Введение в биологическую кристаллографию Лекция 3, 2024 г.

Владимир Юрьевич ЛУНИН

Институт Математических Проблем Биологии РАН

(филиал Института Прикладной Математики им. М.В. Келдыша РАН)

Пущино

Дифракционный эксперимент

- измеряем интенсивность (энергию) «отраженных» от объекта лучей;
- вращение объекта трехмерный набор данных;
- разные объекты разная картина рассеяния;
- хотим «восстановить» структуру объекта.

В окрестности пиксела детектора

$$E(\mathbf{r}, t; \boldsymbol{\sigma}_0, \boldsymbol{\sigma}) = \frac{\varepsilon}{R_{s-d}} E_0 \frac{F(\boldsymbol{s})}{F(\boldsymbol{s})} \sin\left[2\pi \left(\frac{(\mathbf{r}, \boldsymbol{\sigma})}{\lambda}\right) - \frac{\varphi(\boldsymbol{s})}{\varphi(\boldsymbol{s})}\right]$$

Вся информация об объекте в структурном факторе

 $F(\mathbf{s}), \varphi(\mathbf{s})$

Волна на детекторе:

$$E(t; \boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}) = E(t; \mathbf{s}) = \frac{\varepsilon}{R_{s-d}} E_{0} \frac{F(\mathbf{s})}{F(\mathbf{s})} \sin\left[2\pi \left(\frac{R_{s-d}}{\lambda} - \nu t\right) - \frac{\varphi(\mathbf{s})}{\varphi(\mathbf{s})}\right]$$

 $\mathbf{s} = \frac{\mathbf{\sigma} - \mathbf{\sigma}_0}{\lambda}$ - вектор рассеяния, информация об эксперименте; $F(\mathbf{s}), \phi(\mathbf{s})$ - структурный фактор, информация о взаимном расположении электронов;

Измеряется интенсивность (энергия) рассеянных волн

$$I(\mathbf{s}) = \left(\frac{\varepsilon E_0}{R_{s-d}}\right)^2 F^2(\mathbf{s}) \Delta t \propto F^2(\mathbf{s})$$

Эксперимент дает набор величин модулей структурных факторов F(s) для разных векторов рассеяния s.

Информация о фазах $\phi(s)$ в «стандартном» эксперименте теряется.

Рентгеновский эксперимент с монокристаллом позволяет измерить интенсивность волн, рассеянных в направлениях, определяемых условиями:

$$h=(\mathbf{s},\mathbf{a}), k=(\mathbf{s},\mathbf{b}), l=(\mathbf{s},\mathbf{c})$$
 - целые
 $\mathbf{s}=(\sigma_0-\sigma)/\lambda$
 $\mathbf{r}=x\mathbf{a}+y\mathbf{b}+z\mathbf{c}$

$$\begin{array}{c} \lambda \\ \vdots \\ \hline \sigma_0 \end{array} \end{array} \xrightarrow{\beta} \begin{array}{c} \vdots \\ a \end{array} \end{array} \xrightarrow{\beta} \begin{array}{c} \vdots \\ a \end{array} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \vdots \\ a \end{array} \end{array}$$

h,k,l - целые

Амплитуда и фаза рассеянной волны зависят от распределения электронной плотности в элементарной ячейке и могут быть рассчитаны по формулам

$$F_{hkl} = \sqrt{A_{hkl}^2 + B_{hkl}^2} \qquad \text{tg}\,\varphi_{hkl} = \frac{B_{hkl}}{A_{hkl}}$$
$$A_{hkl} = \int_{V} \rho(x, y, z) \cos[2\pi (hx + ky + lz)] dx dy dz$$
$$B_{hkl} = \int_{V} \rho(x, y, z) \sin[2\pi (hx + ky + lz)] dx dy dz$$

