Метаболические пути. KEGG.

описание ферментативной реакции

Нахождение на карте и описание случая, когда ферменты разного типа катализируют одну и ту же реакцию

1)Ответ на вопрос, в чем состоит различие между 2-мя запросами.

запрос mapPurine metabolism :     
path:map00230 Purine metabolism  - Reference pathway  

В данном случае была выдана только ссылка на карту метаболического пути пурина запрос referencePurine metabolism: path:ko00230 Purine metabolism - Reference pathway (KO) path:map00230 Purine metabolism - Reference pathway path:rn00230 Purine metabolism - Reference pathway (Reaction)

В данном случае была выдана ссылка на карту метаболического пути пурина,но в разных аспектах.

2)Purine metabolism

вся карта

3)Сравнение 2-х ферментов с разными ЕС, но катализирующими одну реакцию в выбранном фрагменте.

Entry

EC 1.17.1.4 EC 1.17.3.2

Name

----------------------------------

xanthine dehydrogenase;
NAD-xanthine dehydrogenase;
xanthine-NAD oxidoreductase;
xanthine/NAD+ oxidoreductase;
xanthine oxidoreductase 
----------------------------------

xanthine oxidase;
hypoxanthine oxidase;
hypoxanthine:oxygen oxidoreductase;
Schardinger enzyme;
xanthine oxidoreductase;
hypoxanthine-xanthine oxidase;
xanthine:O2 oxidoreductase;
xanthine:xanthine oxidase

Class

----------------------------------

Oxidoreductases
Acting on CH or CH2 groups
With NAD+ or NADP+ as acceptor 
----------------------------------

Oxidoreductases Acting on CH or CH2 groups With oxygen as acceptor

Sysname

----------------------------------

xanthine:NAD+ oxidoreductase

----------------------------------

xanthine:oxygen oxidoreductase

Reaction

----------------------------------

xanthine + NAD+ + H2O = urate + NADH + H+

----------------------------------

xanthine + H2O + O2 = urate + H2O2

Substrate

----------------------------------

Xanthine [CPD:C00385]; NAD+ [CPD:C00003]; H2O [CPD:C00001]

----------------------------------

Xanthine [CPD:C00385]; H2O [CPD:C00001]; O2 [CPD:C00007]

Product

----------------------------------

Urate [CPD:C00366]; NADH [CPD:C00004]; H+ [CPD:C00080]

----------------------------------

Urate [CPD:C00366]; H2O2 [CPD:C00027]

Comment

----------------------------------

Acts on a variety of purines and aldehydes, including hypoxanthine. The enzyme from eukaryotes contains [2Fe-2S], FAD and a molybdenum centre. The animal enzyme can be interconverted to EC 1.17.3.2, xanthine oxidase (the oxidase form). That from liver exists in vivo mainly in the dehydrogenase form, but can be converted into EC 1.17.3.2 by storage at -20 degC, by treatment with proteolytic agents or organic solvents, or by thiol reagents such as Cu2+, N-ethylmaleimide or 4-mercuribenzoate. The effect of thiol reagents can be reversed by thiols such as 1,4-dithioerythritol. This enzyme can also be converted into EC 1.17.3.2 by EC 1.8.4.7, enzyme-thiol transhydrogenase (glutathione-disulfide) in the presence of glutathione disulfide. In other animal tissues, the enzyme exists almost entirely as EC 1.17.3.2, but can be converted into the dehydrogenase form by 1,4-dithioerythritol. Formerly EC 1.2.1.37 and EC 1.1.1.204.

----------------------------------

An iron-molybdenum flavoprotein (FAD) containing [2Fe-2S] centres. Also oxidizes hypoxanthine, some other purines and pterins, and aldehydes (i.e. possesses the activity of EC 1.2.3.1, aldehyde oxidase). Under some conditions the product is mainly superoxide rather than peroxide: R-H + H2O + 2 O2 = ROH + 2 O2*- + 2 H+. The enzyme from animal tissues can be converted into EC 1.17.1.4, xanthine dehydrogenase. That from liver exists in vivo mainly as the dehydrogenase form, but can be converted into the oxidase form by storage at -20 degC, by treatment with proteolytic enzymes or with organic solvents, or by thiol reagents such as Cu2+, N-ethylmaleimide or 4-mercuribenzoate. The effect of thiol reagents can be reversed by thiols such as 1,4-dithioerythritol. EC 1.17.1.4 can also be converted into this enzyme by EC 1.8.4.7, enzyme-thiol transhydrogenase (glutathione-disulfide) in the presence of glutathione disulfide. The Micrococcus enzyme can use ferredoxin as acceptor.

