МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

ФАКУЛЬТЕТ БИОИНЖЕНЕРИИ И БИОИНФОРМАТИКИ

Отчет по качеству рентгеноструктурного анализа гомолога белка SCO1 *Bacillus subtilis*

Отчет студента 4-го курса Елисеева Алексея Владимировича

Москва 2015

Аннотация

В отчете рассматривается модель структуры гомолога белка SCO1 *bacillus subtilis* (pdbкод: 1XZO). Будет рассказана общая информация о белке, будут проанализированы индикаторы качества модели, рассмотрены несколько маргинальных остатков, а также рассмотрены различные серверы для анализа качества структур белков.

Введение

Гомолог белка SCO1 (можно назвать еще BsSco) – представитель SCO1/2 семейства белков, участвующий в сборке цитохром с-оксидазы (в частности, в сборке одного из ее Сисвязывающих сайта). Чтобы разобраться, как BsSco может участвовать в сборке цитохром соксидазы, Qilu Ye с коллегами в 2004 году получили ее 3D модель (код PDB: 1XZO) [1].

Результаты и обсуждение

Общая информация о модели

Комплекс BsSco а модели представлен в виде димера, связанного с ионами кальция и кадмия. Однако, стоит заметить, что экспериментальными методами было установлено, что BsSco чаще находится в виде мономера [1].

Модель была получена в 2004 году Qilu Ye, Iveta Imriskova Sosova, Bruce C. Hill, и Zongchao Jia. Было измерено 54325 рефлексов, из которых 2771 (5%) были взяты для R_{free}. Для решения фазовой проблемы использовался метод изоморфоного замещения.

Рисунок 1. Изображение мономера BsSco (цепь А), полученное из модели 1XZO. Красным выделены альфа-спирали, синим – бета-тяжи, зеленым – атомы кальция, бежевым – кадмия. Изображение парного к нему мономера (цепь В) не показано.

Общая информация о модели находится в таблице 1.

Таблица 1. Общая информация о модели [2]				
Разрешение	1.70Å			
Диапазон разрешений структурных факторов	37.18 – 1.70Å			
Число измеренных рефлексов	54325			
Число использованных рефлексов	51554			
Полнота набора рефлексов	94.6%			
Параметры кристаллографической ячейки	a=68.03 Å, b=68,03 Å, c=191.73 Å			
	alpha=90.00, beta=90.00, gamma=120.00			
Кристаллографическая группа	Р 3 ₂ 2 1 (такой группой обладают 3.19% всех			
	известных моделеи. григонально- трапецоэдрический)			

R-value у модели равен 0.238, а R_{free} – 0.289, что, в принципе, приемлемые значения, так как не превышают 0.4, а разность R_{free} и R-value не больше 0.1.

Real-space R-value, применяемый для характеристики соответствия группы атомов (или отдельного атома) экспериментальной модели, представлен для двух цепей на рисунках 2 и 3. Z-score, относительная оценка RSR, представлена на рисунках 4 и 5.

Рисунки 2 и 3. Значения RSR для каждого остатка цепей А и В. "Плохими" значениями

Рисунки 4 и 5. Значения Z-score для цепей А и В. Слева – цепь А, а справа – цепь В.

При помощи сервиса MolProbity были построены карты Рамачандрана (рисунок 6). 92.88% остатков находятся в предпочитаемой зоне, 3% – в разрешенной, а еще 4% – в запрещенной. Также стоит заметить, что 10.53% остатков находится в нетипичных для их типа конформациях.

Рисунок 6. Карты Рамачандрана, построенные для разных остатков в модели 1XZO сервисом MolProbity [3]

Цепь	Остаток	Ramachandran	Rotamer	Перекрытие	RSR	Z-score
		outlier	outlier			
А	6Lys	+	+	0.76 Å A150Lys	0.384	3.92
А	21Gln		+		0.085	-0.46
А	31Leu и			0.94 Å	0.088	-0.17
	34Glu				0.111	-0.22
А	42Phe			0.69 Å A45Cys	0.109	0.54
А	45Cys		+	0.69 Å A42Phe	0.281	5.66
А	132Gln	+	+		0.557	7.61
А	135His	+			0.442	6.35
А	136Gln	allowed	+	0.52 Å HOH	0.307	3.18
А	150Lys		+	0.76 Å A6Lys	0.127	-0.04
В	46Glu			0.52 Å B47Thr	0.452	4.72
В	47Thr	+		0.52 Å B46Glu	0.499	8.55
В	135His	allowed				
В	136Gln	+	+		0.295	2.97

Анализ маргинальных остатков

Таблица 2. Некоторые маргинальные остатки.

Интересно, что в двух цепях остатки находятся в разных областях по карте Рамачандрана. Так, A135His находится в запрещенной зоне, а B135His в разрешенной (но не в предпочитаемой).

Для более подробного обзора были выбраны A6Lys, A45Cys, A132Gln, A135His и B47Thr.

У A6Lys довольно плохое значение RSR, а также высокое значение Z-score, что означает, что данный остаток не только имеет плохое вписывание в электронную плотность, но еще что и другие лизины имеют намного лучшее вписывание в ЭП.