Рентгеновский эксперимент с монокристаллом позволяет измерить интенсивность волн, рассеянных в направлениях, определяемых условиями (Лауэ – Брэгга – Вульфа):

$$h=(\mathbf{s},\mathbf{a})$$
, $k=(\mathbf{s},\mathbf{b})$, $l=(\mathbf{s},\mathbf{c})$ - целые
 $\mathbf{s}=(\boldsymbol{\sigma}_0-\boldsymbol{\sigma})/\lambda$

$$\mathbf{r} = x\mathbf{a} + y\mathbf{b} + z\mathbf{c}$$

h,k,l - целые

Амплитуда и фаза рассеянной волны зависят от распределения электронной плотности в элементарной ячейке и могут быть рассчитаны по формулам

$$F_{hkl} = \sqrt{A_{hkl}^2 + B_{hkl}^2} \qquad \text{tg}\,\varphi_{hkl} = \frac{B_{hkl}}{A_{hkl}}$$
$$A_{hkl} = \int_{V} \rho(x, y, z) \cos[2\pi (hx + ky + lz)] dx dy dz$$
$$B_{hkl} = \int_{V} \rho(x, y, z) \sin[2\pi (hx + ky + lz)] dx dy dz$$

Структурные факторы, отвечающие Брэгговским рефлексам совпадают с коэффициентами в разложении в ряд Фурье функции распределения электронной плотности.

$$\rho(x, y, z) = \sum_{\substack{hkl \\ u \in nble}} F_{hkl} \cos[2\pi(hx + ky + lz) - \varphi_{hkl}]$$

Знание значений модулей и фаз структурных факторов дает возможность рассчитать "синтез Фурье электронной плотности"

$$\tilde{\rho}_{S}(x, y, z) \approx \sum_{(hkl) \in S} F_{hkl} \cos[2\pi(hx + ky + lz) - \varphi_{hkl}]$$

Синтез Фурье рассчитывается по набору рефлексов S, для которых известны и модули и фазы структурных факторов.

Расчет значений фаз является центральной, "Фазовой проблемой" при расшифровке структуры методом РСА

Фазовая проблема

Молекулярное замещение Molecular Replacement (MR)

Множественное изоморфное замещение Multiple Isomorphous Replacement (MIR)

Многоволновое аномальное pacceяние *Multi-wavelength Anomalous Dispersion / Difraction (MAD)*

«Прямое» и «обратное» пространства Real and reciprocal spaces

Базис обратного пространства

$$\{a^*, b^*, c^*\} \qquad (a^*, a) = 1, (a^*, b) = 0, (a^*, c) = 0$$
$$(b^*, a) = 0, (b^*, b) = 1, (b^*, c) = 0$$
$$(c^*, a) = 0, (c^*, b) = 0, (c^*, c) = 1$$

Для ортогонального базиса

$$\mathbf{a}^* = \frac{1}{a^2} \mathbf{a}, \ \mathbf{b}^* = \frac{1}{b^2} \mathbf{b}, \ \mathbf{c}^* = \frac{1}{c^2} \mathbf{c}$$

Координаты векторов $\mathbf{r} = x\mathbf{a}+y\mathbf{b}+z\mathbf{c}$ $\mathbf{s} = h\mathbf{a}^*+k\mathbf{b}^*+l\mathbf{c}^*$ $x=(\mathbf{r},\mathbf{a}^*), y=(\mathbf{r},\mathbf{b}^*)$, $z=(\mathbf{r},\mathbf{c}^*)$ $h=(\mathbf{s},\mathbf{a}), k=(\mathbf{s},\mathbf{b})$, $l=(\mathbf{s},\mathbf{c})$ Скалярное произведение векторов Условия дифракции Лауэ $(\mathbf{r},\mathbf{s}) = hx + ky + lz$ $\mathbf{s} \in \mathfrak{R}'$

Разрешение синтеза Фурье

Разрешение – формальная характеристика. Она учитывает только количество включенных в работу рефлексов и дает теоретическую оценку качества «идеального» синтеза. Ошибки в используемых значениях структурных факторов ухудшают визуальное качество синтеза.

Разрешение дает оценку величины набора собранных экспериментальных данных и визуального качества карт. Оно не совпадает с точностью определения координат.

При работе с набором данных разрешения 2Å, типичной оценкой точности определения координат атомов после уточнения является величина 0.02Å.

Разрешение, соответствующее гармонике Фурье

 $d = \frac{1}{|\mathbf{s}|}$ - расстояние между соседними максимумами в направлении s;

$$|\mathbf{s}| = \frac{2\sin\theta}{\lambda}$$
 $d = \frac{\lambda}{2\sin\theta}$

Синтез Фурье электронной плотности

$$\rho(\mathbf{r}) = \frac{1}{|V|} \sum_{\mathbf{s} \in S} F(\mathbf{s}) \cos(2\pi(\mathbf{s}, \mathbf{r}) - \varphi(\mathbf{s}))$$

Разрешение, соответствующее рефлексу \mathbf{s}

Высокое разрешение:

- большие углы;
- малые *d*;
- большие s.

