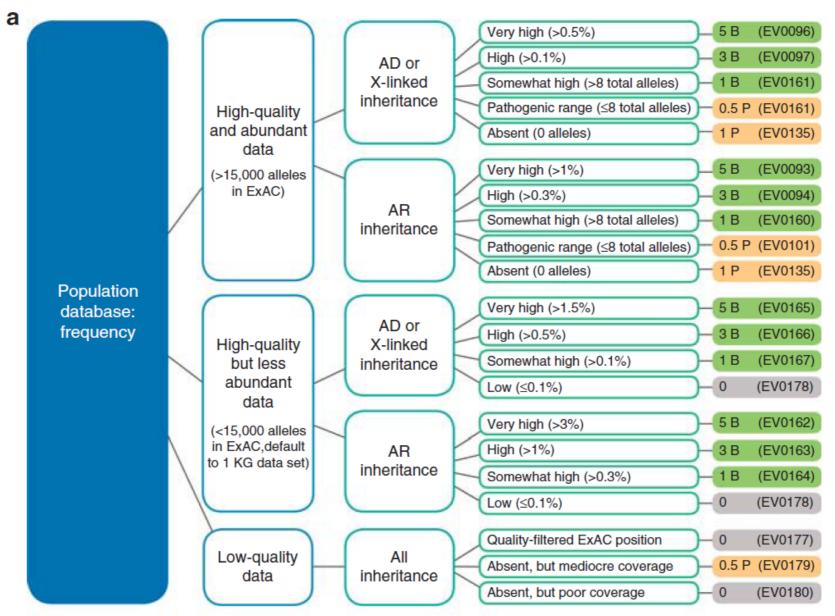
2. Functional evidence describes the molecular consequence of a variant on various gene products and includes the results of molecular and cellular experiments, and predictions about functional effects based on variant type or complex computational algorithms.

Clearly, clinical and functional evidence are both important: a variant is pathogenic if it disrupts a gene product in a way that leads to human disease, and is benign if it has an effect that does not lead to disease in humans.

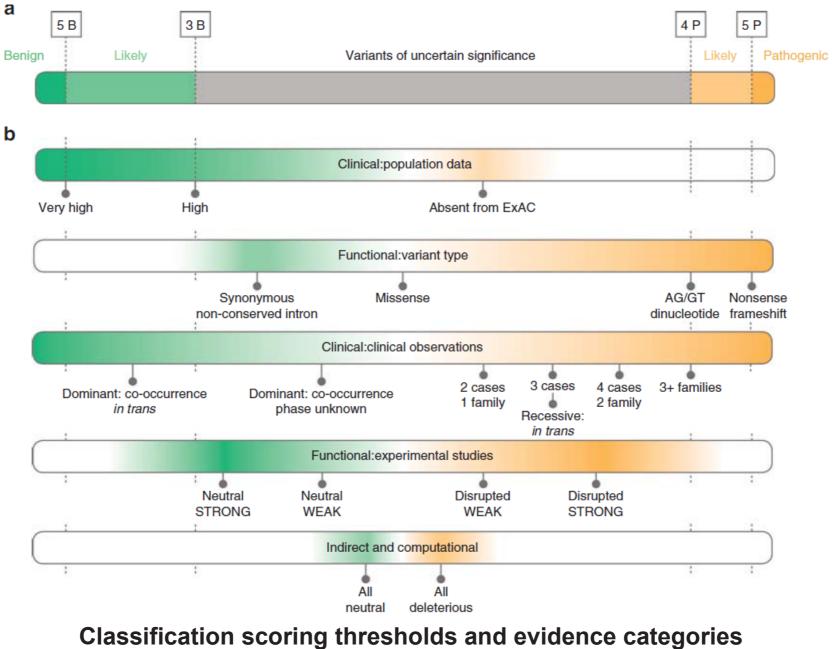

Nykamp (2017) Genetics in Medicine


Although both clinical and functional evidence are relevant, they have **a hierarchical relationship**. Clinical data describe human disease directly, whereas functional data are relevant to disease only to the extent to which the measured property correlates with disease physiology. Therefore, when a discrepancy or conflict arises between clinical and functional observations, the clinical observations should be considered more persuasive.

