Отчёт о качестве расшифровки структуры ЛДГ Cryptosporidium parvum, полученной методом РСА.

выполнен Шошиновой М.С.

группа 402 ФББ МГУ им. М.В.Ломоносова

Аннотация

В отчёте рассматривается модель структуры лактатдегидрогеназы с точки зрения критериев качества рентеноструктурных моделей. Проведён анализ экспериментальных данных, общих параметров модели и индикаторов её качества.

Введение

Лактатдегидрогеназа (ЛДГ)— фермент, осуществляющий катализ реакции превращения пирувата в лактат, в ходе которого в анаэробных условиях происходит окисление её кофактора - NADH. Лактат — конечный продукт молочнокислого брожения, способный передаваться между клетками, где он может использоваться в качестве источника пирувата в обратной реакции. Таким образом, ЛДГ регулирует как соотношение пируват/лактат, так и NADH/NAD⁺ в клетке.

Стуртоврогідішт рагушт — протист, паразитирующий в кишечнике человека и существующий в основном засчёт гликолиза. В поисках методов терапии для этого паразита была получена и расшифрована структура его ЛДГ (см. <u>Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.</u> Cook WJ, Senkovich O, Hernandez A, Speed H, Chattopadhyay D., Int J Biol Macromol. 2015 Mar;74:608-19. doi: 10.1016/j.ijbiomac.2014.12.019. Epub 2014 Dec 24., PMID: 25542170). ЛДГ Cryptosporidium parvum представляет собой гомотетрамер, каждый мономер которого состоит из A и B цепи.

Общая информация о модели

Биологическая единица ЛДГ представляет собой гомотетрамер А4, содержащий в качестве мономеров А-изоформы ЛДГ. Асимметрическая единица ЛДГ состоит из двух А-мономеров, представленных А и В-цепями по 317 АК-остатков каждая..

Расшифровка проводилась в рамках статьи (см. «Введение»). Структура получила PDB id 4ND1 и была помещена в банк 25.10.2013 одними из соавторов статьи (<u>Chattopadhyay, D., Cook, W.J.</u>) Отчёт о валидации структуры от 9 ноября 2017г. доступен по адресу:

https://files.rcsb.org/pub/pdb/validation_reports/nd/4nd1/4nd1_full_validation.pdf

1. Экспериментальные данные:

1.1 Пробоподготовка:

Образец представляет собой кристалл ЛДГ с глицерином в качестве растворителя, связанной с кофактором — NADH, и ингибитором — оксамидом (моноамид щавелевой кислоты). ЛДГ инкубировали с 1мМ пирувата и 100мкМ оксамида в 1,45-1,65М сульфата аммония и 0,1М какодилатном буфере на льду при рН=7 и t°=277К в течение часа для кристаллизации. Кристаллизация осуществлена методом Vapor Diffusion Hanging Drop.

1.2 Получение дифракционной картины:

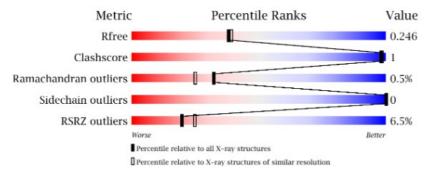
Использовалось излучение с длинной волны 1,5418нм, полученное на вращающемся аноде Rigaku RU300 с помощью Osmic® multilayer в качестве монохроматора.

1.3 Параметры кристаллографической ячейки:

Размеры, Å: a=94,82; b = 94,82; c=185,07

Углы: $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 120^{\circ}$

Тип симметрии: Р 3₂ 2 1 - тригональная, №154. Асимметрическая ячейка также обладает некристаллографической симметрией.


1.4 Результаты измерений:

Максимальное разрешение составило 2,15 Å, минимальное — 47,4 Å. Число измеренных рефлексов составило 50521, полнота набора 95%. Фазовая проблема решена методом молекулярного замещения.