Низкое разрешение:

- малые углы;
- большие d;
- малые s.

20 – угол рассеяния

Изображение областей высокой плотности для белка Protein G, полученные на основе синтезов Фурье разного разрешения X-ray structure analysis

Разрешение набора структурных факторов, измеряемых в реальном эксперименте, определяется качеством кристалла.

crambin, 0.54 Å (Teeter et al., 1993); 0.48 Å (2011) antifreeze protein, 0.62 Å (Ko et al., 2003); aldose reductase, 0.66 Å (Howard et al., 2004)].

REMARK	3		
REMARK	3	DATA USED IN REFINEMENT.	
REMARK	3	RESOLUTION RANGE HIGH (ANGSTROMS) : 1.4	
REMARK	3	RESOLUTION RANGE LOW (ANGSTROMS) : 30.0	
REMARK	3	DATA CUTOFF (SIGMA(F)) : NONE	
REMARK	3	COMPLETENESS FOR RANGE (%) : 97.0	
REMARK	3	NUMBER OF REFLECTIONS : 53449	
REMARK	3		

Фазовая проблема. Метод молекулярного замещения

Программа действий:

- найти в банке структур белок с похожей последовательностью и уже известной структурой;
- для модели из банка подобрать оптимальную ориентацию и положение в ячейке исследуемого кристалла
- известную структуру использовать в качестве первого приближения к искомой структуре; рассчитать фазы; построить комбинированный синтез Фурье (F^{obs}, φ^{PDB});
- внести корректировки в модель в соответствии с рассчитанным синтезом.

Как "показать" распределение электронной плотности?

 $\rho(x, y, z) = \rho_{crit}$ - поверхность

 σ – шкала (σ -scale, z-score)

$$\langle \rho \rangle = \frac{1}{|V|} \int_{V} \rho(\mathbf{r}) dV_{\mathbf{r}}$$

 средняя электронная плотность в объекте

$$\sigma = \sqrt{\frac{1}{|V|} \int_{V} (\rho(\mathbf{r}) - \langle \rho \rangle)^2 dV_{\mathbf{r}}}$$

σ - среднеквадратичное
отклонение плотности (от
среднего), r.m.s.d;

$$z_{crit} = \frac{\rho_{crit} - \langle \rho \rangle}{\sigma}$$

- уровень срезки в "сигмах"

1.5 σ

 F_{full}, φ_{full} $F_{full} = F_{obs}$ F_{part}, φ_{part}

 1.5σ

 F_{full}, φ_{full}

 $F_{full} = F_{obs}$

 F_{part}, φ_{part}

 F_{full}, φ_{part}

1.5 σ

 F_{full}, φ_{part}

 F_{part}, φ_{part}

 F_{full}, φ_{full}

$$F_{full} = F_{obs}$$

 $F_{full}, \, arphi_{full} \ 1.5 \, \sigma$

 $F_{full}, \, \varphi_{part,} \, \, 0.5 \, \, \sigma$

 F_{part}, φ_{part} 0.5 σ «Комбинированные» синтезы Фурье. Корректировка атомной модели.

- можем добавлять в модель «потерянные» атомы
- можем удалять из модели «неправильные» атомы

Jerome Karle Gerbert Hauptman

 $F^{Karle,}$ Φ^{Karle}

FKarle,

 $\Phi^{Hauptman}$

F Hauptman, Φ^{Hauptman}

 $\begin{array}{l} F \ {}^{Hauptman,} \\ \phi {}^{Karle} \end{array}$

R.Read http://www-structmed.cimr.cam.ac.uk/Course/Fourier/Fourier.html

Взвешенные синтезы Фурье

$$F^{obs}_{hkl}, arphi^{calc}_{hkl}$$
 - синтез Фурье

 $w_{hkl}F_{hkl}^{obs}, \varphi_{hkl}^{calc}$ - взвешенный синтез Фурье (чем надежнее определена фаза, тем больше вес w_{hkl})

$$2F_{hkl}^{obs} - F^{calc}, \varphi_{hkl}^{calc}$$
 - комбинированный синтез Фурье

 $2mF_{hkl}^{obs} - DF^{calc}, \varphi_{hkl}^{calc}$ -взвешенный комбинированный синтез Фурье (σ_A -weighted 2 F^o - F^c synthesis)

Final σ_A -weighted $2|F_o| - |F_c|$ electron density (Read, 1986) for the GSH molecule bound to subunit A of DmGSTE6 contoured at 1σ .

