"Psychrobacter arcticus"




Описание бактерии

Psychrobacter arcticum - особая бактерия, способная существовать при температуре ниже 0 ° C. Psychrobacter arcticum - член семейства протеобактерий гамма. Эта группа обычно обитает в весьма разнообразных условиях, например в почвах, морском льде, а так же в коже и жабрах рыб. Штамм Psychrobacter 273-4 прослеживается в слоях вечной мерзлоты на территории Сибири, в частности в бассейне реки Колыма. Psychrobacter - диплококки. Этот штамм интересен для изучения тем, что он выживат после длительного замораживания, а также быстрее растет при низких температурах.
Особенно Psychrobacter arcticum интересуются астробиологи, так как это первая полная последовательность генома для получения любой pyschroactive бактерии. Psychrobacter характеризуют как орзанизм, способный расти в "неживой" среде.
Генетические и физиологические адаптации Psychrobacter подтверждают гипотезу о микробной жизни в внеземной среде.

Длина - 2650701
Количество нуклеотидов: 2650701
Количество РНК-генов: 64
Болезни: Ни

Последний проект геномной последовательности был выпущен 07/20/2005 от DOE совместно с Институтом геномов, но на сегодняшний день нет соответствующей публикации генома.



Таксономия

Psychrobacter arcticus 273-4
бактерия Bacteria
группа Proteobacteria
класс Gammaproteobacteria
порядок Pseudomonadales
семейство Moraxellaceae
род Psychrobacter
вид Psychrobacter arcticus
штамм 273-4

Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities.

Meziti A, Ramette A, Mente E, Kormas KA.
Department of Ichthyology and Aquatic Environment, University of Thessaly, Magnisia, Greece Max Planck Institute for Marine Microbiology, Bremen, Germany School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Abstract
The aim of this study was to investigate the gut bacterial communities of Nephrops norvegicus individuals, using a suite of molecular tools consisting of automated ribosomal intergenic spacer analysis, 16S rRNA gene-internal transcribed spacer clone libraries and FISH. The animals were collected from Pagasitikos Gulf, Greece, during different months of the year. The diversity of the gut bacterial communities was found to mostly vary with sampling time, which could be related to temporal variations in food supply. The 16S rRNA gene diversity analysis showed dominance of specific phylotypes for each month studied. February, May, July, August and October samples were rich in sequences related to the gammaproteobacterial genera Pseudoalteromonas, Psychrobacter and Photobacterium. September and December samples were dominated by phylotypes affiliated with uncultured representatives of Mollicutes, which are generally associated with the intestinal tracts of various animals. The presence of Gammaproteobacteria and uncultured Mollicutes in August and September samples, respectively, was further confirmed by FISH. None of the morphometric parameters considered was related to the temporal pattern of dominant bacterial communities.

БД PubMed
Psychrobacter arcticum.pdf 2000:2010[DP]



Ссылки:

БД PubMed
Genome reviews
JCVI CMR
Genomic tRNA Databasa
Genamics
RegPrecise

Received 31 August 2009/ Accepted 1 February 2010
Psychrobacter arcticus strain 273-4, which grows at temperatures as low as –10°C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (–10°C to –12°C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures.




©Alisa Garaeva