Ниже представлена сводная таблица по пунктам 1 и 2:

Property	Value	Source
Space group	P 32 2 1	Depositor
Cell constants	94.82Å 94.82Å 185.07Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	47.40 - 2.15	Depositor
Resolution (A)	47.41 - 2.15	EDS
% Data completeness	95.0 (47.40-2.15)	Depositor
(in resolution range)	95.1 (47.41-2.15)	EDS
R_{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.74 (at 2.16Å)	Xtriage
Refinement program	CNS, REFMAC 5.7.0029	Depositor
D D	0.208 , 0.236	Depositor
R, R _{free}	0.224 , 0.246	DCC
R_{free} test set	5089 reflections (10.09%)	DCC
Wilson B-factor (Å ²)	38.4	Xtriage
Anisotropy	0.481	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37, 38.7	EDS
L-test for twinning ²	$< L > = 0.50, < L^2> = 0.33$	Xtriage
Estimated twinning fraction	0.027 for -h,-k,l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	4982	wwPDB-VP
Average B, all atoms (Å ²)	48.0	wwPDB-VP

2. Общее качество модели

Metric	Whole archive $(\# \mathrm{Entries})$	Similar resolution (#Entries, resolution range(Å))
R_{free}	100719	1170 (2.16-2.16)
Clashscore	112137	1278 (2.16-2.16)
Ramachandran outliers	110173	1256 (2.16-2.16)
Sidechain outliers	110143	1255 (2.16-2.16)
RSRZ outliers	101464	1175 (2.16-2.16)

Рис. 1 Показатели качества модели

R-фактор модели составляет 0,208, при этом R_free равен 0,236 по оценке авторов модели. Другая оценка выдаёт R-фактор 0,224, с R_free 0,246, что свидетельствует о среднем качестве модели. Вне электронной плотности оказалось 6,5% атомов.

2.1 Молекулярный состав модели.

Всего модель включает 5 типов молекул:

- 1) ЛДГ из двух цепей, A и B, по 317 остатков каждая. Содержит Ala вместо предполагаемого последовательностью гена ЛДГ Val в 202-ой позиции на обеих цепях.
- 2) NAD
- 3) оксамид (ОХМ) по одной молекуле на А- и В-цепи
- 4) глицерин (GOL) 3 на A и 1 на В-цепи
- 5) вода: 99 на А и 51 на В-цепи
- В модели отсутствуют атомы с нулевым размещением или альтернативной конфигурацией.

Рис. 2 Маргинальные остатки на A и B-цепях. Жёлтым показаны остатки как минимум с двумя маргиналами, красная точка свидетельствует о плохом соответствии электронной плотности (RSRZ < 2)

2.2 Геометрия молекулы ЛДГ

В таблице ниже можно видеть, что модель не содержит маргиналов по длинам и углам связей, хиральных маргиналов или остатков вне предполагаемых плоскостей. (RMSZ = корень из Z-score соответствующего критерия)

Mol	Chain	Bond	lengths	Bond	angles
WIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.27	0/2393	0.46	0/3243
1	В	0.27	0/2393	0.46	0/3243
All	All	0.27	0/4786	0.46	0/6486

2.3 Анализ столкновений

Конфликты расположения сведены в таблицу. Non-H и H(model) — число не

водородных и водородных атомов в соответствующей цепи, H(added) характеризует число добавленных атомов H, Clashes — число столкновений внутри асимметрической единицы на тысячу атомов модели, включая водородные, Symm-Clashes — столкновения, возникающие при симметрировании.

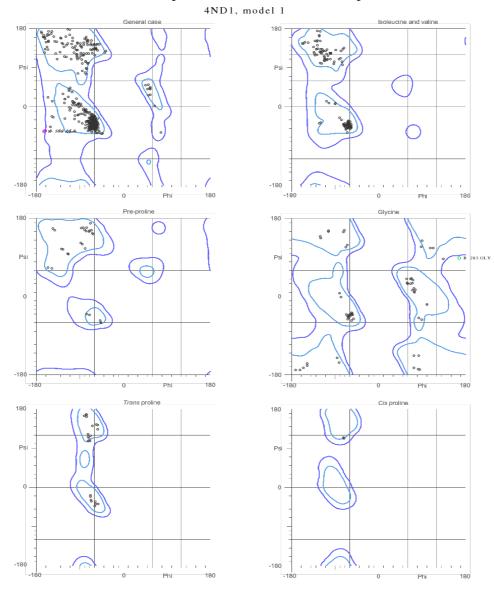
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2354	0	2387	4	0
1	В	2354	0	2387	4	0
2	A	44	0	26	0	0
2	В	44	0	26	0	0
3	A	6	0	2	0	0
3	В	6	0	2	0	0
4	A	18	0	24	0	0
4	В	6	0	8	0	0
5	A	99	0	0	0	0
5	В	51	0	0	0	0
All	All	4982	0	4862	8	0