Использование комбинированного синтеза для поиска места расположения лиганда.

Выбор элементарной ячейки

Центрированные ячейки

примитивная косоугольная ячейка

примитивная косоугольная ячейка

ортогональная ячейка; дополнительная трансляция (1/2, 1/2)

Fig. 2.1.3.3. The 14 Bravais lattices. Reproduced with permission from Burzlaff & Zimmermann (1995). Copyright (1995) International Union of Crystallography.

CRYST1 66.224 66.224 40.561 90.00 90.00 120.00 Р 63 6 тип решетки

- Элементарная ячейка математический объект. Она вводится для удобства работы.
- Выбор элементарной ячейки и начала координат в значительной мере произвольны.
- В начале координат может не находиться никакого атома.
- Молекула не всегда лежит в выбранной элементарной ячейке целиком.
- Выбор элементарной ячейки это выбор системы координат

Элемент симметрии

Кристаллографическая симметрия

Кристаллографическая симметрия "действует" для всех точек кристалла

Кристаллографическая симметрия

Периодичность порождает новые элементы симметрии

Симметрия

Элементы симметрии:

- поворотная ось; 2, 3, 4, 6
- винтовая ось; 2₁, 3₁, 3₂, 4₁, 4₂, 4₃, 6₁, 6₂, 6₃, 6₄, 6₅
- центр инверсии; (x,y,z) → (-x,-y,-z);
- зеркальная плоскость; (x,y,z) → (x,y,-z);
- плоскость скольжения.

Симметрия задается:

- матрицей вращения R;
- вектором трансляции t.

$$\mathbf{r}' = \mathbf{R}\mathbf{r} + \mathbf{t} \qquad x' = r_{11}x + r_{12}y + r_{13}z + t_x$$
$$y' = r_{21}x + r_{22}y + r_{23}z + t_y$$
$$z' = r_{31}x + r_{32}y + r_{33}z + t_z$$

r' и r - точки, связанные симметрией

Все симметрии конкретной кристаллической структуры образуют группу.

Существует конечное число (230) групп симметрии кристаллов.

Каждая группа имеет свое обозначение.

Некристаллографическая симметрия

Некристаллографическая (локальная) симметрия имеет место только в ограниченной области пространства и не распространяется на весь кристалл

NON-CRYSTALLOGRAPHIC SYMMETRY

Некристаллографическая (локальная) симметрия имеет место только в ограниченной области пространства и не сохраняется для всего кристалла

Structure of the CorA Mg2+ channel.

From the following article: <u>Crystal</u> <u>structure of the CorA</u> <u>Mg2+ transporter</u>

Nature 440, 833-837 (6 April 2006)

Уточнение модели

- «Ручная» правка атомной модели. (Комбинированные синтезы Фурье. Графические станции.)
- Автоматическое уточнение. (Программы уточнения. Уточнение параметров модели.)
- Уточнение картины рассеяния.

Относительные и абсолютные координаты атомов

Относительные координаты:x, y, z ; безразмерные;
оси координат не ортогональны;
r=xa+yb+zcАбсолютные координаты (PDB):Оси координат ортогональны;
единица длин - ангстремМатрица перехода
от абсолютных
к относительным
координатамSCALE10.0192310.0000000.000000SCALE20.000000.000000SCALE30.0000000.000000SCALE30.0000000.000000

Уточнение параметров модели $\{x_j, y_j, z_j, B_j, T_j\}$ - параметры модели

 $F_{hkl}^{calc}(\{x_j, y_j, z_j, B_j, T_j\})$ - рассчитанные по модели модули структурных факторов

F^{*obs*} - экспериментально определенные модули структурных факторов

Хотим иметь

$$F_{hkl}^{calc}\left(\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}\right) = F_{hkl}^{obs}$$
 для всех *hkl*

Стандартный фактор достоверности / R-factor

$$R = \frac{\sum_{hkl} \left| F_{hkl}^{calc} - F_{hkl}^{obs} \right|}{\sum_{hkl} F_{hkl}^{obs}} *100\%$$