Pathway

----------------------------------

PATH: map00230 Purine metabolism

----------------------------------

PATH: map00230 Purine metabolism

Ortholog

----------------------------------

KO: K00087 xanthine dehydrogenase

----------------------------------

KO: K00106 xanthine oxidase

Genes

----------------------------------

HSA: 7498(XDH) MMU: 22436(Xdh) RNO: 29289(Xdh) BTA: 280960(XDH) DME: CG7642-PA(Dmel_CG7642) CEL: F15E6.6 F55B11.1 ATH: At4g34890(F11I11.130) At4g34900(F11I11.140) DDI: DDB0230176(xdh) ECO: b0284(yagR) b0285(yagS) b2866(xdhA) b2867(xdhB) ECJ: JW0278(yagR) JW0279(yagS) JW2835(xdhB) ECE: Z0350(yagR) Z0351(yagS) Z4205 Z4206(ygeT) ECS: ECs0314 ECs0315 ECs3739 ECs3740 ECC: c3444 c3445(ygeT) SFL: SF2868(ygeS) SF2869(ygeT) SFX: S3068 S3069(ygeT) SSN: SSO_3017 SSO_3018(ygeT) XCC: XCC1091 XCC1092 XCC2727(yagR) XCC2728(yagS) XCC3709(yagR) XCB: XC_1386 XC_1387 XC_3157 XC_3158 XC_3780 XCV: XCV1214 XCV1215 XCV3044 XCV3045 XAC: XAC1187 XAC1188 XAC2893(yagR) XAC2894(yagS) PPR: PBPRA2243 PBPRA2244 PAE: PA1523(xdhB) PA1524(xdhA) PPU: PP4278(xdhA) PP4279(xdhB) PST: PSPTO2863 PSPTO3660 PSPTO3661 PSB: Psyr_1814 Psyr_1815 PSP: PSPPH_1774 PSPPH_1775(xdhA) PFL: PFL_1888(xdhB) PFL_1889(xdhA) PFO: Pfl_1796 Pfl_1797 Pfl_2107 ACI: ACIAD2466 ACIAD2467(xdhB) ACIAD2468(xdhA) CPS: CPS_4864 HCH: HCH_01098(xdhB) HCH_01099(xdhA) RSO: RSc2095(xdhA) RSc2096(xdhB) REU: Reut_A2425 Reut_A2426 Reut_A3076 Reut_B3594 BMA: BMA2041 BMA2042 BPS: BPSL2727(xdhB) BPSL2728(xdhA) BPM: BURPS1710b_3213(xdhB) BURPS1710b_3215(xdhA) BUR: Bcep18194_A3925 Bcep18194_B1541 BXE: Bxe_A0949 Bxe_A0950 Bxe_A3885 Bxe_A3886 EBA: ebA2062 BBA: Bd2633(xdhA) Bd2634(xdhB) DPS: DP2531(coxL) MLO: mlr5134 mlr5135 SME: SMb20132 SMb20846(xdhB2) SMb21011(xdhA2) SMb21286(xdhA1) SMb21287(xdhB1) ATU: Atu2309(xdhA) Atu2310(xdhB) ATC: AGR_C_4202 AGR_C_4204 BME: BMEI1575 BMEI1576 BMF: BAB1_0377 BMS: BR0349 BR0350 BMB: BruAb1_0375 BruAb1_0376 BJA: blr5211 CCR: CC2618 SIL: SPO0653(xdhB) SPO0654(xdhA) RSP: RSP_3206 RSP_3554(xdhA) RSP_3555(xdhB) JAN: Jann_2947 GOX: GOX0653 GOX0654 BSU: BG13988(pucE) BG13989(pucD) BG13990(pucC) BG13992(pucA) BCE: BC3165 BC3167 BC3168 BCL: ABC3740(pucA) ABC3741(pucB) ABC3742(pucC) ABC3743(pucD) ABC3744(pucE) SCO: SCO4971(2SCK31.31) SCO4972(2SCK31.32) AVA: Ava_C0126 DRA: DRA0177 DRA0178

----------------------------------

HSA: 7498(XDH) MMU: 22436(Xdh) RNO: 29289(Xdh) BTA: 280960(XDH) CEL: F15E6.6 ATH: At4g34890(F11I11.130) At4g34900(F11I11.140)