Broadly speaking, a variant should not be considered pathogenic if it is present in a large percentage of healthy individuals (clinical data), even if a measurable effect on protein function has been observed in an experimental assay (functional data). Conversely, a variant should be considered pathogenic if it is present in many affected individuals and has not been observed in healthy individuals (clinical data), even if it is predicted to be nondeleterious and has been demonstrated to have no effect on a measured protein property (functional data).



Nykamp (2017) Genetics in Medicine



Nykamp (2017) Genetics in Medicine

Population data: Sherloc criteria and decision tree Nykamp (2017) Genetics in Medicine

Nykamp (2017) Genetics in Medicine

Example 1: *TTC8* c.459G>A (p.Thr153=)

- A very rare silent change (0.02% in ExAC) in a gene that can cause Bardet–Biedl syndrome
- Predicted to disrupt normal splicing
- · Observed in the homozygous state in three affected siblings in a single family
- · Observed in our laboratory in the homozygous state in an unrelated affected individual and is now classified as **pathogenic**

Example 2: *CDH1* c.1118C>T (p.Pro373Leu) is a variant in a gene associated with hereditary diffuse gastric cancer and lobular breast cancer.

- absent from ExAC
- supported by strong functional studies: impairs cell-cell adhesion and leads to increased cellular motility and activation of EGFR, mitogen-activated protein kinase, and Src kinase.
- · Computational predictors recapitulate this conclusion.
- · Clinical observations, however, are inconclusive: the variant has been found in affected and unaffected individuals in the same family.

Without supporting clinical observations, likely pathogenic seems premature Nykamp (2017) Genetics in Medicine

Example 3: CDKN2A c.9_32dup24

- In-frame duplication
- · Predicted to have no effect on protein function
- Demonstrated not to affect CDK4 or CDK6 binding
- · Identified in several individuals affected with melanoma
- Segregate with disease (incomplete penetrance) in several melanoma families

The abundance of positive clinical evidence trumps the negative functional evidence (CDK4/6 binding efficiency is not the relevant molecular consequence)

Example 4: *SCN5A* c.3578G>A (p.Arg1193Gln)

- Missense change in the voltage-gated cardiac sodium channel.
- Demonstrated to destabilize inactivation gating and to lead to a persistent current in vitro.23
- · Glycine is present at the equivalent position in the horse ortholog,
- \cdot >7% of the East Asian population, with 17 homozygotes reported in ExAC. The abundance of **negative clinical evidence outweighs the positive**
- 69 functional evidence

Nykamp (2017) Genetics in Medicine

Exercise

Earlier you found examples of disease-associated mutations for these annotation types:

- Stop-gain
- Synonymous
- Missense
- Splice-site
- Frameshift indel

Use submission_summary.txt available at ClinVar FTP to explain which criteria were used to classify each variant as pathogenic

ClinVar: open database of disease mutations

Category of analysis	Current total (May 13, 2020)
Records submitted	1141302
Records with assertion criteria	969361
Records with an interpretation	1119301
Total genes represented	32838
Unique variation records	745458
Unique variation records with interpretations	733504
Unique variation records with assertion criteria	635153
Unique variation records with practice guidelines (4 stars)	656
Unique variation records from expert panels (3 stars)	10911
Unique variation records with assertion criteria, multiple submitters, and no conflicts (2 stars)	101805
Unique variation records with assertion criteria (1 star)	488040
Unique variation records with assertion criteria and a conflict (1 star)	33741
Unique variation records with conflicting interpretations	34051
Genes with variants specific to one gene	11064
Genes with variants specific to one protein-coding gene	10971
Genes included in a variant spanning more than one gene	33087
Variants affecting overlapping genes	27744
Total submitters	1565