Уточнение параметров модели $\{x_j, y_j, z_j, B_j, T_j\}$ - параметры модели

 $F_{hkl}^{calc}(\{x_j, y_j, z_j, B_j, T_j\})$ - рассчитанные по модели модули структурных факторов

F^{*obs*} - экспериментально определенные модули структурных факторов

Хотим иметь

$$F_{hkl}^{calc}\left(\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}\right) = F_{hkl}^{obs}$$
 для всех *hkl*

Стандартный фактор достоверности / R-factor

$$R = \frac{\sum_{hkl} \left| F_{hkl}^{calc} - F_{hkl}^{obs} \right|}{\sum_{hkl} F_{hkl}^{obs}} *100\%$$

Хотим иметь

$$F_{hkl}^{calc}\left(\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}\right) = F_{hkl}^{obs}$$
 для всех *hkl*

Важное соотношение: $\kappa = \frac{1}{6}$ общее число уточняемых параметров

Число уравнений определяется качеством кристалла (разрешением собранного набора данных). Число параметров модели можем пытаться менять.

Уточнение, как задача минимизации:

$$R_{X-ray} = \sum_{hkl} \left(F_{hkl}^{calc} - F_{hkl}^{obs} \right)^2 \quad \Longrightarrow \quad \min$$

Проблемы:

- много локальных максимумов; возможно только локальное уточнение; радиус сходимости ~ 0.7Å;
- модель "рассыпается, если к мало.

Увеличение числа уравнений: стереохимические ограничения.

 $\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\}$ - параметры модели d_{ij}^{calc} - расстояние между і-ым и ј-ым атомами в модели

d^{*exact*} - идеальное расстояние между і-ым и ј-ым атомами в модели

Хотим иметь:

$$d_{12}^{calc}\left(\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}\right) = 1.46$$
$$d_{23}^{calc}\left(\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}\right) = 1.37$$

Можем сформулировать как задачу минимизации

$$R_{dist} = \sum_{ij} \left(d_{ij}^{calc} - d_{ij}^{exact} \right)^2 \Longrightarrow \min$$

$$R_{X-ray} = \sum_{hkl} \left(F_{hkl}^{calc} - F_{hkl}^{obs} \right)^2 \implies \min$$
$$R_{dist} = \sum_{ij} \left(d_{ij}^{calc} - d_{ij}^{exact} \right)^2 \implies \min$$

Составной критерий

$$R = w_{X-ray} R_{X-ray} + w_{dist} R_{dist}$$
$$= w_{X-ray} \sum_{hkl} \left(F_{hkl}^{calc} - F_{hkl}^{obs} \right)^2 + w_{dist} \sum_{ij} \left(d_{ij}^{calc} - d_{ij}^{exact} \right)^2 \quad \Rightarrow \quad \min$$

 \bigcirc А как выбрать веса w_{X-ray} , w_{dist} ?

Стереохимические ограничения

 $\left\{ \! x_{j}, y_{j}, z_{j}, B_{j}, T_{j} \right\}$ - параметры модели $lpha_{ijk}^{calc}$ - угол между i, j, k -ыми атомами в модели

α^{exact} - идеальный угол между *i,j,k* - ыми атомами в модели

Хотим иметь

$$(\alpha_{123}^{calc} - 122.)^{2} + (\alpha_{235}^{calc} - 123.5)^{2} + (\alpha_{534}^{calc} - 120.5)^{2} \Rightarrow \min$$
$$R_{angle} = \sum_{ijk} (\alpha_{ijk}^{calc} - \alpha_{ijk}^{exact})^{2} \Rightarrow \min$$

$$R = w_{X-ray}R_{X-ray} + w_{dist}R_{dist} + w_{angle}R_{angle}$$

Двугранные углы

N

Определение углов ψ и ϕ : ψ характеризует вращение относительно одинарной связи $C_{\alpha} - C$; ϕ характеризует вращение относительно одинарной связи C_{α} —N. (Levinthal C. Molecular model building by computer, Scientific American, Inc., 1966.).

