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Lecture plan

®* Non-Mendelian inheritance: Mendelians vs. biometricians.
* Basics of quantitative genetics. Heritability.

* Liability threshold model

®* Monogenic vs. complex disorders. Allelic architecture of
genetic disorders

* Genome-wide association studies

* Polygenic risk scores



Non-Mendelian inheritance

Dichotomous (binary) phenotypes; complex (common,
multifactorial) diseases

* Diabetes

* Schizophrenia

* Coronary artery disease

Quantitative phenotypes
* Height

* Body-mass index

* Blood lipid levels

* Blood pressure



Non-Mendelian inheritance

A controversy between Mendelians and biometricians (1900-1918)

* 1865 Gregor Mendel: “Versuche iiber Pflanzen-Hybriden”
(“Experiments in plant hybridization™),

* 1865 Francis Galton: “Hereditary Talent and Character”

Biometricians: most of the characters likely to be important in
evolution (fertility, body size, strength, and skill in catching prey or
finding food) were continuous or quantitative characters and not
amenable to Mendelian analysis

I1.C. ®OJIKOHEP

Controversy resolved:

* 1918 R.A.Fisher: “The Correlation between S
Relatives on the Supposition of Mendelian KOIIECTBEHHDBIX
Inheritance”™

* 1965 D.S.Falconer: “The inheritance of liability
to certain diseases, estimated from the incidence
among relatives”

IITPM3HAKOB




Non-Mendelian inheritance

XV.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance.© By R. A. Fisher, B.A. Communicated by Professor J. ARTHUR
TroMsoN. (With Four Figures in Text.)

(MS, received June 15, 1918. Read July 8, 1918. [ssued separately October 1, 1918.)

CONTENTS.

PAGE PAOR
1. The superposition of factors distributed inde- ' 15. Homogamy and multiple allelo.aorphism . 416
pendemtly . . . . . . . 402: 16 Cowpling. . . . . . . . 418

2. Phase frequency in each array . .. 402 17. Theories of marital correlation ; ancestral

Several attempts have already been made to interpret the well-established
results of biometry in accordance with the Mendelian scheme of inheritance. [t
is here attempted to ascertain the biometrical properties of a population of a more
general type than has hitherto been examined, inheritance in which follows this
scheme. It is hoped that in this way it will be possible to make a more exact
analysis of the causes of human variability. The great body of available statistics
show us that the deviations of a human measurement from its mean follow very
closely the Normal Law of Errors, and, therefore, that the variability may be
umformlv measured by the standard deviation corresponding to the square root

3. Hence the members of this array mating at random will have offspring
distributed in the three phases in the propertion

Pz[l + fé(a -—m)} + pQ[2 + gg(a -m+d~ m)] + Qg[l -f-fg(d - W)J,
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Polygenic nature of quantitative phenotypes

A. one locus C. three loci
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Phenotype value

A hypothetical continuous character, mean = 100 units; additive (codominant)
effects: each copy of A = +5 units, a = -5 units. All allele frequencies are 0.5.

6 Strachan, Read — Human Molecular Genetics



Example of a trait: human height
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Height (inches) Midparent
Histogram Deviation from the population mean, in
Observations:

* The correlation coefficient 7= 0.476 > 0 — Relatives resemble
cach other — the trait has genetic component

* Scatter due to Mendelian segregation and environmental effects

* The coefficient <1 — “regression to the mean”
Strachan, Read — Human Molecular Genetics






Phenotypic variance and heritability

Phenotype value P
P=X,+X,+e€

where P = Pjndividual — Ppop.mean — deviation of the phenotype of an
individual from the population mean, X,, , and € are [normally distributed|
random variables. Denote:

V(Xn) =V(X,)=Va/2, V(e) =V,
Mom Dad

J.Gillespie: ”Quantitative genetics is all about variances, covariances, and ki

correlations” / - \\ o H\I

| #0)
Phenotypic variance: \- .-/ E..'L_____,,/f
Vo =V(Xpn) + V(Xp) + V(€) + 2C(Xm, Xp) + 2C(Xm, €) + 2C(Xp, €) X / Xp

where V(.) denotes variance,‘C(o, -) covariance, Q(Xm, Xp‘) =0 if‘ parents o I/\:\I ":\"
are not related, and C(X, €) is the genotype-environment interactions, as- \ j},.-'

sumed to be zero. — ?
P == X”l -i_ ..'Y}-_, "I_ ‘E‘f

An example of a genotype-environment interaction:

One allele adds +1 cm to the phenotype in a warm environment and
-1 cm in a cold environment; another allele does exactly the opposite

Note: C(X,X) =V (X) =V,/2 . .
Gillespie — Population genetics. A concise guide



Phenotypic variance and heritability

Vo = V(Xn)+V(X,)+V(€)+2C (X, Xp)+2C (X, €)+2C (Xp,€) = Vo/2+4V,/24+V (€)

Phenotypic variance is the sum of the additive and environmental vari-
ances:

Vi=Vo+Ve
The [narrow-sense| heritability of the trait h?:

hQZE: Va
Vo Vu+Ve

Additive variance = the genetic contribution is a simple sum of the
contribution from each allele which do not interact

Species Character Heritability
Honevhee oxygen consumption 0.15
Furytemora herdmani  length 012
Cricket wing length 0.74
Flour beetle fecundity 0.36
Red-backed salamander vertebral count 0.61
Darwin’s finch weight 0.91
Darwin’s finch bill length 0.85

Heritability estimates determined by parent-offspring correlations for a variety |
- oftraits and species taken from a paper by Mousseau and Roff (1987)
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Phenotypic variance and heritability

Phenotype correlation correlation between an arbitrary pair of relatives:

oo
PY=Ym+YEo+5y

Therefore,

C(Px,Py) =
C(Xm,Ym) + C(Xm,Yp) + C(Xm,€y)+
C(Xp,Ym) + C(Xp,Yp) + C(Xp,€y)+
Clez,Ym) + Cles,Yp) + Clez,€y) =

O(Xm:Ym) + C(Xmayzﬂ) + C(Xpaym) + C(Xpayp) =
r0x0+r1x%+rzx2x%=rv’a

where C(X, X) = V, /2 and probabilities that two relatives share 0, 1,2 IBD
alleles are ry, 71,7y, and the coefficient of relatedness r = r;/2 + 79

Relationship 70 1 re r=ri/24ry
Parent-offspring 0 1 0 1/2
Full sibs L Tbl 1/2
Half sibs 1/2 1/2 0 1/4
First cousins 3/4 1/4 0 1/8




Phenotypic variance and heritability

C(Px,Py) =7‘Va

Recall that Corr(z,y) = % and V(X) =1V,/2, therefore
z)V (y

C(Px,Py) _’I’Va
i

= rh?

Corr(Px,Py) =

Corr(Px, Py) = rh?

The correlation between [phenotypic values of| a pair of relatives is
equal to the coefficient of relatedness times the heritability.

>

-

Therefore, given the deviation of the phenotype of an individual X from
the population mean Px = x, the expected phenotype of relative Y is

E(Py|Px = z) = Corr(Px, Py)z = rh’z

Exercise: What is the correlation between each of the
pairs of relatives in the table above if Va=2and Ve, =3
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Phenotypic variance and heritability

Earlier: simplified model with additive genetic effects only:

P=X T x
Vo =Vat+V.

More realistic:
P=X,+X,+Xmp+e

where the new term, X,,,, captures the dominance relationships between
the maternally and paternally derived alleles. Therefore, assuming that the
additive and dominance contributions are uncorrelated,

Vo=Va+Va+ Ve

where V; is the so-called dominance variance. If we consider multiple
and interacting loci, then

where V; reflects the epistatic variance due to the interactions between
loci. The [narrow sense] heritability h? is still

but the broad sense heritability H? is the ratio of all of the genetic
variances to the phenotypic variance,

o Varhat

HQ
Vo

Exercise: In a population of beetles, the total

variance of body weight is V, = 130; the

35 and

dominance genetic variance is V, = 45.

environmental variance is V.