WES diagnostics of Mendelian disorders

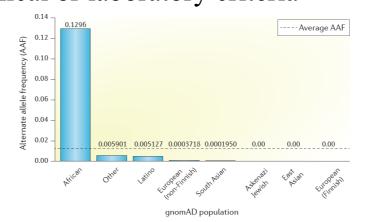
Applicability

- Atypical manifestation
- Symptoms shared among multiple disorders
- Difficult to confirm by clinical or laboratory criteria

Input

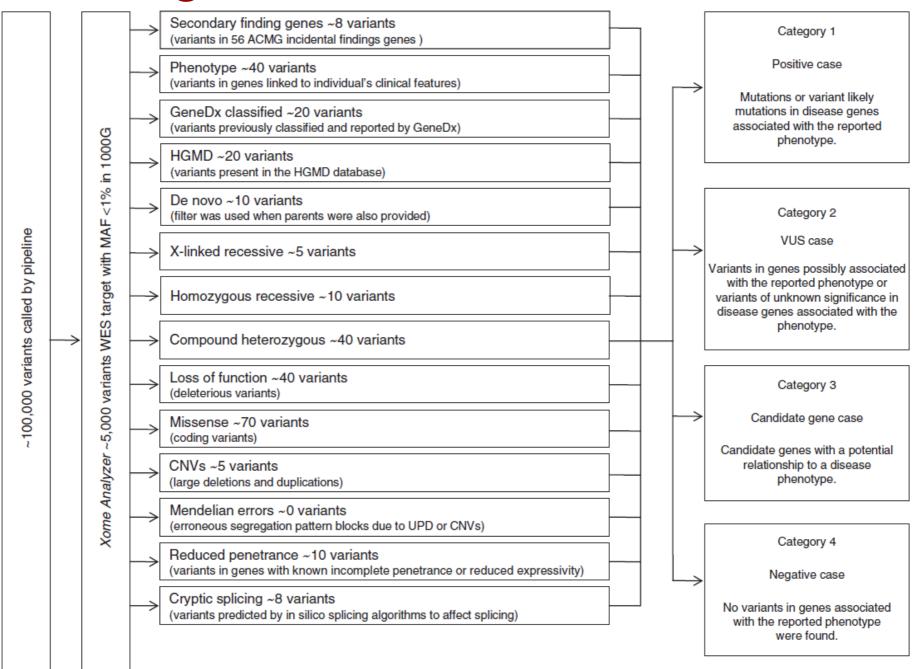
- Clinical symptoms (HPO)
- Medical record

Annotation


- VEP
- gnomAD
- ClinVar, OMIM

Variant filtering and prioritization: 20,000–100,000 \rightarrow 50–1,000

- Known pathogenic variants
- Rare (MAF<0.5%) or novel PTVs
- Other variants/genes with associated phenotypes (ClinVar, OMIM, HPO)


Output

- Clinical report with diagnosis, candidate gene/variant
- Referrals
- Sanger sequencing requested

Bamshad (2011) Nat Rev Genet

WES diagnostics of Mendelian disorders

Retterer (2016) Genet Med

Human Phenotype Ontology

- The Human Phenotype Ontology (HPO) project provides an ontology of **medically relevant phenotypes, disease-phenotype annotations**, and the algorithms
- The HPO can be used to support differential diagnostics, translational research, and ... **the means to compute** over the clinical phenotype
- The HPO currently contains over 13,000 terms. All relationships in the HPO are simple class-subclass relationships