Плоские группы

Хиральность

L-amino acid

Уточнение параметров модели

 $\left\{x_{j}, y_{j}, z_{j}, B_{j}, T_{j}\right\}$ - параметры модели

 $F_{hkl}^{calc}(\{x_j, y_j, z_j, B_j, T_j\})$ - рассчитанные по модели модули структурных факторов

F^{*obs*} - экспериментально определенные модули структурных факторов

Хотим иметь
$$w_{X-ray} \sum_{hkl} (F_{hkl}^{calc} - F_{hkl}^{obs})^2 + w_{geom} R_{geom} \Rightarrow \min$$

phenix.refine (P.Afonine *et al.*) REFMAC (G.Murshudov *et al.*) SHELX (G. Sheldrick) BUSTER (G. Bricogne *et al.*) Снижение величины минимизируемого критерия может не сопровождаться улучшением параметров модели.

REMARK	3			
REMARK	3	FIT TO DATA USED IN REFINEMENT.		
REMARK	3	CROSS-VALIDATION METHOD	:	THROUGHOUT
REMARK	3	FREE R VALUE TEST SET SELECTION	:	RANDOM
REMARK	3	R VALUE (WORKING + TEST SET)	:	0.15621
REMARK	3	R VALUE (WORKING SET)	:	0.15185
REMARK	3	FREE R VALUE	:	0.19471
REMARK	3	FREE R VALUE TEST SET SIZE (%)	:	10.1
REMARK	3	FREE R VALUE TEST SET COUNT	:	5989
REMARK	3			

Улучшение моделирования объекта

Для того, чтобы рассчитать теоретические значения структурных факторов, необходимо аккуратно рассчитать распределение электронной плотности в объекте. Координат атомов для этого не достаточно.

Urzhumtsev A.G., Lunin V.Y. (2019). Introduction to crystallographic refinement of macromolecular atomic models. *Crystallography Reviews*. 25:3, 164-262.

Вода: от 20 до 80% объема элементарной ячейки кристалла занято растворителем (водой). Его нельзя игнорировать при аккуратных расчетах.

- Связанная вода. (Аналогично атомам молекулы белка, но водородные связи вместо ковалентных).
- Неупорядоченный растворитель bulk solvent. (Равномерное распределение плотности в области растворителя).

Динамическая и статическая гетерогенность (Dynamic and static disorder)

- Атомы в процессе эксперимента находятся в движении (тепловые колебания). *Динамическая неопределенность.*
- Разные копии молекулы в кристалле могут иметь отличия в координатах атомов. Статическая неопределенность.
- Эксперимент дает информацию об усредненном по времени и пространству распределении электронной плотности в молекуле.
- Параметр неопределённости положения атома (Atomic Displacement Parameter, ADP) характеризует его динамическую и статическую неопределенность.
- Прежнее (историческое) название ADP температурный фактор (temperature factor, B-value)

Температурный фактор (temperature factor / Atomic Displacement Parameter / ADP)

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_j \left(\frac{4\pi}{B_j}\right)^{\gamma_2} \exp\left(-\frac{4\pi^2 |\mathbf{r}|^2}{B_j}\right)$$

Движение атома в процессе эксперимента «размазывает» распределение электронной плотности.

«Расплывание» плотности моделируется увеличением ширины гауссовых пиков.

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_{j} \left(\frac{4\pi}{B_{j} + B} \right)^{3/2} \exp\left(-\frac{4\pi^{2} |\mathbf{r}|^{2}}{B_{j} + B} \right)$$

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_{j} \left(\frac{4\pi}{B_{j} + B} \right)^{3/2} \exp\left(-\frac{4\pi^{2} |\mathbf{r}|^{2}}{B_{j} + B} \right)$$

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_{j} \left(\frac{4\pi}{B_{j} + B} \right)^{3/2} \exp\left(-\frac{4\pi^{2} |\mathbf{r}|^{2}}{B_{j} + B} \right)$$

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_{j} \left(\frac{4\pi}{B_{j} + B} \right)^{3/2} \exp\left(-\frac{4\pi^{2} |\mathbf{r}|^{2}}{B_{j} + B} \right)$$

Изотропный температурный фактор Atomic Displacement Parameter (ADP)

$$\rho(\mathbf{r}) = \sum_{j=1}^{5} C_j \left(\frac{4\pi}{B_j + B}\right)^{3/2} \exp\left(-\frac{4\pi^2 |\mathbf{r}|^2}{B_j + B}\right)$$
$$f(s) \Rightarrow f(s) \exp\left[-B\frac{s^2}{4}\right]$$
$$B = \frac{8\pi^2}{3} \langle |\Delta \mathbf{r}|^2 \rangle$$

АТОМ	30	Ν	SER	2	13.117	9.840	39.210 1.000 12	.49

ADP – не только подвижность атомов, но и гетерогенность молекул в кристалле.