Disease

----------------------------------

MIM: 607633 Xanthine dehydrogenase (xanthine oxidase)

----------------------------------

MIM: 607633 Xanthine dehydrogenase (xanthine oxidase)

Reference

----------------------------------

1 [PMID:6960894] Battelli MG, Lorenzoni E. Purification and properties of a new glutathione-dependent thiol:disulphide oxidoreductase from rat liver. Biochem. J. 207 (1982) 133-8. 2 [PMID:4342395] Corte ED, Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J. 126 (1972) 739-45. 3 Parzen, S.D. and Fox, A.S. Purification of xanthine dehydrogenase from Drosophila melanogaster. Biochim. Biophys. Acta 92 (1964) 465-471. 4 [PMID:4294045] Rajagopalan KV, Handler P. Purification and properties of chicken liver xanthine dehydrogenase. J. Biol. Chem. 242 (1967) 4097-107. 5 [PMID:6061702] Smith ST, Rajagopalan KV, Handler P. Purification and properties of xanthine dehydroganase from Micrococcus lactilyticus. J. Biol. Chem. 242 (1967) 4108-17. 6 [PMID:11341925] Parschat K, Canne C, Huttermann J, Kappl R, Fetzner S. Xanthine dehydrogenase from Pseudomonas putida 86: specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim. Biophys. Acta. 1544 (2001) 151-65. 7 [PMID:8224915] Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene. 133 (1993) 279-84. 8 [PMID:11005854] Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 10723-8. 9 [PMID:11796116] Truglio JJ, Theis K, Leimkuhler S, Rappa R, Rajagopalan KV, Kisker C. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure. (Camb). 10 (2002) 115-25. 10 [PMID:11848841] Hille R. The Mononuclear Molybdenum Enzymes. Chem. Rev. 96 (1996) 2757-2816.

----------------------------------

1 Avis, P.G., Bergel, F. and Bray, R.C. Cellular constituents. The chemistry of xanthine oxidase. Part I. The preparation of a crystalline xanthine oxidase from cow's milk. J. Chem. Soc. (Lond.) (1955) 1100-1105. 2 [PMID:6960894] Battelli MG, Lorenzoni E. Purification and properties of a new glutathione-dependent thiol:disulphide oxidoreductase from rat liver. Biochem. J. 207 (1982) 133-8. 3 Bray, R.C. Xanthine oxidase. In: Boyer, P.D., Lardy, H. and Myrback, K. (Eds.), The Enzymes, 2nd ed., vol. 7, Academic Press, New York, 1963, pp. 533-556. 4 [PMID:4342395] Corte ED, Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J. 126 (1972) 739-45. 5 [PMID:2350174] Carpani G, Racchi M, Ghezzi P, Terao M, Garattini E. Purification and characterization of mouse liver xanthine oxidase. Arch. Biochem. Biophys. 279 (1990) 237-41. 6 [PMID:11092937] Eger BT, Okamoto K, Enroth C, Sato M, Nishino T, Pai EF, Nishino T. Purification, crystallization and preliminary X-ray diffraction studies of xanthine dehydrogenase and xanthine oxidase isolated from bovine milk. Acta. Crystallogr. D. Biol. Crystallogr. 56 Pt 12 (2000) 1656-8.

Other DBs

----------------------------------

IUBMB Enzyme Nomenclature: 1.17.1.4 ExPASy - ENZYME nomenclature database: 1.17.1.4 ERGO genome analysis and discovery system: 1.17.1.4 BRENDA, the Enzyme Database: 1.17.1.4

----------------------------------

IUBMB Enzyme Nomenclature: 1.17.3.2 ExPASy - ENZYME nomenclature database: 1.17.3.2 ERGO genome analysis and discovery system: 1.17.3.2 BRENDA, the Enzyme Database: 1.17.3.2 CAS: 9002-17-9

Cравнение биосинтеза триптофана из хоризмата (сhorismate) у мыши (Mus musculus) и E.coli K-12.

метаболизм: Phenylalanine, tyrosine and tryptophan biosynthesis

MUS MUSCALUS:

ESCHERUICHIA.COLI:

Различие в этих биосинтезах только одно - в E.coli он есть, а в Mus musculus - нет. В принципе это различие вполне логично - в более примитивных организмах,в отличие от более сложных, синтезируется большинство необходимых веществ , в то время, как более сложные получают их с пищей.

назад


© Рыбиной Алёны 2006