# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Имени М.В. ЛОМОНОСОВА

# ФАКУЛЬТЕТ БИОИНЖЕНЕРИИ И БИОИНФОРМАТИКИ

Отчёт по качеству расшифровки структуры с PDB-кодом 1E5K, Полученной методом рентгеноструктурного анализа

> Работа студента 4 курса Сафронова Григория

Москва 2017 г.

# АННОТАЦИЯ

В этой работе представлен анализ качества расшифровки структуры 1E5K, рассмотрены основные индикаторы качества модели, а также несколько маргинальных остатков.

# введение

Для анализа был выбран белок *Molybdopterin-synthase* adenylyltransferase из организма *E.coli*. Этот фермент (EC 2.7.7.80) катализирует реакцию:

GTP + molybdenum cofactor = diphosphate + guanylyl molybdenum cofactor.

Этот фермент аденирует С-конец небольшой субъединицы молибдоптеринсинтазы[1].

# РЕЗУЛЬТАТЫ

## 1. Общая информация о модели

Структура 1E5K была создана в 2000 году и описана в статье "Crystal Structure of the Molybdenum Cofactor Biosynthesis Protein MobA from Escherichia coli at Near-Atomic Resolution" авторов Stevenson, C.E.M.; Sargent, F.; Buchanan, G.; Palmer, T.; Lawson, D.M.

В таблице 1 представлена краткая характеристика структуры белка[2].

Таблица 1. Основные параметры структуры 1Е5К.

| Параметр                        | Значение                          |
|---------------------------------|-----------------------------------|
| Разрешение структуры            | 1,35 Å                            |
| Количество измеренных рефлексов | 38232                             |
| Полнота данных                  | 97,6%                             |
| Диапазон разрешений             | 36.66 - 1.35 Å                    |
| Тип симметрии                   | P 2 <sub>1</sub> 2 <sub>1</sub> 2 |
| Параметры кристаллографической  | a=76.57 Å, b=41.76 Å, c=54.53 Å,  |
| ячейки                          | вектора ортоганальны              |
| Метод решения фазовой проблемы  | Многоволновое аномальное          |
|                                 | рассеяние                         |

## 2. Значения индикаторов качества модели в целом

На рисунке 1 показаны значения индикаторов относительно всех структур PCA. Из всех значений хорошими можно назвать только Clashscore и Sidechain outliers.



#### Рис. 1 Значение различных индикаторов качества модели.

Значения R-фактора и R-free составляет 0,184 и 0,213, соответственно [3]. Так как значения R-free <25%, а R-free – R <10%, можно сделать вывод, что у модели высокое качество.

# Карта Рамачандрана:





95.2% (177/186) of all residues were in favored (98%) regions. 98.4% (183/186) of all residues were in allowed (>99.8%) regions.

There were 3 outliers (phi, psi): 16 LYS (48.1, -91.4) 20 MET (-19.2, 72.0) 21 GLY (51.4, -68.9)

Рис. 2 Карта Рамачандрана для 1е5k

На рисунке 2 можно заметить 2 маргинальных остатка взапрещенной области и еще 1 в неблагоприятной области.

**Таблица 2.** Критерии качества модели, выданные сервисом MolProbity. Зеленым цветом выделены значения, удовлетворяющее условиям хорошей модели, желтым – значения, отклоняющиеся от условий хорошей модели и красным – значения, не удовлетворяющие условиям хорошей модели.

| All-Atom            | Clashscore, all atoms:                                                          | : 5.29       |        | 88 <sup>th</sup> percentile <sup>*</sup> (N=466, 1.35Å ± 0.25Å)  |  |
|---------------------|---------------------------------------------------------------------------------|--------------|--------|------------------------------------------------------------------|--|
| Contacts            | Clashscore is the number of serious steric overlaps (> $0.4$ Å) per 1000 atoms. |              |        |                                                                  |  |
| Protein<br>Geometry | Poor rotamers                                                                   | 1            | 0.69%  | Goal: <0.3%                                                      |  |
|                     | Favored rotamers                                                                | 139          | 96.53% | Goal: >98%                                                       |  |
|                     | Ramachandran<br>outliers                                                        | 3            | 1.61%  | Goal: <0.05%                                                     |  |
|                     | Ramachandran<br>favored                                                         | 177          | 95.16% | Goal: >98%                                                       |  |
|                     | MolProbity score                                                                | 1.62         |        | 70 <sup>th</sup> percentile <sup>*</sup> (N=3057, 1.35Å ± 0.25Å) |  |
|                     | Cβ deviations >0.25Å                                                            | 0            | 0.00%  | Goal: 0                                                          |  |
|                     | Bad bonds:                                                                      | 6 / 1480     | 0.41%  | Goal: 0%                                                         |  |
|                     | Bad angles:                                                                     | 21 /<br>2021 | 1.04%  | Goal: <0.1%                                                      |  |
| Peptide<br>Omegas   | Cis Prolines:                                                                   | 0 / 11       | 0.00%  | Expected: $\leq 1$ per chain, or $\leq 5\%$                      |  |

### 3. Анализ маргинальных остатков

Для поиска маргинальных остатков использовался график из PDBReport[2], который демонстрирует геометрические отклонения и несоответствия электронной плотности (рис. 3)



**Рис. 3** Качество отдельных остатков в структуре. Зеленые – не маргинальные, желтые – обладают маргинальностью по 1 критрию, оранжевые – маргинальность по 2 критериям, красные точки – соответствующие остатки имеют RSR Z-score > 2.