Estania.			
Ectobla	lentis		
ID: HP:0001083			
Definition: Diele		nanition of the enveloping h	and of the sure A mention disclosure that dislocation
			, , , , , , , , , , , , , , , , , , , ,
the anterior char	nber, in the vi	treous, or directly on the re	etina. If the lens is partially displaced but still contained
within the lens s	pace, then it is	s termed subluxation.	
Comment: -			
Synonyms: Abr	ormality of le	ns position; Dislocated len	s, Dislocated lenses; Lens dislocation
	Disc	asos annotated to	HP-0001083 (n=65)
			5 HP.0001005 (II=05)
		••••••	• • • • • • • • • • • • • • • • • • • •
OMIM:614292	#614292 M	YOPIA, HIGH, WITH CATA	ARACT AND VITREORETINAL DEGENERATION
OMIM:238700	HYPERLYS	SINEMIA, TYPE I	
ORPHA:485	Kniest dysp	lasia	
OMIM:110150	BLEPHARC	PTOSIS, MYOPIA, AND B	ECTOPIA LENTIS
OMIM:252150	#252150 M	OLYBDENUM COFACTOR	R DEFICIENCY, COMPLEMENTATION GROUP A
OMIM:613086	#613086 GI	LAUCOMA 3, PRIMARY C	CONGENITAL, D
OMIM:129600	ECTOPIA L	ENTIS, ISOLATED	
OMIM:120330	PAPILLORE	ENAL SYNDROME	
(Disease databases:
Export hierarchi	cal Summary	Suggest correction	All Orphanet OMIM DECIPHER
Export ontology	as Excel file	Suggest new child term	
	Definition: Disid of the lens is desilens. A complete the anterior char within the lens sy Comment: - Synonyms: Abr Id OMIM:614292 OMIM:238700 ORPHA:485 OMIM:110150 OMIM:252150 ORPHA:2084 OMIM:613086 OMIM:129600 OMIM:120330 Export hierarchi	Definition: Dislocation or mall of the lens is described as a silens. A complete displacement the anterior chamber, in the vi within the lens space, then it is Comment: - Synonyms: Abnormality of le Disease Id Disease OMIM:614292 #614292 M OMIM:238700 HYPERLYS ORPHA:485 Kniest dysp OMIM:110150 BLEPHARC OMIM:252150 #252150 M ORPHA:2084 Glaucoma- OMIM:613086 #613086 Gl OMIM:613086 ECTOPIA L	Definition: Dislocation or malposition of the crystalline if of the lens is described as a subluxation of the lens, whilens. A complete displacement occurs if the lens is complete anterior chamber, in the vitreous, or directly on the mwithin the lens space, then it is termed subluxation. Comment: - Synonyms: Abnormality of lens position: Dislocated lenge in the state in the vitreous is completed in the lenge in the state in the vitreous is completed in the lenge in the vitreous is completed in the lenge in the vitreous or directly on the mwithin the lens space, then it is termed subluxation. Comment: - Synonyms: Abnormality of lens position: Dislocated lenge in the vitreous of lenge

Human Phenotype Ontology

Seizure HP:0001250 Abnormal nervous system physiology Seizure A seizure is an intermittent abnormality of nervous system physiology characterised by a transient Focal-onset seizure occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in Motor seizure the brain. Neonatal seizure Synonyms: Epileptic seizure, Epilepsy, Seizures - Status epilepticus **Comment:** A type of electrographic seizure has been proposed in neonates which does not have a Generalized-onset seizure clinical correlate, it is electrographic only. The term epilepsy is not used to describe recurrent febrile seizures. Epilepsy presumably reflects an abnormally reduced seizure threshold. \blacksquare \vdash Reflex seizure I ⊢ Infection-related seizure Pubmed References: PMID: 15816939 I – Epileptic spasm Cross References: SNOMEDCT US:246545002, UMLS:C0036572, SNOMEDCT US:128613002, SNOMEDCT US:313307000, SNOMEDCT US:84757009, UMLS:C0014544, I ⊢ Symptomatic seizures SNOMEDCT_US:91175000, MSH:D004827, MSH:D012640 Multifocal seizures Disease Id **Disease Name** Associated Genes - Nocturnal seizures - Dialeptic seizure HMBS [3145] ORPHA:79276 Acute Intermittent Porphyria ACADM [34] Acyl-coa Dehydrogenase, Medium-chain, OMIM:201450 Deficiency Of ACADS [35] Acyl-coa Dehydrogenase, Short-chain, OMIM:201470 Deficiency Of ARHGAP31 [57514] DOCK6 [57572] RBPJ [3516] ORPHA:974 Adams-oliver Synchronic • DLL4 [54567] Displaying 20 out of 2335. View all 75