Assuming no epistatic effects, calculate

heritability in the narrow sense



Meta-analysis of the heritability of human traits based on
fifty years of twin studies

Tinca ] C Polderman’-19, Beben Benyaminz’w, Christiaan A de Leeuw!3, Patrick F Sullivan?-6,

Arjen van Bochoven?, Peter M Visscher?%11 & Danielle Posthumal-%-11

702
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VOLUME 47 | NUMBER 7 | JULY 2015 NATURE GENETICS

1.0+ Age 18-64 years
0.8
0-6— -3 I
0.4
0-
e Blood Endocr General High-L Imm
0 . ign-L. . .
Conduct | Depr. Funct. of Heart . .. | Hyperkin-
pressure Ogi ;C e p;ﬂ; e gland Food L::::Zi no metab. fui?:t. Height [cognitive :;ie;i: system
funct. funct. funct. funct. funct.
L LEYY. 0.59 0.67 0.39 0.53 0.42 0.65 0.65 0.52 0.92 0.68 0.58 0.56
B vzm 0.54 0.55 0.40 0.52 0.42 0.70 0.63 0.53 0.91 0.57 0.58 0.62
O vzr 0.53 0.52 0.44 0.58 0.41 0.60 0.66 0.54 0.89 0.44 0.62 0.52
O7pz 0.29 0.34 0.18 0.37 0.20 0.19 0.36 0.24 0.47 0.28 0.26 0.30
O/pzss 0.30 0.43 0.21 0.34 0.24 0.24 0.33 0.29 0.53 0.27 0.31 0.38
O/pzm 0.25 0.36 0.18 0.32 0.22 0.39 0.32 0.21 0.53 0.34 0.35 0.29
Opze 0.33 0.34 0.22 0.37 0.22 0.35 0.36 0.30 0.51 0.25 0.34 0.30
B/pos 0.28 0.29 0.14 0.26 0.14 0.10 0.30 0.16 0.45 0.25




MaTCH Meta-Analysis of Twin Correlations and Heritability

This website provides a resource for the heritability of all human traits that have been investigated with the classical twin design.
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Heritability of 596 lipid species and genetic correlation
with cardiovascular traits in the Busselton Family
Heart Study*

Gemma Cadby,"*" Phillip E. Melton,"™** Nina S. McCarthy,' Corey Giles,'" Natalie A. Mellett,'"
Kevin Huynh, +]§OSEph Hung,*>*** John Beilby,'" "% Marie-Pierre Dubé,**** Gerald F. Watts,*>"'"
John Blangero, 555 Peter J. Meikle,zﬁ and Eric K. Moses>""

Journal of Lipid Research Volume 61, 2020 537

TABLE 1. Characteristics of study population and heritability of CVD traits

Mean (SD), n = 4,492 h* (SE)

Age, years 50.83 (17.37) —

BMI," kg/m” 26.04 (4.23) 0.46 (0.04)
WHR" 0.85 (0.07) 0.25 (0.03)
HDL-C,” mmol/1 1.39 (0.39) 0.59 (0.03)
LDL-C,” mmol/1 3.60 (1.00) 0.52 (0.04)
Triglycerides,” mmol/1 1.32 (0.93) 0.37 (0.03)
Total cholesterol,” mmol/1 5.59 (1.11) 0.57 (0.03)
SBP,’ mmHg 124.6 (19.83) 0.32 (0.04)

DBP,” mmHg 75.09 (10.72) 0.26 (0.04)
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Linear modeling framework

Linear model with additive genetic effects:

Y =G + E + €

Phenotype Genotype Environment Random




Linear modeling framework

Linear model with additive genetic effects:

Y =G + E + €

Phenotype Genotype Environment Random

Y;:,LL-I—ﬁG?;-I-ZOJinj-FEi

J
e Y. — phenotype of the i-th individual

* 1 — baseline phenotype value
« G_— genotype, effector allele a count: G(AA)=0, G(Aa)=1, G(aa)=2

* B — effect of the effector allele: change 1n value for each copy of
effector allele (quantitative trait) or log odds ratio (binary trait)
. ockXij — covarilates: age, sex, smoking, medication use, ethnicity,

other variants .
17 Morris and Cardon (2019) Handbook of Stat Genomics
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Linear modeling framework

Phenotype
<

0 (CC) 1 (CT) o (TT)
Number of T alleles

https://en.wikipedia.org/wiki/Genome-wide association_study
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Linear modeling framework
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Assessing the relationship in the simple linear regression model

* P —probability of the null hypothesis A : no relationship

*  —regression coeeficient (effect size)
* R* — coefticient of determination, the proportion of variability in Y

that can be explained using X
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FREQUENCY

Susceptibility/liability threshold

distribution of liability in —— distribution of liability of sibs
the general population of affected people
threshold
unaffected —|—— affected —>

JOW == v vvsemnnanneens cees LIABILITY =veferesneens

average liability = average liability
in general among sibs of
population affected people

Figure 5.23 A polygenic threshold

model for dichotomous non-Mendelian
characters. Liability to the condition is
polygenic and Normally distributed (green
curve). People whose liability is above a
certain threshold value (the balance pointin
Figure 5.22) are affected. The distribution
of liability among sibs of an affected person
(purple curve) is shifted toward higher
liability because they share genes with their
affected sib. A greater proportion of them
have liability exceeding the fixed threshold.
As a result, the condition tends to run in
families.