Таблица 3. Некоторые маргинальные остатки в структуре 1Е5К.

| N⁰ | Остаток | Критерий маргинальности  |
|----|---------|--------------------------|
| 1  | GLY21   | RSRZ, Карта Рамачандрана |
| 2  | MET20   | RSRZ, Карта Рамачандрана |
| 3  | ALA17   | RSRZ                     |
| 4  | THR5    | RSRZ                     |
| 5  | LYS16   | RSRZ, Карта Рамачандрана |
| 6  | ASP119  | Ротамер                  |
| 7  | ARG140  | Выброс по углу           |

### 4. Анализ пяти маргинальных остатков.

На рисунке 4 изображен остаток Gly21, маргинальный по RSRZ и карте Рамачадрана. Электронная плотность не кладется на него полностью. Скорее всего данный остаток является маргинальным из-за осбенностей структуры.



Рис. 4 Остаток Gly21 и электронная плотность. Уровень подрезки 1о.

На рисунке 5 изображен маргинальный остаток, который почти-что не попадает на электронную плотность. Скорее всего из-за ошибки расшифровки данных.



Рис. 5 Остаток Ala17 и электронная плотность. Уровень подрезки 1о.

Остаток Thr 5 (рис. 6) отнесен к маргинальным скорее всего из-за ошибок расшифровки данных.



Рис. 6 Остаток Thr 5 и электронная плотность. Уровень подрезки 1о.



Рис. 7 Остаток Asp 119 и электронная плотность. Уровень подрезки 1о.

На рисунке 8 изображен маргинальный остаток с пустыми карманами в электронной плотности. Остаток отнесен к маргинальным из-за ошибок расшифровки данных



Рис. 8 Остаток Arg 140 и электронная плотность. Уровень подрезки 1о.

## 5. Сравнение моделей из PDB и PDB-REDO

В базе PDB\_redo [4] проведена оптимизация структуры 1e5k, что не привело к сильному улучшению качества вписывания остатков в энергетическую плотность, хотя значения R-фактор и R-free стали заметно меньше.

| Validation metrics from PDB-REDO         |          |        |          |  |  |  |
|------------------------------------------|----------|--------|----------|--|--|--|
|                                          |          | PDB    | PDB-REDO |  |  |  |
| Crystallographic refinement              |          |        |          |  |  |  |
| R                                        |          | 0.1709 | 0.1501   |  |  |  |
| R-free                                   | <b>A</b> | 0.2324 | 0.1762   |  |  |  |
| Bond length RMS Z-score                  |          | 0.557  | 0.704    |  |  |  |
| Bond angle RMS Z-score                   |          | 1.295  | 0.887    |  |  |  |
| Model quality (raw scores   percentiles) |          |        |          |  |  |  |
| Ramachandran plot appearance             |          | 43     | 43       |  |  |  |
| Rotamer normality                        |          | 97     | 94       |  |  |  |
| Coarse packing                           |          | N/A    | N/A      |  |  |  |
| Fine packing                             |          | 89     | 93       |  |  |  |
| Bump severity                            |          | 72     | 75       |  |  |  |
| Hydrogen bond satisfaction               |          | 46     | 40       |  |  |  |
| WHAT_CHECK                               |          | Report | Report   |  |  |  |

#### Таблица 4. Оптимизация 1е5k.

#### выводы

Качество структуры трудно назвать хорошим, хотя оно обладает высоким разрешением и малым количеством несоответствий по карте Рамачандрана. Для биоинформатических исследований стоит использовать улучшенную структуру из PDB-REDO.

### СПИСОК ЛИТЕРАТУРЫ

**1.** Stevenson, C.E.M.; Sargent, F.; Buchanan, G.; Palmer, T.; Lawson, D.M. (2000) CRYSTAL STRUCTURE OF THE MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN MOBA (PROTEIN FA) FROM ESCHERICHIA COLI AT NEAR ATOMIC RESOLUTION

2. https://eds.bmc.uu.se/cgi-bin/eds/uusfs?pdbCode=1e5k

- 3. https://www.ebi.ac.uk/pdbe/entry/pdb/1e5k
- 4. https://pdb-redo.eu/db/1e5k