
Heritability, complex diseases, 
genome-wide association 

studies, polygenic risk scores



Lecture plan

Non-Mendelian inheritance: Mendelians vs. biometricians. 

Basics of quantitative genetics. Heritability.

Liability threshold model

Monogenic vs. complex disorders. Allelic architecture of 
genetic disorders

Genome-wide association studies

Polygenic risk scores
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Dichotomous (binary) phenotypes; complex (common, 
multifactorial) diseases
 Diabetes
 Schizophrenia
 Coronary artery disease

Quantitative phenotypes
 Height
 Body-mass index
 Blood lipid levels
 Blood pressure

Non-Mendelian inheritance
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A controversy between Mendelians and biometricians (1900-1918)
 1865   Gregor Mendel: “Versuche über Pflanzen-Hybriden” 

(“Experiments in plant hybridization”),
 1865   Francis Galton: “Hereditary Talent and Character”

Biometricians: most of the characters likely to be important in 
evolution (fertility, body size, strength, and skill in catching prey or 
finding food) were continuous or quantitative characters and not 
amenable to Mendelian analysis

Non-Mendelian inheritance

Controversy resolved:
 1918   R.A.Fisher: “The Correlation between 

Relatives on the Supposition of Mendelian 
Inheritance”

 1965   D.S.Falconer: “The inheritance of liability 
to certain diseases, estimated from the incidence 
among relatives”
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Non-Mendelian inheritance
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Polygenic nature of quantitative phenotypes

Strachan, Read – Human Molecular Genetics
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Phenotype value
A hypothetical continuous character, mean = 100 units; additive (codominant) 
effects: each copy of A = +5 units, a = -5 units. All allele frequencies are 0.5.
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Example of a trait: human height

Strachan, Read – Human Molecular Genetics

Observations:

 The correlation coefficient r2 = 0.476 > 0  →  Relatives resemble 
each other  →  the trait has genetic component

 Scatter due to Mendelian segregation and environmental effects

 The coefficient r2 < 1  → “regression to the mean”

Histogram   Deviation from the population mean, in
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Gillespie –  Population genetics. A concise guide

Phenotypic variance and heritability
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Heritability estimates determined by parent-offspring correlations for a variety 
of traits and species taken from a paper by Mousseau and Roff (1987)

Phenotypic variance and heritability
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Phenotypic variance and heritability
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Phenotypic variance and heritability

Exercise: What is the correlation between each of the 
pairs of relatives in the table above if VA = 2 and VP = 3
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Phenotypic variance and heritability
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https://match.ctglab.nl/#/multiple/twin_cor14



15





_________    ________    ___________    _______
 Phenotype    Genotype     Environment      Random

Linear model with additive genetic effects:

Linear modeling framework
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Morris and Cardon (2019) Handbook of Stat Genomics

 Y
i
 – phenotype of the i-th individual

 μ – baseline phenotype value 
 G

i
 – genotype, effector allele a count: G(AA)=0, G(Aa)=1, G(aa)=2

 β – effect of the effector allele: change in value for each copy of 
effector allele (quantitative trait) or log odds ratio (binary trait)

 α
k
X

ij 
– covariates: age, sex, smoking, medication use, ethnicity, 

other variants

_________    ________    ___________    _______
 Phenotype    Genotype     Environment      Random

Linear model with additive genetic effects:

Linear modeling framework
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https://en.wikipedia.org/wiki/Genome-wide_association_study

Linear modeling framework
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Sabatti (2009) Nat Genet

Linear modeling framework
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Assessing the relationship in the simple linear regression model

 P – probability of the null hypothesis H
0
: no relationship

 β – regression coeeficient (effect size)
 R2 – coefficient of determination, the proportion of variability in Y 

that can be explained using X

Linear modeling framework
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Susceptibility/liability threshold

Strachan, Read – Human Molecular Genetics

Explains non-Mendelian accumulation (enrichment) of binary traits (e.g., 
complex diseases) in pedigrees

Unlike in Mendelian conditions, the recurrence risk increases with the number 
of previous affected children.

21



Mendelian vs. complex disorders
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Rare (Mendelian) disorders
 Very rare (AF<<1%) and highly deleterious variants 
 Subject to mutation-selection balance

Complex disorders, common variants // Reich, Lander (2001)
 Relatively few old, common (AF>1%) variants
 Experience no selection? 