Explains non-Mendelian accumulation (enrichment) of binary traits (e.g.,

complex diseases) in pedigrees

Unlike in Mendelian conditions, the recurrence risk increases with the number

of previous affected children.

Strachan, Read — Human Molecular Genetics
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Mendelian vs. complex disorders

Mendelian

Complex

Individually rare in population

Patterns of inheritance within families:
AD, AR, etc.

One or few genes with large effect

Coding alleles with high penetrance

Mostly genetic?

Examples: cystic fibrosis, familial
hypercholesterolemia, inherited
cardiomyopathies, rhythm disorders

Common in population
Non-Mendelian accumulation in families
Multiple loci, no single locus is necessary or

sufficient

Complicated allelic architecture, non-coding
variants

Combination of genetic, environmental and

lifestyle factors

Ezxzamples: coronary artery disease (CAD),
diabetes, hypertension, schizophrenia




23

Allelic architecture of genetic disorders

Rare (Mendelian) disorders
* Very rare (AF<<1%) and highly deleterious variants
* Subject to mutation-selection balance

Complex disorders, common variants // Reich, Lander (2001)

* Relatively few old, common (AF>1%) variants

* Experience no selection?
" Post-reproductive onset, no purifying selection (T2D)
" Balancing selection (Kidney disease/parasite resistance in Africa)
* «Thrifty» hypothesis (Obesity, diabetes)

Complex disorders, rare variants // Pritchard (2001) AJHG
* Numerous low frequency (AF<1%) variants with intermediate effect
* Recent human expansion = multiple mildly deleterious variants



Allelic architecture of genetic disorders

Effect size
50.0

Low-frequency
variants with
intermediate effect

3.0
1.5
Rare variants of
small effect
N

very hard to identify
by genetic means

1

—
..
.
-
-
N
.
<
s
—H

eyrae] - [rae] o) G

Allele frequency

Effect size (odds ratio) vs. frequency of risk alleles
24 Manolio (2009) Nature



Allelic architecture of genetic disorders

e () cFTR a;l;éﬁﬁH{Cystic Fibrosis) |
; |
Highly Penetrant i
Mendelian Common Variants |
Large - with Large Effects |
& Mutations g i
() APOEA (Alzheimers) :
. |
CFH (AMD) () :
5.0 l
| Less Common |
Moderate | Variants with i
| Moderate Effects S |
: (_) NOD2 (Crohn's Disease) N |
: K
| S
: () TNFRSFLA (Multiple Sclerosis) '
h i QT2 fvee202829 0 ) rymon Variants
Small | Rare Variants with with Small Effects
| s . o
1.2 | Small Effects Sl ldentitied by
| GWAS
| LMTKZ (Prostate Cancer) ()
[ .
1.0 ! =
0.001 0.005 0.05 0.5
“Mutations” Rare Low Frequency Common

Effect size (odds ratio) vs. frequency of risk alleles
Bush and Moore (2012) PloS Comp Bio






The basis of genome-wide association studies
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SNP1 (C/T) SNP2 (A/G)

Allele counts (descendants)

G
18 (60%) 12 (40%)

A

15 (50%) 15 (50%)

Healthy

6 (60%) 4 (40%)

7 (70%)

3 (30%)

Affected

Risk allele — ‘%‘
§

Affected ™

Jackson (2018) Essays Biochem
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The basis of genome-wide association studies

SNP1 SNP2 SNP...
Cases Cases Repeat for all
‘ Count of G: ‘ Count of G: SNPs
TG G G g e f u 2104 of 4000 1648 of 4000

Frequency of G:‘ Frequency of G: ‘

52.6% 41.2%
| | |
‘ Controls ‘ Controls ‘
Count of G: Count of G:

‘ 2676 of 6000 ‘253201(6000

Frequency of G: | Frequency of G:

44.6% 42.2%
| | |
‘ P-value: ‘ P-value: ‘
5.0-101° 0.33

The numbers: 2007 study of coronary artery disease (CAD) that showed that the individuals with the G-
27 allele of SNP1 (rs1333049) were overrepresented amongst CAD-patients. doi:10.1038/nature05911



Example of GWAS summary statistics

A B C D E F G H 1 J K I

TOPMed Freeze 8 variants summary. Variants which passed the significance criteria were clumped (window 250 kb, r2 0.5) and compared against MVF
summary statistic and GWAS catalog. Variants were binned to three categories, Known-Position (variant previously associated), Known-Loci (variants no
previously significantly associated with the corresponding lipid phenotype but within 500 kb of a known locus) and Novel. The list of variants is tabulated fc
each lipid phenotype and each category of is ordered based on chromosome position. Summary statistics reported were obtained from two-sided genetic
association testing preformed using SAIGE-QT model, where the model was adjusted for all the covariates.

TOPMed — Trans-Omics for Precision Medicine; MVP — Million Veteran Program; GWAS — Genome Wide Association Study

HDL
4 VEP ensembl precedent  VEP ensembl

CHR POS A1 A2 rs dbSNP151 BETA SE p.value MAF consequence precedent gene Categon
5 2 21008652G A rs676210 0.978 0.111 1.08E-18 0.246 missense_variant APOB Known-Positi
6 7 17872129G T rs1917368 -0.595 0.093 1.91E-10 0.468intron_variant SNX13 Known-Positi
7 7 80671133T G rs3211938 2.823 0.290 1.93E-22 0.026 stop_gained CD36 Known-Positi
8 8 9326086A G rs4841132 1.782 0.149 9.17E-33 0.101 non_coding_transcript_ @ AC022784.1 Known-Positi
9 9 104827463C T rs4149307 1.240 0.104 1.61E-32 0.388intron_variant ABCA1 Known-Positi
10 11 116830638G A rs138326449 12.784 1.142 4.21E-29 0.002splice_donor_variant APOC3 Known-Positi
1 11 61785208G T rs174537 -0.859 0.105 2.98E-16 0.301 intron_variant TMEM258 Known-Positi
12 12 124853983C T rs10773112 0.923 0.094 1.49E-22 0.394intron_variant SCARB1 Known-Positi
13 17 43848758C T rs72836561 -3.641 0.345 4.87E-26 0.017 missense_variant CD300LG Known-Positi
14 18 49583585A G rs77960347 4739 0494 8.39E-22 0.008 missense_variant LIPG Known-Positi
15 19 54205230G A rs380267 -0.987 0.119 8.87E-17 0.202 downstream_gene_varid AC245884.12 Known-Positi
16 19 8364439G A rs116843064 4256 0.375 7.11E-30 0.014 missense_variant ANGPTL4 Known-Positi
i, 19 44908684T C rs429358 -1.649 0.125 8.06E-40 0.153 downstream_gene varig TOMM40 Known-Positi
18 20 44413724C T  rs1800961 -2.561 0.290 1.06E-18 0.024 missense variant HNF4A Known-Positi
19 1 109274623C T rs11102967 -0.642 0.100 1.49E-10 0.4353 prime_UTR_variant CELSR2 Known-Loci
20 1 109274968G T rs12740374 0.900 0.109 1.56E-16 0.2143 prime UTR variant CELSR2 Known-Loci
21 1 230144512C G rs11122400 0.585 0.092 1.91E-10 0.417 intron_variant GALNT2 Known-Loci
22 1 230148510C A rs4846906 0.767 0.129 2.75E-09 0.143intron_variant GALNT?2 Known-Loci
23 1 230158438A T rs910502 1.115 0.155 7.44E-13 0.09¢ . )Ci
290 1 230158968C A  rs4846913 0.846 0.100 228E-17 0420 Selvara) (2022):Nat Commun - o
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Overview of GWAS steps

a Data collection b Genotyping € Quality control
o~
° . : - Ps E ~African ~~Your data i
oce ® 8_ &
® ® °
° ® - § .
e ecce ® g = . m
b . o : bt g American—%; European—*+
= Principal component 1
d Imputation e Association testing
1004 .
SNP1 |SNP2 SNP3 |SNP4 SNP5 SNP6 !
Person1 | G T G A A T
Person2 | G T C i T C '
Person3 | C A G 0 A c
Person4 | C A C e T c
7 9 11 13151719 23
Chromosome
f Meta-analysis g Replication h Post-GWAS analyses
_—

