Лекция 4. Введение в квантовую химию. Продолжение.

Курс: Молекулярное моделирование в применении к биомолекулам

Головин А.В.¹

¹МГУ им М.В. Ломоносова, Факультет Биоинженерии и Биоинформатики.

Москва, 2020

Волновая функция

Wikipedia * : Волновая функция — комплекснозначная функция, используемая для описания чистого квантового состояния системы. Обычно функция имеет комплексные значения, а для одной частицы это функция пространства и времени. Изменение волновой функции сравнимо с поведением волны.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении. Раздел:

Уравнение Шредингера

Итак обзовем оператором Н (Гамильтониан):

$$H = \frac{-\hbar^2}{2m}\nabla^2 + V$$

тогда :

$$H\Psi = E\Psi$$

Для решения этого уравнения надо найти значения E и волновой функции. Это уравнение относится к типу дифференциальных уравнений с собственными значениями, где оператор действующий на функцию возвращает произведение скалярной величины на функцию.

Приближение Борна-Оппергеймера

Если мы считаем, что ядра двигаются сильно медленнее чем

электроны, то мы можем считать

.т.

$$\Psi_{total} = \psi_{electronic}\psi_{nucleic}$$
$$E_{total} = E_{electronic} + E_{nucleic}$$

Google: electron mass = $9.10938188 \times 10^{-31} kg$ proton mass = $1.67262158 \times 10^{-27} kg$

Одно-электронный атом

Рассматривая одно-электронный атом можно и учитывая, что система имеет сферическую симметрию и её можно представить волновую функцию в сферических координатах:

$$\Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

Уравнение Шредингера разбивается на 3 уравнения с 1 или 2умя параметрами.

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) Y_\ell^m(\vartheta,\varphi);$$

 $L^{2\ell+1}_{n-\ell-1}(\rho)$ - Обобщённый полином Лагерра степени n-l-1 ; $\rho=\frac{2r}{na_0}$ $Y^{\ell}_{\ell}(\vartheta,\varphi)$ - Сферическая гармоника ;

$$\Psi_{1,0,0}(1s) = \sqrt{\frac{Z^3}{\pi}} e^{-Zr}; \quad \Psi_{1,0,0}(2p_0) = \sqrt{\frac{Z^3}{2^5\pi}} Zr e^{-Zr/2} cos\theta$$

Многоэлектронный атом

Полное решение уравнение Шредингера для многоэлектронного атома затруднено, по ряду причин:

- N-body problem, суть вопроса, предсказать движение трёх и более тел на всём течении времени, если известны положение и скорости на текущий момент.
- Добавление четвёртого экспериментального квантового числа, спина, создаёт необходимость различать электроны.
- Появление r_{ij}⁻¹ в гамильтониане приводит к невозможности разделения перпеменных в сферических координатах.

Раздел:

Принцип Паули Для 1s можно построить матрицу:

$$\Psi = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(r_1)\sigma_1(\alpha) & \chi_1(r_2)\sigma_2(\alpha) \\ \chi_1(r_1)\sigma_1(\beta) & \chi_1(r_2)\sigma_2(\beta) \end{vmatrix}$$

или

$$= \frac{1}{\sqrt{2}} \chi_{1s}(r_1) \chi_{1s}(r_2) \begin{vmatrix} \sigma_1(\alpha) & \sigma_2(\alpha) \\ \sigma_1(\beta) & \sigma_2(\beta) \end{vmatrix}$$

Тогда мы переходим к N:

$$\Psi = \frac{1}{\sqrt{N}} \begin{pmatrix} \chi_1(1) & \chi_1(2) & \cdots & \chi_1(N) \\ \chi_2(1) & \chi_2(2) & \cdots & \chi_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_N(1) & \chi_N(2) & \cdots & \chi_N(N) \end{pmatrix}$$

это и есть **Определитель Слейтора**, орбитальное приближение волновой функции.

Метод самосогласованного поля, SCF

Межэлектронное отталкивание вычисляется как влияние общего (среднего) поля на данный электрон, и это зависит только от положения данного электрона.

Это приближение позволяет повторить разделение переменных в сферических координатах.

$$H_i = \frac{-\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{j\neq i}^N \left\langle \left(\frac{e^2}{4\pi\epsilon_0 r_{ij}}\right) \right\rangle_j$$

Эти уравнения называют одноэлектронными. Суть решения состоит в итеративном изменении параметров в функциях, до тех пор пока изменение энергии не станет незначительным.

