14

Figure 2-4. Definition of torsion and dihedral angles. (a) Torsion angle θ (A-B-C -D) describing orientations of bonds A-B and C-D with respect to the central bond B-C. (b) View along B \rightarrow C. θ is the torsion angle between the projected bonds A-B and C-D; the complement ϕ is called the dihedral angle. If A-B and C-D are cis-planar (coinciding in projection), angles θ and ϕ are 0° ; they are counted positive if the far bond C-D rotates clockwise with respect to the near bond A-B. (c) θ is defined as the angle between planes A-B-C and B-C-D. (d) The dihedral angle ϕ represents the angle between normals to these planes.

2: Defining Terms for the Nucleic Acids

Figure 2-3. Atomic numbering scheme and definition of torsion angles for a polyribonucleotide chain. Counting of nucleotides is from top to bottom, i.e., in the direction $O_{9^{*}} \rightarrow O_{3^{*}}$. Hydrogens at $C_{9^{*}}$ and oxygens at P are differentiated by 1 and 2 according to the rule given in the text. In deoxyribose, the hydrogen replacing $O_{9^{*}}$ is labeled 1, the other one, 2. For a full description of torsion angles, see Table 2-2.

2.5 Sugar Puckering Modes: The Pseudorotation Cycle

17

Table 2-2. Definition of Torsion Angles in Nucleotides [From (16).] $^{\alpha}$

Torsion angle	Atoms involved
α	(n-1)O ₃ '-P-O ₅ '-C ₅ '
β	$P-O_{5'}-C_{5'}-C_{4'}$
γ	$O_{5'}-C_{5'}-C_{4'}-C_{3'}$
γ δ	$C_{5'}-C_{4'}-C_{3'}-O_{3'}$
€	$C_{4'}-C_{3'}-O_{3'}-P$
ζ	$C_{3'}-O_{3'}-P-O_{5'(n+1)}$
χ	O4'-C1'-N1-C2 (pyrimidines)
	$O_{4'}-C_{1'}-N_9-C_4$ (purines)
ν_0	$C_{4'}-O_{4'}-C_{1'}-C_{2'}$
ν_1	$O_{4'}-C_{1'}-C_{2'}-C_{3'}$
ν_2	$C_{1'}-C_{2'}-C_{3'}-C_{4'}$
ν_3	$C_{2'}-C_{3'}-C_{4'}-O_{4'}$
ν_4	$C_{3'}-C_{4'}-O_{4'}-C_{1'}$

^{α} Atoms designated (n-1) and (n+1) belong to adjacent units.