Cohort A —— Cohort B —— Cohort C

29
Uffelmann (2021) Nat Rev Methods
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Visualization of GWAS results
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Manhattan plot. Each point corresponds to a SNP, plotted according to genomic
position on the x-axis and the evidence in favour of association (- log,, p-value) on the

y-axis. SNPs highlighted in green map to loci previously reported for the trait.
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Morris and Cardon (2019) Handbook of Stat Genomics

8

Quantile—quantile plot. Each point
corresponds to a SNP, plotted according to the
ranked —log,, p-value for association on the y-

axis against the expected ranked -log., p-value

under the null hypothesis of no association on
the x-axis. Inflation of —log., p-values above the

y = x line is indicative of population structure
that has not been accounted for in the
association analysis.



Visualization of GWAS results
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Functional follow-up of GWAS

€ What are the epigenomic effects of variants?

a What are the associated loci? Gene A SNPs GeneB GeneC
1
1007 . I
- @
| ATAC-seq
l H
'
= ¥ ' H3K27ac
o .
ke ]
[

i ' - at are the target genes in the locus?
T | @ _ i d Wh h getg he l ?
. T l

| Q—Trslzsﬂfs
c
ag —
W) o -
5
< i
. d
| : B o
i 1 W [<H]
: ! O
I Q—Tr512345 !
: Q:"-; : AA AG GG Chromosome position
| _g: ' rs12345 genotype
foel |
L : Gene A rs12345 GeneB GeneC
. f -l

Chromosome position e What are the affected pathways?

__________________________________________________

P i ‘: Q
Uffelmann (2021) Nat Rev Methods e :

e
2 .
—o

32



g Open Targets Genetics
v

Q

PCSK9 1.154453788_C_T rs4129267 LDL cholesterol (Willer CJ et al. 2013)

Note: genomic coordinates are based on GRCh38

Last updated:
October 2022 (22.10)

About Open Targets Genetics

Open Targets Genetics is a comprehensive tool highlighting variant-centric statistical evidence to allow both
prioritisation of candidate causal variants at trait-associated loci and identification of potential drug targets.

It aggregates and integrates genetic associations curated from both literature and newly-derived loci from UK
Biobank and FinnGen and also contains functional genomics data (e.g. chromatin conformation, chromatin
interactions) and quantitative trait loci (eQTLs, pQTLs and sQTLs). Large-scale pipelines apply statistical fine-
mapping across thousands of trait-associated loci to resolve association signals and link each variant to its
proximal and distal target gene(s) using a Locus2Gene assessment. Integrated cross-trait colocalisation analyses
and linking to detailed pharmaceutical compounds extend the capacity of Open Targets Genetics to explore drug
réepositioning opportunities and shared genetic architecture.



GWAS

GWAS hits

applications: drug targeting

Drug

Trait Gene with GWAS hits Known or candidate drug
Type 2 Diabetes SLC30A8/KCNJ11 ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis PADI4/IL6R BB-Cl-amidine/Tocilizumab
Sp?):lx;i}tsi;?iﬂ TNFR1/PTGER4/TYK2 inhibitors/N S;PDZ}fosta matinib
Psoriasis(Ps) IL23A Risankizumab
Osteoporosis RANKL/ESR1 Denosumab/Raloxifene and HRT
Schizophrenia DRD2 Anti-psychotics
LDL cholesterol HMGCR Pravastatin
AS, Ps, Psoriatic Arthritis IL12B Ustekinumab

34

Visscher (2017) Am J Hum Genet



GWAS applications: polygenic risk scores

(1) GWAS summary statistics

Allele A C T A
Effect +1.5 -0.5 +2.0 -1.5
SNP2 IS
@ Genotype data
SNP2
Individual 1 AT CG 1T CC
Individual 2 TA GG GT CA
Individual3 TT o GT CA
Individual4 TT cC GG AA

Uffelmann (2021) Nat Rev Methods
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@ Polygenic risk score