Метод: Хартри-Фока:

Аппроксимация многоэлектронной волновой функции детерминантом Слейтора и решение методов самосогласованного поля приводят к методу Хартри-Фока, в котором точный гамильтониан заменён оператором Фока.

$$F_i = -\frac{1}{2}\nabla_i^2 - \frac{Z}{r_i} + \sum_j^N \left[\int \chi_j^*(x_j) \frac{1}{r_{ij}} \chi_j(x_j) \partial x_j - \int \chi_j^*(x_j) \frac{1}{r_{ij}} \chi_i(x_j) \partial x_j \right] = \epsilon_i \chi_i(x_i)$$

энергия электрона на орбитали χ_i

$$\epsilon_i = H_i + \sum_{j \neq i}^{N} [J_{ij} - K_{ij}]$$

Перейдём к молекулам:

Решать напрямую уравнения ХФ по отношению к молекулам, тяжело. Одной из успешных стратегий является введение базисных функций, т.е. волновая функция это комбинация одноэлектронных базисных функций и некоторых коэффициентов.

$$\psi_i = \sum_{\nu=1}^{K} c_{\nu i} \psi_{\nu}; \quad \frac{\partial E}{\partial c_{\nu i}} = 0$$

Подход Рутхана-Хола

Если молекулярная орбиталь это сумма функций с коэффициентами, то и надо их искать. Вспомним свойство операторов:

$$\psi_i = \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu}; \quad F \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu} = e_i \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu}$$

FC =SCE , где S это интеграл перекрывания , $S_{ij}=\langle b_i|b_j
angle=\int \dot{\chi_i}\chi_j\partial r$

$$C = \begin{vmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,k} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k,1} & c_{k,2} & \cdots & c_{k,k} \end{vmatrix} \quad E = \begin{vmatrix} e_1 & 0 & \cdots & 0 \\ 0 & e_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_i \end{vmatrix}$$

Непосредственно процедура счёта

Словами:

- Посчитать интегралы для заполнения матрицы F
- Посчитать матрицу перекрывания S
- Диаганолизируем матрицу S
- Строим $S^{-1/2}$
- Угадываем или рассчитываем матрицу плотности Р
- Строим матрицу F заполняя значениями интегралов и P

• Строим
$$F' = S^{-1/2}FS^{-1/2}$$

- Решаем |F'- EI|=0 для поиска собственных значений Е и С' диаганолизации F'.
- Рассчитываем орбитальные коэффициенты $C=S^{-1/2}C^{\prime}$
- Считаем новую матрицу плотности из матрицы С
- Если плотность изменилась не значительно заканчиваем или продолжаем заполнять матрицу F

Итак ab initio:

Как мы видели выше, электронную структуру молекулы можно посчитать зная только основные физические константы, такие подходы и называются *ab initio*.

Базисные наборы

Часто орбитальные функции Слейтора аппроксимируют гауссиановскими функциями. В общем виде это:

 $x^a y^b z^c e^{-\alpha r^2}$

Важное свойство, сумму двух функций можно представить одним гауссианом, т.е.:

$$\phi_{\mu} = \sum_{i=1}^{L} d_{i\mu} \phi_i(\alpha_{i\mu})$$

Подробнее:

При выборе базисных функций надо выполнить всего два условия:

- Они должны иметь физический смысл.
- Интегралы должны быть сходимыми.

Обычная практика – это использовать функции типа гауссиана, потому что их легко считать.

 ϵ = -0.4665819 a.u. = 12.697 eV.

В реальности 13.606 eV. И ошибка 87.7 кДж/моль

Каждая молекулярная орбиталь разлагается в набор базисных функций, центрированных около ядра и обычно называемых атомными орбиталями.

Головин А.В. (МГУ)

Весна, 2020 17 / 40

Базисные наборы

Чем больше гауссианов описывают основные орбитали атомов тем ближе это описание к орбиталям Слейтора:

Естественно можно менять два параметра d и альфа, такие вычисления называют uncontracted. Но с точки зрения расчётов это не выгодно и часто используют contracted вычисления.