WES diagnostics of Mendelian disorders

Examples:

1. A novel homozygous variant (Asp652Asn) in solute carrier family 26, member 3 SLC26A3 — a gene that is known to cause a **congenital chloride-losing diarrhea** — was identified in a child originally suspected to have a different diagnosis of Bartter syndrome.

2. A novel Cys203Tyr variant in X \square linked inhibitor of apoptosis (*XIAP*) in a young boy with severe inflammatory bowel disease in whom a definitive diagnosis was elusive. Mutations in *XIAP* are a known cause of X \square linked lymphoproliferative syndrome type 2 (XLP2), but severe colitis is an unusual symptom of XLP2. The diagnosis of XLP2 suggested a specific course of treatment.

Clinical exome sequencing: results from 2819 samples reflecting 1000 families

Daniel Trujillano^{*,1,10}, Aida M Bertoli-Avella^{1,10}, Krishna Kumar Kandaswamy^{1,10}, Maximilian ER Weiss¹, Julia Köster¹, Anett Marais¹, Omid Paknia¹, Rolf Schröder¹, Jose Maria Garcia-Aznar¹, Martin Werber¹, Oliver Brandau¹ Maria Calvo del Castillo¹ Caterina Baldi¹ Karen Wessel¹ Shivendra Kishore¹

We report our results of 1000 diagnostic WES cases based on 2819 sequenced samples from 54 countries with a wide phenotypic spectrum. Clinical information given by the requesting physicians was translated to HPO terms. WES processes were performed according to standardized settings. We identified the underlying pathogenic or likely pathogenic variants in 307 families (30.7%). In further 253 families (25.3%) a variant of unknown significance, possibly explaining the clinical symptoms of the index patient was identified. WES enabled timely diagnosing of genetic diseases, validation of causality of specific genetic disorders of *PTPN23*, *KCTD3*, *SCN3A*, *PPOX*, *FRMPD4*, and *SCN1B*, and setting dual diagnoses by detecting two causative variants in distinct genes in the same patient. We observed a better diagnostic yield in consanguineous families, in severe and in syndromic phenotypes. Our results suggest that WES has a better yield in patients that present with several symptoms, rather than an isolated abnormality. We also validate the clinical benefit of WES as an effective diagnostic tool, particularly in nonspecific or heterogeneous phenotypes. We recommend WES as a first-line diagnostic in all cases without a clear differential diagnosis, to facilitate personal medical care.

European Journal of Human Genetics (2017) 25, 176–182; doi:10.1038/ejhg.2016.146; published online 16 November 2016

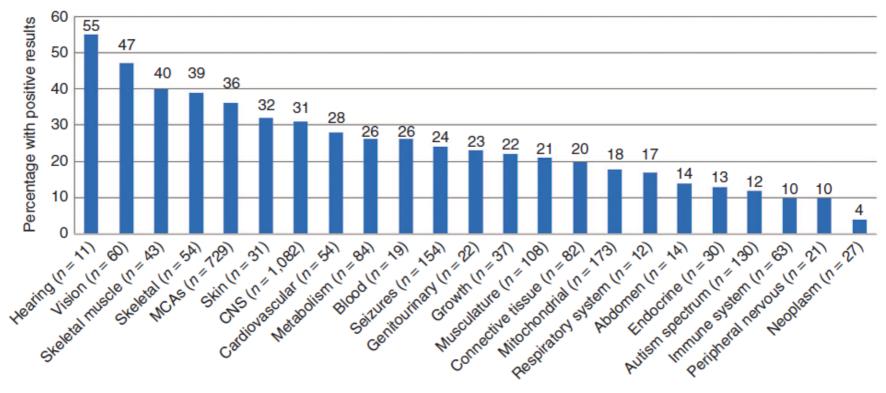
Clinical application of whole-exome sequencing across clinical indications