Individuall 1.5 — 0.5
Individual2 1.5 =~ .00
Individual3 0.0 - 1.0
Individual4 0.0 - 1.0
@ PRS distribution
Individual 4 Individual 3

+ 40 - 0.0 = 5.0
+ 20 = 15 .= 2.0
+ 20 - 1.5 = -0.5
+ 0.0 - 30 = -4.0
Individual 2 Individual 1
PRS



GWAS applications: polygenic risk scores

N
* PRS: sum of allele dosages S = Z B:Gi, G;=10,1,2}
* weighted by their effect sizes, i

* allele effects derived from GWAS, N = 10>-10°

* PRS can be calculated at birth

* Carriers of high PRS cannot be identified with conventional
risk factors or biomarkers

®* Top 5% high coronary artery disease PRS carriers are at 3.7-
fold increased odds for myocardial infarction

®* Polygenic background may modify penetrance of monogenic
mutations
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Polygenic risk scores [/ e CIERESS

Polygenic Scores Biological process
S 806 Body measurement
. Cancer

Traits . Cardiovascular disease o8 PGS

15 PGS

1\ 209 Cardiovascular measurement

5l
7

]

' Digestive system disorder

Hematological measurement

What is a Polygenic Score?

3 B E

'} B B
]
o

()]
)]

Immune system disorder

A polygenic score (PGS) aggregates the effects of many Inflammatory measurement
genetic variants into a Single number which predicts genetic Lipid or lipoprotein measurement
predisposition for a phenotype. P.GS are typically composed g yver enzyme measurement
of hundreds-to-millions of genetic variants (usually SNPs) o
. . . . Metabolic disorder 22 PGS
which are combined using a weighted sum of allele dosages
multiplied by their corresponding effect sizes, as estimated Neurological disorder nadilSs
from a relevant genome-wide association study (GWAS). § other disease
. Other measurement
PGS nomenclature is heterogeneous: t_hey can also be Siher trai
referred to as genetic scores or genomic scores, and as
polygenic risk scores (PRS) or genomic risk scores Response o diug
(GRS) if they predict a discrete phenotype, such as a W sexspeciic PGs

3.Fisease.



Lipid PRS for lvanovo

Ivanovo: 1,675 participants, 37,372 variants. HDL: high-density lipoproteins.

TC: total cholesterol. Covariates: sex, age, BMI, statins, smoking, TTG level.

Empirical PRS P-value is calculated by PRSice-2 by phenotype permutation

rZ, Var. r?, Clumping
Phen  Cov ol N Var. P-val R PRS P-val Vars
HDL No 5.59% . 0.0007901 0.8 0.00039996 38
TC No 2.46% g 0.0319501 0.8 0.0484952 934
HDL  Yes 6.22% 26.13% 0.0000551 0.9 0.00029997 19
TC Yes 2.96% 11.94% 0.0008551 0.7 0.0280972 28

PRS for Ivanovo calculated with 3-scores for 132 variants from Selvaraj
et al. (2022) Nat Comm. LDL: low-density lipoproteins. HDL: high-density
lipoproteins. TG: triglycerides. TC: total cholesterol.

Phenotype r2, Var. only Vars
LDL 4.9% 48
HDL 4.6% 63
TG 3.0% 38
TC 4.1% 51
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Genome-wide polygenic scores for common
diseases identify individuals with risk equivalent
to monogenic mutations

Amit V. Khera%3*#>, Mark Chaffin®©4>, Krishna G. Aragam"?3#, Mary E. Haas?, Carolina Roselli®4,
Seung Hoan Choi“, Pradeep Natarajan©234, Eric S. Lander?, Steven A. Lubitz®234,
Patrick T. Ellinor®23# and Sekar Kathiresan®©234*

d
0.4 —{ Odds ratio versus

Here, we develop and validate genome-wide E“f’;ﬁf;;;ff&”fj};’"
polygenic scores for five common diseases. [l > fourfold (2.3%)
The approach identifies 8.0, 6.1, 3.5, 3.2, and 0.3 | Il > fvelold (0.5%)
1.5% of the population at greater than

threefold increased risk for coronary artery z

disease, atrial fibrillation, type 2 diabetes, 8 0.2 -
inflammatory bowel disease, and breast

cancer, respectively. For coronary artery or

disease, this prevalence is 20-fold higher than
the carrier frequency of rare monogenic

mutations conferring comparable risk. We 0 - F

propose that it is time to contemplate the | | | | |

inclusion of polygenic risk prediction in clinical - 2 0 2 4

care, and discuss relevant issues Glanome-ids polyganic scars for GAD
39 ’ '
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Clinical Trial

doi: 10.1161/CIRCULATIONAHA.118.035658.