Гауссианы:

$$\begin{split} 1s &= Ne^{\alpha r^{2}}; \quad 2p_{x} = Ne^{\alpha r^{2}}x; \quad 2p_{y} = Ne^{\alpha r^{2}}y; \quad 2p_{z} = Ne^{\alpha r^{2}}z; \\ 3d_{xx} &= Ne^{\alpha r^{2}}x^{2}; \quad 3d_{xy} = Ne^{\alpha r^{2}}xy; \quad 3d_{xz} = Ne^{\alpha r^{2}}xz; \\ 3d_{yy} &= Ne^{\alpha r^{2}}y^{2}; \quad 3d_{yz} = Ne^{\alpha r^{2}}yz; \quad 3d_{zz} = Ne^{\alpha r^{2}}z^{2}; \\ 4f_{xxx} &= Ne^{\alpha r^{2}}x^{3}; \quad 4f_{xxy} = Ne^{\alpha r^{2}}x^{2}y; \quad 4f_{xxz} = Ne^{\alpha r^{2}}x^{2}z; \end{split}$$

И так далее.

Basis set сокращения:

Рассмотрим самую популярную схему сокращения информации об использованных базисах на примере серии программ Gaussian.

Minimal basis set: STO-nG, рассматриваются только орбитали атомов. Для элементов не содержащих d орбиталей STO-3G является абсолютным минимум. Плохо работает для несферических орбиталей и элементов в конце периода. Double zetta basis: Это линейная комбинация contracted и diffuse функций, которая даёт результат более точный чем STO. Коэффициенты считаются в ходе итераций, что позволяет работать с анизотропией рх,ру,рг. Split valence double zetta: Подход простой, валентные оболочки описываем большим количеством функций, чем соге электроны. 3-21G: 3 contracted гауссина описывают соге орбитали, внешние орбитали: 2 contracted и 1 дифузный. 3-21G, 4-21G, 6-31G.

Описания базисных наборов для программы GAUSSIAN:

Общий вид обозначений от Поупл и коллег: M-ijk..G

- М количество ограниченных гаусианов на один не валентный электрон
- Наличие двух и более букв после "-" означает, что валентные электроны описываются 2 и более функциями, каждая из которых состоит из линейной комбинации i,j,k гауссианов
- * -Означает, что для тяжёлый атомов используются не только гауссианы характерные для конкретной орбитали, но и гауссианы следующей орбитали.

Например для углерода в **3-21*G**: у валентных электронов с 3 гауссианами прибавляется 6 гауссианов для d-орбиталей.

Описания базисных наборов для программы GAUSSIAN:

 ** то же самое, что и * ,но добавляются 3 гауссиана для p-орбиталей к гауссианам Н и Не.

 + Означает добавление дополнительных гауссианов тех же орбиталей, но с маленьким значением а. Этот шаг нужен для точного счёта систем где значительная электронная плотность удалена от ядра: электронные пары, анионы.

Итак:

Запись Базиса	Количество гауссианов на орбиталь, для С	Применение
STO-3G	3	Большие системы
6-31G	6 - не валентные 3+1 - валентные	Системы без поляризации
6-31*G	То же самое + 6 функций типа l+1	Системы с анизотропией заряда
6-31**G	см. выше + 3 р-функции для H и He	Водородная связь
6-31+G(2df)	Поляризационные: 2*6 d- функций + 7 f- функций (см *) Диффузных : 4	Нужно там, где важно точно рассчитать высокую плотность электронов
6-311++ G(3df,3pd)	Диффузные на все атомы и поляризационные на С: 3*6 d типа + 7 f типа H: 3*3 р типа + 1 d типа	Если всё, что было до этого было не достаточно точным.

Как не надо:

• 3-21++G(2df,2pd)

Только две функции на валентную орбиталь и 3 поляризационных набора функции с кучей гауссианов и диффузные наборы.

• 6-311+G(2df)

3 набора на валентную орбиталь, 3 поляризационных + диффузный набор для тяжёлых атомом и отсутствие поляризации для водорода?

Семи-эмпиричиские методы:

Задача: число двух электронных интегралов пропорционально М4, где М это количество или размерность атомного базиса. Сложно считать большие электронные системы.

- Основная идея: это уменьшить стоимость счёта за счёт двух электронных интегралов.
- Цель: описание либо больших систем, либо качественная оценка.

Основные приближения

- Рассматриваются только валентные электроны
- В молекулярных орбиталях учитываются АО с n, соответствующим высшим заселённым орбиталям
- Для двухэлектронных интегралов вводят приближение нулевого дифференциального перекрывания.

$$\chi_{\mu}(r)\chi_{\nu}(r)dr = 0, \mu \neq \nu$$

 Двухэлектронные интегралы зависят только от природы атомов, на которых центрированы орбитали χ_{μ} и χ_{ν} , и не зависят от конкретного вида орбиталей. Для обозначения среднего значения интегралов используют γ_{AB}

Приближение нулевого дифференциального перекрывания:

Основная идея: уменьшение количества интегралов, за счёт обнуления перекрывания некоторых орбиталей.