Dynamic and static disorder.

Анизотропный температурный фактор

Введение анизотропных температурных факторов увеличивает число параметров модели до 9 на каждый атом. Применяется при работе с данными высокого разрешения.

9.840

1130

2105

13.117

1510

Изотропное значение

-393

-1019

39.210 1.000 12.49

447

Поправки, умноженные на 1000.

Fig. 18.4.1.1. The thermal-ellipsoid model used to represent anisotropic atomic displacement, with major axes indicated. The ellipsoid is drawn with a specified probability of finding an atom inside its contour. Six parameters are necessary to describe the ellipsoid: three represent the dimensions of the major axes and three the orientation of these axes. These six parameters are expressed in terms of a symmetric U tensor and contribute to atomic scattering through the term $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^*\cos\gamma^* + 2U_{13}hla^*c^*\cos\beta^* + 2U_{23}klb^*c^*\cos\alpha^*)].$

SER

SER

АТОМ

ANISOU

30

30

Ν

Ν

2

2

TLS - уточнение

(Translation/Libration/Screw)

TLS-параметры описывают вибрацию единой группы атомов.

В модели выделяются группы атомов, движущиеся как жесткое тело.

Каждая группа совершает возвратно-поступательные и вращательные колебания.

Для описания движения требуется 20 параметров на всю группу.

Если группы большие (больше 20 атомов), то такое описание требует меньше параметров, чем индивидуальные изотропные температурные факторы атомов.

Static disorder

Коэффициент заполнения / заселенность / оссиралсу

Идеальный кристалл - содержимое всех элементарных ячеек идентично.

Коэффициент заполнения / заселенность / оссиралсу

"Реальный" кристалл - молекула "воды" присутствует не во всех элементарных ячейках.
Для данных координат атома коэффициент заполнения показывает, какой процент элементарных ячеек кристалла содержат атом в указанной позиции.

Коэффициент заполнения / заселенность / оссиралсу

Альтернативные конформации

ATOM5490NATRP29529.8482.64316.1990.4997.13ATOM5514NBTRP29530.2712.78716.2000.5016.52

X-ray structure analysis

The solving of the structure

h	k	1	F	σ
0	0	6	46.09	2.74
0	0	8	212.95	5.00
0	0	20	98.75	3.15
0	1	6	188.33	5.06
0	1	7	14.88	8.00
0	1	8	226.02	7.9

The phase problem

X-ray structure analysis

 $\Omega_{\kappa} = \{\mathbf{r}: \rho_{\mathbf{S}}(\mathbf{r}) > \kappa\}$

refined model

preliminary model

Protein											
Dete							х	Y	Z	т	в
Data	5	CA	MET	А	1	0	1.530	3.431	5.646	1.00	9.39
Bank		С	MET	А	1	0	1.452	4.960	5.500	1.00	7.10
Dank		0	MET	А	1	0	1.808	5.574	4.503	1.00	10.54
ATOM	9	CB	THR	А	2	0	-0.430	7.045	7.578	1.00	23.54
ATOM	10	OG1	THR	А	2	0	-1.549	7.435	6.701	1.00	27.09
ATOM	11	CG2	THR	A	2	0	-0.265	7.733	8.906	1.00	21.71

Рентгеновские лазеры (XFEL)

Ультракороткие мощные импульсы.

"Обдирание электронов" – ионизация – кулоновский взрыв.

Регистрация до разрушения. (Diffraction before distraction)

Метод работает

Область использования – нанокристаллы, отдельные макромолекулы «Проточная» кристаллография (serial crystallography).

«Проточная» рентгеновская кристаллография

Serial crystallography

Одна рентгенограмма с одного кристалла

500 000 crystals 762 000 frames 20 000 contain a signal 4 000 - indexed

Исследование отдельных частиц

Дрожжевая клетка

Shapiro, Thibault, Beetz, Elser, Howells, Jacobsen, Kirz, Lima, Miao, Neiman, and Sayre PNAS, 2005 vol. 102 no. 43 15343– 5346

Мимивирус

200 nm

Siebert et al., 2011, Nature, 470, 78-82

Imaging single cells in a beam of live cyanobacteria with an X-ray laser

Schot et al.

Nature Communications 6, Article number: 5704 Published 11 February 2015

