Hа Главную
Молекулярное моделирование биополимеров
Kodomo Home

Пример использования трехмерного QSAR анализа для предсказания активности низкомолекулярных соединений в отношении данного белка

  1. 3DQSAR анализ и построение регрессионной модели

    Коэффициенты корреляции для компонент, выделенных PLS
              Exp.   Cum. exp.        Exp.   Cum. exp.
    PC    var. X %    var. X %    var. Y %    var. Y %        SDEC          r2
    --------------------------------------------------------------------------
     0      0.0000      0.0000      0.0000      0.0000      0.9494      0.0000
     1     15.9480     15.9480     32.8386     32.8386      0.7780      0.3284
     2      5.1333     21.0813     36.3625     69.2011      0.5269      0.6920
     3      4.6235     25.7048     15.6991     84.9002      0.3689      0.8490
     4      3.8908     29.5956      7.5246     92.4248      0.2613      0.9242
     5      4.0108     33.6064      2.8661     95.2909      0.2060      0.9529
    
    r2 стремится к 1. Модель удачна.

    Кросс-валидация:
    PC        SDEP          q2
    --------------------------
     0      0.9658     -0.0348
     1      0.9164      0.0683
     2      0.9733     -0.0509
     3      0.9667     -0.0368
     4      0.9880     -0.0829
     5      0.9497     -0.0006
    
    Предсказание активности для тестовой выборки:
    PC    r2(pred)        SDEP
    --------------------------
     0      0.0000      1.0362
     1      0.2655      0.8881
     2      0.3296      0.8484
     3      0.2353      0.9061
     4      0.2754      0.8821                                                                                                                               
     5      0.2536      0.8953
    

  2. Анализ, учитывая структуру активного центра белка-мишени.

    Регрессионная модель:
              Exp.   Cum. exp.        Exp.   Cum. exp.
    PC    var. X %    var. X %    var. Y %    var. Y %        SDEC          r2
    --------------------------------------------------------------------------
     0      0.0000      0.0000      0.0000      0.0000      0.9494      0.0000
     1     12.1342     12.1342     48.4736     48.4736      0.6815      0.4847
     2     13.2295     25.3637     14.5885     63.0621      0.5770      0.6306
     3      7.6412     33.0049     13.2040     76.2661      0.4625      0.7627
     4      8.0257     41.0305      4.3684     80.6345      0.4178      0.8063
     5      6.0521     47.0827      3.8642     84.4987      0.3738      0.8450
    
    Кросс-валидация:
    PC        SDEP          q2
    --------------------------
     0      0.9658     -0.0348
     1      0.8027      0.2851
     2      0.7664      0.3484
     3      0.7061      0.4468
     4      0.6735      0.4968
     5      0.6401      0.5454
    
    Предсказание:
    PC    r2(pred)        SDEP
    --------------------------
     0      0.0000      1.0362
     1      0.3451      0.8385
     2      0.3226      0.8529
     3      0.2998      0.8671
     4      0.3012      0.8662
     5      0.2693      0.8858

  3. Работа, используя получившуюся модель для предсказания активности.

    Регрессионная модель:
               Exp.   Cum. exp.        Exp.   Cum. exp.
    PC    var. X %    var. X %    var. Y %    var. Y %        SDEC          r2
    --------------------------------------------------------------------------
     0      0.0000      0.0000      0.0000      0.0000      0.9749      0.0000
     1     12.8375     12.8375     44.4004     44.4004      0.7269      0.4440
     2     14.5264     27.3638     14.3748     58.7753      0.6260      0.5878
     3      6.9607     34.3245     11.2007     69.9760      0.5342      0.6998
     4      8.4659     42.7904      5.4939     75.4699      0.4828      0.7547
     5      4.7600     47.5503      5.7466     81.2166      0.4225      0.8122
    
    Кросс-валидация:
    PC        SDEP          q2
    --------------------------
     0      0.9865     -0.0240
     1      0.8305      0.2743
     2      0.7666      0.3816
     3      0.7394      0.4247
     4      0.7339      0.4332
     5      0.7380      0.4269
    
    Предсказание:
    PC    r2(pred)        SDEP
    --------------------------
     0      0.0000      6.6604
     1      0.0294      6.5616
     2     -0.0102      6.6942
     3      0.0265      6.5717
     4     -0.0480      6.8183
     5     -0.0950      6.9696
    External predictions for dependent variable  1 (activity)
    --------------------------------------------------------------------------------------------------------------------------------------
        N   ID    Name                                      Actual           1           2           3           4           5    Opt PC n
    --------------------------------------------------------------------------------------------------------------------------------------
       86   86    01                                        0.0000      7.0954      7.5090      7.3772      7.6623      7.8822           1
       87   87    44                                        0.0000      6.9300      7.0808      6.9883      7.1990      7.4119           1
       88   88    72                                        0.0000      5.5493      5.2836      5.1285      5.3788      5.3537           3
    
    Наиболее правильным будет основываться на столбец 4, так как он содержит наилучшее q2


© Кузнецов Виктор Петрович