Рисунок 7. Изображение электронной плотности вокруг A6Lys. Электронная плотность изображена в виде прозрачной серой поверхности.

Как можно заметить, лизин плохо вписан в электронную плотность. Более того, он странно изогнут, чтобы быть рядом с кадмием. Судя по всему он и плохо вписан в электронную плотность. Более того, он находится на расстоянии 3.58Å от A150Lys, что приводит к их перекрыванию.

У A45Cys тоже довольно высокое значение RSR (0.281). Однако Z-score его совсем высокий (5.66). Также известно, что этот цистеин вместе с A49Cys влияет на связывание белка с ионами меди [1]. Более того – эти два цистеина могут образовывать дисульфидные мостики.

Рисунок 8. Изображение электронной плотности вокруг A45Cys. Рядом находится A49Cys (отмечен голубым цветом).

Можно заметить, что цистеин, скорее всего, повернут не в ту сторону, что, в принципе, скорее всего и так: данный остаток маргинальный как раз по углам ротамеров.

У A132Gln имеется большие значения RSR и Z-score. Более того, он маргинален как по картам Рамачандрана, так и по углам ротамеров. Интересно (и это можно заметить на рисунке 8) то, что в участку белка, к которой он принадлежит, совсем нет электронной плотности. Скорее всего, он находится на подвижном участке белка.

У A135His похожая ситуация. Однако, данный остаток интересен тем, что в статье [1] подозревали, что он может координировать ионы меди. Но – вот беда – он находится довольно далеко от цистеинов (этим авторы статьи пытались объяснить отсутствие ионов меди в белке. Почему же так все получилось? Почему гистидин так отклонился? В задании 2_2 мы восстанавливали кристалл. Интересно, что A135His был там замечен (рисунки 9 и 10).

Рисунки 9 и 10. "Странное" положение A135His в белке. Красным отмечен белок из изучаемой ячейки, а серым – белки из других ячеек.

Данный остаток гистидина участвует в образовании связи с белком из другой ячейки, что, возможно, объясняет его странное положение.

У B47Thr высокий RSR (0.295) и Z-score (2.97). Он плохо вписан в карту Рамачандрана.

Рисунок 11. Изображение электронной плотности вокруг B47Thr.

Как можно заметить, треонин не очень хорошо вписан в электронную плотность. С другой стороны, он маргинал по карте Рамачандрана, которая в данном случае считалась для остова белка, который относительно хорошо вписан в электронную плотность. Так что остаток можно считать маргинальным.

Сравнение модели из PDB и модели из PDB_redo

Модель 1XZO была оптимизирована с помощью PDB_redo[4], а затем проверена сервисом MolProbity (таблица 3)

Структура из	PDB	PDB_redo
R	0.238	0.203
R _{free}	0.289	0.231
Clashscore	29.4 (5 th percentile)	7.52 (84 th percentile)
Poor rotamers	10.53%	5.11%
Ramachandran outliers	3.86%	2.37%
MolProbity score	3.18 (2 nd percentile)	2.38 (25 th percentile)

Таблица 3. Сравнение модели из PDB и из PDB redo

Интересно, что A6Lys и A132Gln не смогли перестать быть маргинальными остатками, а A45Cys, A135His и B47Thr перешли в область разрешенных остатков. Их измененное положение можно увидеть на рисунках 12-14.

Рисунок 12. Две наложенные друг на друга структуры: одна из PDB (бежевая с розовыми выделенными остатками), а другая – полученная с помощью PDB_redo (зеленая). Здесь можно увидеть изменение конформации A45Cys, A132Gln и A135His.

Рисунок 13. Две наложенные друг на друга структуры: одна из PDB (бежевая с розовыми выделенными остатками), а другая – полученная с помощью PDB_redo (зеленая). Здесь можно увидеть изменение конформации A6Lys.

Рисунок 14. Две наложенные друг на друга структуры: одна из PDB (бежевая с розовыми выделенными остатками), а другая – полученная с помощью PDB_redo (зеленая). Здесь можно увидеть изменение конформации B47Thr.

Заключение

Была рассмотрены основные индикаторы качества модели 1ХZО. В целом, модель можно назвать не очень хорошей: присутствует большое количество перекрываний остатков (которые, правда, улучшаются до хороших значений при использовании PDB_redo), присутствует довольно много "слабых" ротамеров, маргиналов по карте Рамачандрана. MolProbity score даже после оптимизации структуры в PDB_redo довольно низкая (несмотря на скачок со 2 до 25). Было замечено отсутствие электронной плотности участка модели с примерно 126 по 136 остатки. Возможно, это можно объяснить отсутствием структуры у белка.

Список литературы

[1] Ye Q, Imriskova-Sosova I, Hill BC, Jia Z. Identification of a disulfide switch in BsSco, a member of the Sco family of cytochrome c oxidase assembly proteins. Biochemistry. 2005

- [2] http://eds.bmc.uu.se
- [3] http://molprobity.biochem.duke.edu
- [4] http://www.cmbi.ru.nl/pdb_redo/