Kyle Retterer, MS¹, Jane Juusola, PhD¹, Megan T. Cho, ScM¹, Patrik Vitazka, MD, PhD¹, Francisca Millan MD¹ Federica Gibellini PhD¹ Annette Vertino-Bell MS¹ Nizar Smaoui MD^{1,2}

Purpose: We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory.

Methods: WES was performed for many different clinical indications and included the proband plus two or more family members in 76% of cases.

Results: The overall diagnostic yield of WES was 28.8%. The diagnostic yield was 23.6% in proband-only cases and 31.0% when three family members were analyzed. The highest yield was for patients who had disorders involving hearing (55%, N = 11), vision (47%, N = 60), the skeletal muscle system (40%, N = 43), the skeletal system (39%, N = 54), multiple congenital anomalies (36%, N = 729), skin (32%, N = 31), the central nervous system


(31%, N = 1,082), and the cardiovascular system (28%, N = 54). Of 2,091 cases in which secondary findings were analyzed for 56 American College of Medical Genetics and Genomics-recommended genes, 6.2% (N = 129) had reportable pathogenic variants. In addition to cases with a definitive diagnosis, in 24.2% of cases a candidate gene was reported that may later be reclassified as being associated with a definitive diagnosis.

Conclusion: Our experience with our first 3,040 WES cases suggests that analysis of trios significantly improves the diagnostic yield compared with proband-only testing for genetically heterogeneous disorders and facilitates identification of novel candidate genes.

Genet Med advance online publication 3 December 2015

WES diagnostics of Mendelian disorders

- The overall diagnostic yield of WES was 28.8% in **3,040 cases**; 23.6% in proband-only cases and 31.0% when three family members were analyzed
- In 24.2% of cases a candidate gene was reported that may later be reclassified as being associated with a definitive diagnosis
- Of 2,091 cases in which secondary findings were analyzed for 56 ACMG– recommended genes, 6.2% (N = 129) had reportable pathogenic variants

Test yield based on primary indication

Retterer (2016) Genet Med

ACMG-56 2.0: secondary findings genes

- ACMG-56: a list of genes to be reported as incidental or secondary findings
- **The goal**: to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality.
- Updates: 2013: started; 2017: -1 gene, +4 genes
- Example: *ATP7B* is associated with autosomal-recessive Wilson disease (MIM 277900). Morbidity among homozygotes directly correlates with copper deposition in the liver, brain, and eye. The disease is progressive, and, if left untreated, premature death is likely. In some cases, liver failure may be the presenting sign. <...> Treatment for Wilson disease involves administration of copper chelating agents and/or zinc to block intestinal absorption of copper; treatment is extremely effective when administered prior to the onset of symptoms. Kalia (2017) *Genetics in Medicine*

ACMG-56 2.0: secondary findings genes

Table 1 ACMG SF v2.0 genes and associated phenotypes recommended for return of secondary findings in clinical sequencing