Если два ядра далеко друг от друга то вероятно центрированные к ядрам функции не перекрываются.

Основной результат с точки зрения уравнений это матрица обмена, S=1 Тогда уравнение Рутан-Хола будет выглядеть как: FC=CE

Это приближение называют **ZDO**.

Приближение нулевого дифференциального перекрывания:

Это приближение слишком сильное для атомов объединённых в молекулу.

Существуют несколько модификаций:

- CNDO: идея применяется ко всем парам функций, не нулевыми оставались только кулоновские интегралы
- INDO, MINDO/х: учитывалось перекрывание всех функций центрированных на одном ядре.
- NDDO,MNDO: пренебрегается двухатомное перекрывание.

АМ1,РМ3: Улучшенные и современные варианты параметриризации MNDO. Программы: MOPAC, OPENMOPAC, AMPAC Раздел:

Источники параметризации

Метод	источник
CNDO/2	электронная плотность, электроны спарены
CNDO/S	спектры, электроны спарены
INDO	электронная плотность, электроны не спарены
INDO/S	спектры, электроны не спарены
ZNDO и ZNDO/S	тоже самое только для переходных элементов
MINDO/3	теплоты образования

Сравнение методов

Метод	Параметризуемое св-во	Хорошо воспроизводимые св-ва	Плохо воспроизводимые св-ва
CNDO/2	Разности энергий между занятыми МО	Дипольные моменты, длины связей, валентные углы, силовые константы	Теплоты образования, потенциал ионизации, сродство к электрону, спектры, ре-акции
CNDO/S, INDO/S, ZINDO	Электронный спектр	Спектр	Теплоты образования, геометрия молекул, реакции
INDO	Спиновые плотности	Спиновые плотности, константы сверхтонкого взаимодействия, геометрия молекул	Теплоты образования, по- тенциалы ионизации, срод-ство к электрону, электрон-ные спектры
MINDO/3	Потенциал атоматомного взаимодействия	Теплоты образования, потенциа- лы ионизации, длины связей	Электронные спектры, во- дородная связь
MNDO	Теплоты образования	Теплоты образования,геометрия молекул	Электронные спектры, водородная связь
AM1	Теплоты образования	Теплоты образования,геометрия молекул	Электронные спектры
РМЗ	Теплоты образования, параметры межмолекулярного взаимодействия	Теплоты образования, геометрия молекул, водородная связь, межмолекулярные взаимодействия	Электронные спектры

Недостаток подхода Фока:

Метод Фока работает для систем близких к минимуму энергии. И не работает для возбуждённых систем, систем где наблюдается переход из одного стабильного состояния в другое стабильное и тд.

$$\Psi(1,2\ldots N) = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_n} c(k_1\ldots K_N)\psi_{k1}(1)\psi_{k2}(2)\ldots \psi_{kN}(N)$$

$$\Psi(1,2\ldots N) = \sum_{K}^{C_{K}} \Psi_{K}(1\ldots N)$$

Это переводится в бесконечный ряд и в случае Фока мы учитываем только один член.

Недостаток подхода Фока:

Повысить точность счёта мы можем удачно учтя некоторые компоненты ряда. Значит надо минимизировать:

$$E = E_{real} - E_{HF}$$

Существуют три основных метода:

- Конфигурационного взаимодействия
- Метод самосогласованного поля
- Теория возмущение Меллера-Плессе

Метод конфигурационного взаимодействия

Мы нашли М спиновых орбиталей и N из них заняты электронами, именно их мы и используем для расчётов и подменим некоторые орбитали в найденной матрице новыми орбиталями. Т. е. создадим возбуждённую молекулу.

$$\Psi_{CI} = \sum_{K=0}^{\infty} C_K \Psi_K$$

Применяем подход Рутхана-Хола и находим коэффициенты С. Этот подход и является методом конфигурационного взаимодействия (CI). Тут необходимо заметить, что для каждого возбуждённого состояния надо свой детерминант Слейтора и считать орбитали заново.