 Post-reproductive onset, no purifying selection (T2D)
 Balancing selection (Kidney disease/parasite resistance in Africa)
 «Thrifty» hypothesis (Obesity, diabetes)

Complex disorders, rare variants // Pritchard (2001) AJHG
 Numerous low frequency (AF<1%) variants with intermediate effect 
 Recent human expansion  multiple mildly deleterious variants⇒

Allelic architecture of genetic disorders
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Allelic architecture of genetic disorders

Manolio (2009) Nature
Effect size (odds ratio) vs. frequency of risk alleles
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Allelic architecture of genetic disorders

Effect size (odds ratio) vs. frequency of risk alleles
Bush and Moore (2012) PloS Comp Bio25





The basis of genome-wide association studies

Jackson (2018) Essays Biochem

Affected

Risk allele
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The numbers: 2007 study of coronary artery disease (CAD) that showed that the individuals with the G-
allele of SNP1 (rs1333049) were overrepresented amongst CAD-patients.  doi:10.1038/nature05911

The basis of genome-wide association studies
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Example of GWAS summary statistics

Selvaraj (2022) Nat Commun28



Uffelmann (2021) Nat Rev Methods

Overview of GWAS steps
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Manhattan plot. Each point corresponds to a SNP, plotted according to genomic 
position on the x-axis and the evidence in favour of association (− log

10
 p-value) on the 

y-axis. SNPs highlighted in green map to loci previously reported for the trait.

Visualization of GWAS results

Morris and Cardon (2019) Handbook of Stat Genomics

Quantile–quantile plot. Each point 
corresponds to a SNP, plotted according to the 
ranked −log

10
 p-value for association on the y-

axis against the expected ranked −log
10

 p-value 

under the null hypothesis of no association on 
the x-axis. Inflation of −log

10
 p-values above the 

y = x line is indicative of population structure 
that has not been accounted for in the 
association analysis.
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Visualization of GWAS results

Morris and Cardon (2019) Handbook of Stat Genomics

Signal plot. The index SNP: purple. Other colours: LD with the index variant in European 
ancestry haplotypes from the 1000 Genomes. The shape: upward triangle for frameshift, stop or 
splice; downward triangle for non-synonymous; square for synonymous or UTR; and circle for 
intronic or non-coding. Recombination rates are estimated from Phase II HapMap
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Uffelmann (2021) Nat Rev Methods

Functional follow-up of GWAS
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Visscher (2017) Am J Hum Genet 

GWAS applications: drug targeting
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Uffelmann (2021) Nat Rev Methods

GWAS applications: polygenic risk scores
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 PRS: sum of allele dosages
weighted by their effect sizes,
 allele effects derived from GWAS, N = 102–106

 PRS can be calculated at birth
Carriers of high PRS cannot be identified with conventional 

risk factors or biomarkers
 Top 5% high coronary artery disease PRS carriers are at 3.7-

fold increased odds for myocardial infarction
 Polygenic background may modify penetrance of monogenic 

mutations 

GWAS applications: polygenic risk scores

36



What is a Polygenic Score?

A polygenic score (PGS) aggregates the effects of many 
genetic variants into a single number which predicts genetic 
predisposition for a phenotype. PGS are typically composed 
of hundreds-to-millions of genetic variants (usually SNPs) 
which are combined using a weighted sum of allele dosages 
multiplied by their corresponding effect sizes, as estimated 
from a relevant genome-wide association study (GWAS).

PGS nomenclature is heterogeneous: they can also be 
referred to as genetic scores or genomic scores, and as 
polygenic risk scores (PRS) or genomic risk scores 
(GRS) if they predict a discrete phenotype, such as a 
disease.

Polygenic risk scores
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Lipid PRS for Ivanovo
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Here, we develop and validate genome-wide 
polygenic scores for five common diseases. 
The approach identifies 8.0, 6.1, 3.5, 3.2, and 
1.5% of the population at greater than 
threefold increased risk for coronary artery 
disease, atrial fibrillation, type 2 diabetes, 
inflammatory bowel disease, and breast 
cancer, respectively. For coronary artery 
disease, this prevalence is 20-fold higher than 
the carrier frequency of rare monogenic 
mutations conferring comparable risk. We 
propose that it is time to contemplate the 
inclusion of polygenic risk prediction in clinical 
care, and discuss relevant issues.39
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Tam (2019) Nat Rev Genet42
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