> Circulation. 2019 Mar 26;139(13):1593-1602.

Whole-Genome Sequencing to Characterize
Monogenic and Polygenic Contributions in Patients
Hospitalized With Early-Onset Myocardial Infarction

AmitV Khera ' 2 3 4 Mark Chaffin 3, Seyedeh M Zekavat 35 Ryan L Collins T4
Carnlina Racalli 3 Dradean Nataraian 2 3 4 ludith H lichtman & Gail D'Onnfrin 7

What Is New?

¢ \Whole-genome sequencing was performed and

analyzed in 2081 patients presenting to a US hos-
pital with early-onset (age <55 years) myocardial
infarction.

A monogenic mutation, a single mutation that
significantly increases risk, related to familial hy-
percholesterolemia was identified in 1.7% of
the patients and was associated with a 3.8-fold
increased odds of myocardial infarction.

High polygenic score, reflective of the cumulative
impact of many common variants and defined as
the top 5% of the control population distribu-
tion, was identified in 10 times as many patients
(17%) and was associated with a similar 3.7-fold
increased odds of myocardial infarction.

What Are the Clinical Implications?

¢ A polygenic score comprising 6.6 million common
DNA variants can identify 5% of the population
who inherit risk equivalent to that of a familial hy-
percholesterolemia mutation.

e Unlike familial hypercholesterolemia mutation
carriers, who typically have high low-density lipo-
protein cholesterol levels, “carriers” of a high poly-
genic score cannot be identified with conventional
risk factors or biomarkers.

¢ These findings lay the scientific foundation for the
systematic identification of individuals born with a
substantially increased risk of myocardial infarction
resulting from either a familial hypercholesterol-
emia mutation or high polygenic score and delivery
of a lifestyle or pharmacological intervention to at-
tenuate inherited risk.
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Polygenic background modifies penetrance of
monogenic variants for tier 1 genomic conditions

Akl C. Fahed, Minxian Wang, Julian R. Homburger, Aniruddh P. Patel, Alexander G. Bick, Cynthia L. Neben,
Carmen Lai, Deanna Brockman, Anthony Philippakis, Patrick T. Ellinor, Christopher A. Cassa, Matthew Lebo,
Kenney Ng, Eric S. Lander, Alicia Y. Zhou, Sekar Kathiresan & Amit V. Khera

Nature Communications 11, Article number: 3635 (2020) | Cite this article
Abstract

Genetic variation can predispose to disease both through (i) monogenic risk variants that
disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that
involves many variants of small effect in different pathways. Few studies have explored the
interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to
examine whether polygenic background can modify penetrance of disease in tier 1 genomic
conditions — familial hypercholesterolemia, hereditary breast and ovarian cancer, and
Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial
gradients in disease risk based on polygenic background — the probability of disease by age
75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer,
and 11% to 80% for colon cancer. We propose that accounting for polygenic background is
likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk

variant.
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The bright side The dark side

Identification of novel
SNV-trait associations

Discovery of novel biological
mechanisms

Diverse clinical applications

Insight into ethnic variation

of complex traits

Relevant to low-frequency, \

rare variants \
Identification of novel monogenic /

and oligogenic disease genes
Relevant to the study of /
structural variation
Multiple applications

Disease prediction

True signals

Population stratification

5 Ultra-rare mutations

Epistasis

beyond gene identification )
Causal variants or genes

Straightforward GWAS generation,
management and analysis
Easy-to-share and
publicly available data

Missing heritability

Fig. 4 | Benefits and limitations of GWAS using SNP arrays. A visual depiction of the current benefits (the bright
side) and limitations (the dark side) of genome-wide association studies (GWAS). The solid X indicates a permanent
limitation. The dotted Xs represent limitations that have the potential to be overcome, at least to some extent, in the
future (for example, with larger sample sizes, technological and methodological advancements, and a shift from

the use of single-nucleotide polymorphism (SNP) arrays to whole-genome sequencing). SNV, single-nucleotide variant.

Tam (2019) Nat Rev Genet
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