Корреляция электронов

- Расчёт электронных взаимодействий по Хартри-Фоку игнорирует мгновенное кулоновское отталкивание, что приводит к ошибкам примерно в 1% общей энергии и это химически значимо.
- СІ конечно ограничен из-за сложности счёта, но обычно учёт однократно- и двухкратновозбужденные конфигураций позволяет покрыть 95% корреляционной энергии и понизить энергию системы на 200-300 кДж.
- Таким образом можно правильно описать диссоциацию N_2

Метод самосогласованного поля

Метод CI хорош когда предсказанные методом Фока орбитали достаточно близки к реальности. В методе самосогласованного поля предлагается варьировать не только коэффициенты C, но и форму орбиталей:

$$\Psi = \sum_{K=0}^{\infty} C_K \Psi_K(\delta \psi_1 \delta \psi_2 \dots \delta \psi_K)$$

Как и ранее мы не можем взять и использовать все комбинации, поэтому рассматривают только однократные и двухкратные состояния возбуждения.

Можно явно указать на какой уровень будет переходить возбуждаемый электрон.

- В DFT система описывается не волновой функцией, а функцией электронной плотности, включающей вклад всех электронов.
- Предполагается, что для любой реальной системы с потенциалом и плотностью существует такая воображаемая «невзаимодействующая» система (т.е. система, в которой отсутствует межэлектронное взаимодействие) с некоторым одноэлектронным потенциалом, электронная плотность которой (*p_s(r)*) совпадает с точной электронной плотностью реальной системы.

$$\rho(r) = \rho_s(r) = \sum_i^N |(\chi_i)|^2$$

Основная идея теоремы Хоэнберга-Кона:

Если в системе постоянное кол-во электронов, то их взаимное взаимодействие не зависит от внешнего потенциала. Тогда разбиваем энергию электронов на:

$$E = E^T + E^V + E^J E^{XC}$$

- Т кинетическая составляющая
- V потенциальная энергия (ядра)
- Јотталкивание электронов
- ХС обменно-корреляционная составляющая.

Хоненберг и Кохн показали, что E^{XC} зависит только от электронной плотности. Обычно E^{XC} разбивают: $E^{XC} = E^X + E^C$ Обе части зависят от плотности и их часто представляют как:

• локальные, которые зависят только от плотности

$$E^X_{LDA} = 3/2 \left(\frac{3}{4\pi}\right)^{1/3} \int \rho^{4/3} \partial^3 r$$

 Градиент-корректированные, они зависят от плотности и её градиента

Широко используемый сегодня функционал Bekke 88 года:

$$E_{Bekke88}^{X} = E_{LDA}^{X} - \gamma \int \frac{\rho^4 / 3x^2}{(1 + 6\gamma \sin h^{-1}x)} \partial^3 r; \quad x = \frac{|\nabla^2 \rho|}{\rho^{4/3}}$$

Появились корреляционные функционалы:

- Pedrew и Wang (1991)
- Vosko, Wilk и Nusair (1980)

И так далее. Часто применяются гибридные функционалы:

$$E_x^{HF} = \frac{1}{2} \sum_{i,j} \int \int \psi_i^*(r_1) \psi_j^*(r_1) \frac{1}{r_{12}} \psi_i(r_2) \psi_j(r_2) dr_1 dr_2$$

$$E_{xc}^{B3LYP} = E_{xc}^{LDA} + a_0(E_x^{HF} - E_x^{LDA}) + a_x(E_x^{GGA} - E_x^{LDA}) + a_c(E_c^{GGA} - E_c^{LDA})$$

где:

$$E_{XC}^{GGA}[n_{\uparrow},n_{\downarrow}] = \int \epsilon_{XC}(n_{\uparrow},n_{\downarrow},\vec{\nabla}n_{\uparrow},\vec{\nabla}n_{\downarrow})n(\vec{r})d^{3}r$$

Применение:

- Современные функционалы дают хорошую производительность при хорошей точности результатов.
- В расчётах квантовой химии одним из распространённых является виды обменного функционала BLYP, B3LYP.
- В DFT есть проблемы в описании Ван-дер-Ваальсовых взаимодействий или дисперсионного взаимодействия, т.е. стэкинг и π – π взаимодействия. Их в принципе можно компенсировать аналитическими потенциалами.
- «В целом, текущее состояние метода теории функционала плотности таково, что невозможно оценить погрешность расчёта, не сравнивая его результаты с другими подходами или с результатами экспериментов" ru.wikipedia.org