		PMID Gene					
Phenotype	MIM disorder	Reviews entry	Typical age of onset	Gene	MIM	Inheritance ^a	Variants to report ^ь
Hereditary breast and ovarian cancer	604370 612555	20301425	Adult	BRCA1 BRCA2	gene 113705 600185	AD	KP and EP
Li-Fraumeni syndrome	151623	20301488	Child/adult	TP53	191170	AD	KP and EP
Peutz-Jeghers syndrome	175200	20301443	Child/adult	STK11	602216	AD	KP and EP
Lynch syndrome	120435	20301390	Adult	MLH1 MSH2 MSH6 PMS2	120436 609309 600678 600259	AD	KP and EP
Familial adenomatous polyposis	175100	20301519	Child/adult	APC	611731	AD	KP and EP
<i>MYH</i> -associated polyposis; adenomas, multiple colorectal, <i>FAP</i> type 2; colorectal adenomatous polyposis, autosomal recessive, with pilomatricomas	608456 132600	23035301	Adult	MUTYH	604933	AR ^c	KP and EP
Juvenile polyposis	174900	20301642	Child/adult	BMPR1A SMAD4	601299 600993	AD	KP and EP
Von Hippel–Lindau syndrome	193300	20301636	Child/adult	VHL	608537	AD	KP and EP
Multiple endocrine neoplasia type 1	131100	20301710	Child/adult	MEN1	613733	AD	KP and EP
Multiple endocrine neoplasia type 2	171400 162300	20301434	Child/adult	RET	164761	AD	KP
Familial medullary thyroid cancer ^d	1552401	20301434	Child/adult	RET	164761	AD	KP
PTEN hamartoma tumor syndrome	153480	20301661	Child/adult	PTEN	601728	AD	KP and EP
Retinoblastoma	180200	20301625	Child	RB1	614041	AD	KP and EP
Hereditary paraganglioma- pheochromocytoma syndrome	168000 (PGL1) 601650 (PGL2) 605373 (PGL3)	20301715	Child/adult	SDHD SDHAF2	602690 613019 602413	AD	KP and EP KP

Exercise: give an example of ACMG-56 gene and its pathogenic mutation

Kalia (2017) Genetics in Medicine

Identification of Misclassified ClinVar Variants via Disease Population Prevalence

Naisha Shah,¹ Ying-Chen Claire Hou,¹ Hung-Chun Yu,¹ Rachana Sainger,¹ C. Thomas Caskey,² J. Craig Venter,^{1,3,*} and Amalio Telenti^{3,*}

The American Journal of Human Genetics 102, 609–619, April 5, 2018 609

- Whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease
- · 2.6% at risk for disease for 16 of the 26 ACMG-59 conditions,
- 4.9% were carriers for 17 of the 26 ACMG-59 conditions.
- 1.5%–6.5%, the estimated range of screened individuals that would have an incidental finding for the ACMG-56
- Allele frequency × disease prevalence for 25,505 variants: many pathogenic variants have low penetrance or incorrect pathogenicity

GENETIC DIAGNOSIS

Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation

Michelle M. Clark¹, Amber Hildreth^{1,2,3}, Sergey Batalov¹, Yan Ding¹, Shimul Chowdhury¹, Kelly Watkins¹ Katarzyna Ellsworth¹ Brandon Camp¹ Cyrielle L Kint⁴ Calum Vacoubian⁵

Use type Retrospective patients									Prospective patients																								
Subject ID	263	6124	3003	61	94	2	90	352		352 362		374		7052		412																	
Age	8 days	14 years	1 year	5 d	ays	3 с	lays	7 we	eeks	4 weeks		weeks 2 days		17 months		3	days																
Sex	ę	ð	ę	<u>c</u>	2	ð Ş		ð		ć	3	ੇ		ð																			
Abbreviated presentation	Neonatal seizures	Rhabdo- myolysis	Dystonia, dev. delay		Hypoglycemia, seizures		11 57								hemorrhage.		hemorrhage,		hemorrhage,		Diabetic ketoacidosis						Neonatal seizures		HIE, anemia		Pseudomonal septic shock		onatal zures
Method	Auto. Auto.	Auto.	Auto.	Auto.	Std.	Auto.	Std.	Auto. Std.		Auto.	Std.	Auto.	Std.	Auto.	Std.	Auto.	Std.																
Number of phenotypic features	51	115	148	14	2	257	4	103	4	65	1	112	6	124	3	33	1																
Molecular diagnosis	Early infantile epileptic encephalopathy 7	Glycogen storage disease V	Dopa- responsive dystonia	None	None	None	None	neor diab	Permanent neonatal diabetes mellitus		None	None	None	agar	nked mma- nemia 1	neo	n familial onatal ures 1																
Gene and causative variant(s)	KCNQ2 c.727C > G	<i>PYGM</i> c.2262delA c.1726C>T	<i>TH</i> c.785C>G c.541C>T	n.a.	n.a.	n.a.	n.a.	INS c.26C > G		n.a.	n.a.	n.a.	n.a.		974 + 2 > C		NQ2 51C > G																
Total (hours)	20:25 19:56	19:20	19:14	20:42*	56:03	19:29	48:46	19:11	42:04	19:10	57:21	31:02 [†]	34:38	22:04	38:37	20:53	48:23																