Столкновения, появляющиеся при симметрировании ячейки, отсутствуют. Остальные столкновения охарактеризованы в таблице:

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:137:CYS:HB3	1:A:146:VAL:HG22	1.89	0.54
1:B:137:CYS:HB3	1:B:146:VAL:HG22	1.93	0.50
1:A:146:VAL:HG21	1:A:162:GLY:HA3	1.97	0.46
1:A:138:ILE:HD11	1:A:254:ALA:HB2	2.00	0.43
1:B:146:VAL:HG21	1:B:162:GLY:HA3	2.02	0.42
1:B:85:TYR:O	1:B:88:ILE:HG12	2.20	0.42
1:A:163:MET:SD	1:A:163:MET:C	2.99	0.40
1:B:215:PHE:HB3	1:B:220:ILE:HG22	2.04	0.40

2.4 Анализ торсионных углов

По таблицам ниже видно, что углеродный остов содержит три маргинальных остатка, а боковые цепи не содержат плохих ротамеров.


Таблица для углеродного остова:

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	$_{ m ntiles}$
1	A	315/321 (98%)	305 (97%)	9 (3%)	1 (0%)	44	41
1	В	315/321 (98%)	306 (97%)	7 (2%)	2 (1%)	28	20
All	All	630/642 (98%)	611 (97%)	16 (2%)	3 (0%)	32	25

Таблица для боковых цепей:

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	s
1	A	258/258 (100%)	258 (100%)	0	100 100	
1	В	258/258 (100%)	258 (100%)	0	100 100	
All	All	516/516 (100%)	516 (100%)	0	100 100	

MolProbity Ramachandran analysis

97.0%~(611/630) of all residues were in favored (98%) regions. 99.5% (627/630) of all residues were in allowed (>99.8%) regions.

There were 3 outliers (phi, psi):

- A 164 ALA (-163.0, -55.4) B 164 ALA (-164.6, -57.2) B 283 GLY (167.3, 89.6)

http://kinemage.biochem.duke.edu

Lovell, Davis, et al. Proteins 50:437 (2003)

По карте Рамачандрана общее число маргинальных остатков составляет 3, это порядка 0,5% и говорит о среднем качестве модели.

2.5 Маргиналы по электронной плотности

В качестве критерия маргинальности служит значение RSRZ (Real-Space-R-value-Z-score) > 2. Всего таких остатков 41, преимущественно на В-цепи. Значения RZRR для этих остатков варьируются от 2 до 7,8 с медианой 2,6.

3. Анализ маргинальных остатков

Для анализа взяты следующие маргиналы:

Цепь	Номер	Остаток	Причина	
В	333	PRO	RSRZ = 7,8	
В	282	LYS	RSRZ = 4,7	
В	164	ALA	Несоответствие карте Рамачандрана	
В	283	GLY	Несоответствие карте Рамачандрана	
A	137	CYS	Столкновение с Val146 на А-цепи (перекрытие 0,54нм)	