Clark et al., Sci. Transl. Med. 11, eaat6177 (2019) 24 April 2019

Summary

- Mendelian (monogenic) disorders depend on the genotype at a single locus, with inheritance following Mendel's laws of segregation
- ...However, this is rather an exception than a rule, because of many complications
- Familial aggregation and descriptive epidemiology help establish the genetic basis of a disease
- Major Mendelian disease inheritance patterns: autosomal dominant, autosomal recessive, X-linked recessive, X-linked dominant, Y-linked
- OMIM and ClinVar are invaluable sources of information on Mendelian diseases
- Penetrance, relative risk and odds ratio measures related yet different aspects of disease risks. Variant penetrance are often unknown or inflated!
- Disease gene discovery has been dramatically transformed and accelerated by next-generation sequencing
- There are emerging standards and guidelines in the field: from variant interpretation to secondary findings reporting

Further reading

- Екатерина Померанцева Генетическая диагностика и планирование семьи <u>https://youtu.be/TRLBiXgVqKg</u>
- Nykamp, K., Anderson, M., Powers, et al. (2017). Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria. *Genet Med* 19, 1105–1117.
- Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., et al. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 17, 405–424.
- Chong, J.X., Buckingham, K.J., Jhangiani, S.N., Boehm, C., et al. (2015). The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. *Am J Hum Genet* 97, 199–215.
- Wright, C.F., West, B., Tuke, M., Jones, S.E., Patel, K., et al. (2019). Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting. *Am J Hum Genet* 104, 275–286
- Blencowe, H., Moorthie, S, Petrou, M, et al. Rare single gene disorders: estimating baseline prevalence and outcomes worldwide. *J Community Genet*. 2018;9(4):397
 406. doi:10.1007/s12687-018-0376-2
- Rabbani, B., Mahdieh, N., Hosomichi, K., Nakaoka, H., and Inoue, I. (2012). Nextgeneration sequencing: impact of exome sequencing in characterizing Mendelian disorders. *J. Hum. Genet.* 57, 621–632.

84

Further reading

- Bates, G.P. (2005). History of genetic disease: the molecular genetics of Huntington disease a history. *Nat. Rev. Genet.* 6, 766–773.
- Boycott, K.M., Vanstone, M.R., Bulman, D.E., and MacKenzie, A.E. (2013). Raredisease genetics in the era of next-generation sequencing: discovery to translation. *Nature Reviews Genetics* 14, 681–691.
- Alkuraya, F.S. (2016). Discovery of mutations for Mendelian disorders. *Hum Genet* 135, 615–623.
- Kalia, S.S., Adelman, K., Bale, S.J., Chung, W.K., et al. (2017). Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. *Genet Med* 19, 249–255.
- Shah, N., Hou, Y.-C.C., Yu, H.-C., Sainger, R., Caskey, C.T., Venter, J.C., and Telenti, A. (2018). Identification of Misclassified ClinVar Variants via Disease Population Prevalence. *Am J Hum Genet* 102, 609–619.
- Clark, M.M., Hildreth, A., Batalov, S., Ding, Y., Chowdhury, S., et al. (2019). Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. *Science Translational Medicine* 11, eaat6177
- Zschocke J, Byers PH, Wilkie AOM (2023) Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 1–22.