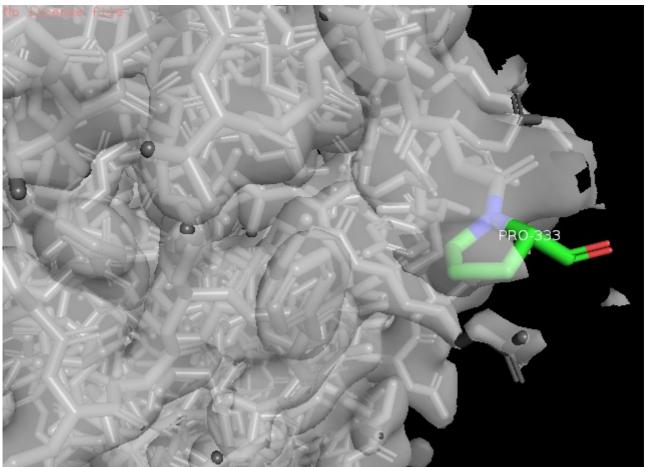


Рис. 4 PRO-333 находится на границе ячейки, и не покрывается функцией электронной плотности, вероятно, ввиду граничных условий, заданных при построении модели.

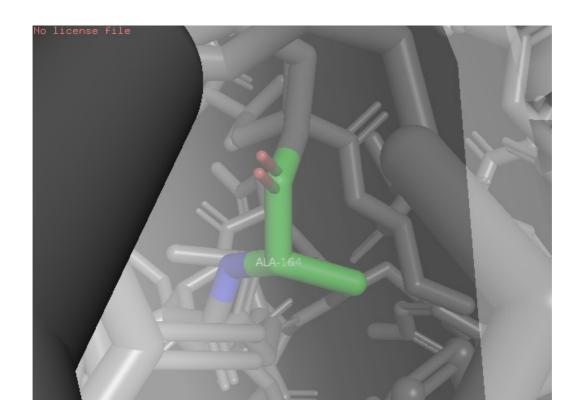


Рис. 5 Несоответствие карте Рамачандрана у ALA-164 на B-цепи вызвано особенностью её укладки: аланин искривляется соседними остатками. Такое же несоответствие наблюдается для ALA-164 на A-цепи.

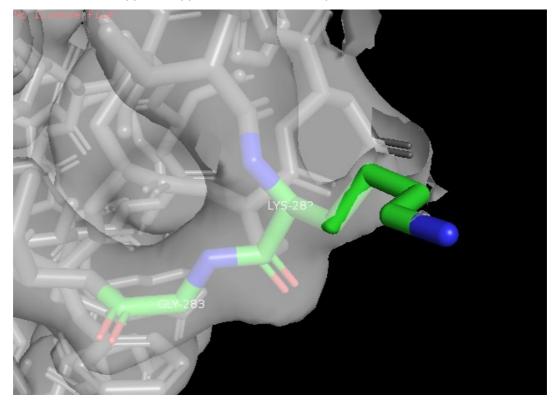


Рис. 6 Маргинальное значение электронной плотности у Lys-282 и несоответствие карте Рамачандрана связаного с ним Gly-283 на В-цепи, скорее всего, вызвано высокой подвижностью лизинового хвоста, вызывающей искажения у следующего за ним глицина в остовной цепи.

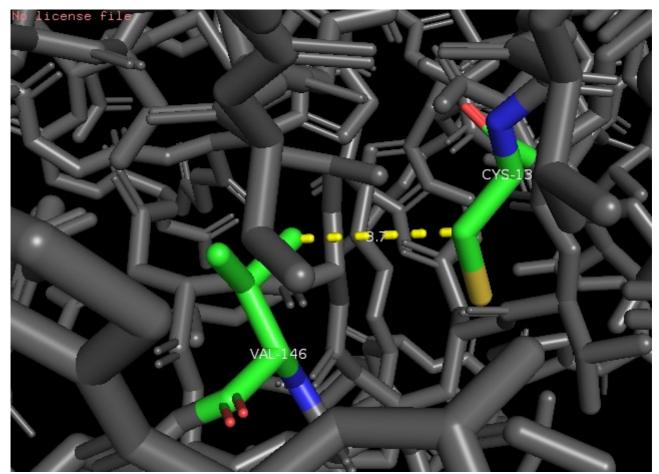


Рис. 7 Столкновение атомов водорода при Сβ CYS-137 и Сγ2 VAL-146, вероятно, вызвано подгонкой модели по качеству ротамеров: если немноо сместить хвосты остатков, перекрытие исчезнет, однако появятся плохие ротамеры. Симметричное несоответствие наблюдается на В-цепи.