Обзор Оксигемоглобина человека

Шаповалов И.С.

1 курс ФББ МГУ им. Ломоносова

Резюме

В данной работе рассматривается оксигемоглобин человека.

Ключевые слова

Белок транспортер, окисленная форма, белок человека

Введение

1. Гемоглобин.

Гемоглобин является белком крови, который ответственен за транспорт газов (таких, как углекислый газ, угарный газ, оксид азота и кислород) внутри организма животного, он расположен в эритроцитах. В данной работе рассматривается гемоглобин именно человека. Оксигемоглобин — гемоглобин, который связан с кислородом.

Рассмотрим строение самого гемоглобина. Он состоит из четырех субъединиц, каждая из которых имеет в своем составе гем. Сам же гем представляет собой ион железа(II), который удерживается порфириновым кольцом. Прочность структуры обеспечивает октаэдрическая координация железа: четыре атома азота из порфиринового кольца, азот гистидинового остатка, лежащий в плоскости перпендикоулярной плоскости порфиринового кольца и последним лигандом становится кислорода, которая оказывается молекула заключенной между железом и еще одним гистидиновым остатком.[1] В гемах также может встречаться железо(III), однако в таком виде связь с кислородом невозможна, так как во время связывания кислорода железо окисляется из железа(II) в железо(III). Для таких ситуаций есть специальный белок, который восстанавливает железо до степени окисления +2.[2]

2. Кооперативность

стоит заметить такое явление, как кооперативность. Данное явление появляется тогда, когда биомолекула имеет несколько сайтов похожих связывания. Сама кооперативность проявляется в том, что после связывания с первым лигандом конформация сайта связывания изменяется, что влияет на дальнейшее взаимодействие свободных сайтов связывания. Различают позитивный отрицательный вклад кооперативности.[3][4] Рассмотрим теперь, какую роль играет данное явление в гемоглобине. Когда кислород связывается с гемом, второй изменяет свою облегчает связывание конформацию, что последующих молекул кислорода с оставшимися гемами, по этой причине гемоглобин гораздо эффективнее других белков транспортеров

(например, миоглобина). Таким образом, для гемоглобина характерна положительная кооперативность.

Брутто-формула	$C_{2914}H_{4416}N_{764}O_{806}S_{12}Fe_4$
ID PubChem	C05781
ID альфа субъединицы	P69905
в Uniprot	
ID бета субъединицы в	P68871
Uniprot	
Длина белковой	139 аминокислотных
последовательности	остатков
альфа субъединицы	
Длина белковой	145 аминокислотных
последовательности	остатков
бета субъединицы	
Молярная масса	63,584 г/моль
Структурная формула	
гема	
Структурная формула гема, связанного с кислородом	
Структурная формула октаэдрической координации железа в геме	

Диаграмма 1. Основные характеристики и демонстрационные материалы о структуре оксигемоглобина.

3. Водородная связь

Водородной связью называют электростатическое взаимодействие между атомом водорода, ковалентно связанным с электроотрицательным атомом (обычно это атом азота, кислорода или фтора), который называют водородной донором связи, другим электроотрицательным атомом, который называют акцептором водородной связи.[5]

4. Солевой мостик

Солевой является мостик объединением водородной связи и ионной связи. Эта связь образуется между положительно заряженной аминогруппой И отрицательно заряженной карбоксильной группой за счёт заряда (электростатическое взаимодействие) и водорода в аминогруппе (водородная связь). Данный элемент служит для стабилизации связи между цепями белка и преодоления неблагоприятного энтропийного фактора.[6]

5. Альфа спираль

Альфа-спираль – способ укладки биомолекулы во вторичную структуру. Данный элемент имеет вид правозакрученной спирали. Стабильность этой структуры обеспечивают водородные связи между всеми аминогруппами и карбонильными группами в составе остова белка. При этом каждая аминогруппа связывается с карбонильной группой, которая была на 4 аминокислотного остатка ранее.[7]

6. Гидрофобное взаимодействие

Гидрофобные взаимодействия в белке возникают меду гидрофобными радикалами. А именно эти радикалы стремятся к объединению для того, чтобы уменьшить свободную энергию. Между этими радикалами возникают гидрофобные взаимодействия, а также силы Ван-дер-Ваальса между теми радикалами, которые лежат близко друг к другу. В итоге этих взаимодействий появляются гидрофобные центры.

Для молекулы гемоглобина характерны гидрофобные ямки, в которых лежат гемы, поэтому центр гидрофобного ядра стоит искать именно там.

7. Пи-стэкинг

Пи-стэкинг — это нековалентное взаимодействие между молекулами, содержащими ароматические кольца. Образование связи происходит за счёт перекрывания р-орбиталей. Различают параллельно сдвинутый стэкинг и Т-стэкинг.[8] Из аминокислотных остатков подобное взаимодействие наиболее характерно для фенилаланина и триптофана. Именно их и будем учитывать в дальнейшей работе.

Ход работы

Посмотреть все отдельные структуры биомолекулы можно по ссылке в сопроводительных материалах.

1. Внутрибелковые контакты

Для начала была измерена средняя длина водородных связей. Для этого при помощи программы Jmol был получен список длин всех водородных связей, а потом посредством программы, написанной самостоятельно на языке Python, было посчитано среднее значение, оно составило 2.145 Å.

После изучения всей биомолекулы было получено то, что в ней нет бета листов, но зато почти все аминокислотные остатки расположены в альфа спиралях. Прочность этих структур обеспечивают водородные связи, о которых говорилось ранее, а также солевые мостики. Так как они являются комбинацией водородной связи и ионной связи, то их длина была учтена в предыдущем пункте, при этом они не сильно отличаются от среднего значения.

По итогу анализа биомолекулы было получено то, что в ней нет дисульфидных мостиков.

В данной биомолекуле были обнаружены несколько случаев Т-стэкинга и ни одного случая параллельно сдвинутого стекинга, что позволяет говорить о большей стабильности первого в сравнении со вторым.

Также было проанализировано гидрофобное ядро, центром которого является фенилаланин (являющийся 33 аминокислотным остатком на альфа-субъединице). Итогами анализа можно считать следующие результаты: данный аминокислотный остаток полностью покрывается атомами, расположенными на расстоянии 7Å от него; но также его можно считать почти покрытым уже для атомов, расположенных на расстоянии 4Å от него. Поэтому характерным расстоянием между соседними не связанными ковалентно атомами в белке можно считать примерно 4Å. Используя полученные результаты, мы можем посчитать, сможет ли поместиться молекула воды (которую будем считать просто кислородом, так как водороды не дают большого вклада в размер молекулы). Для рассмотрения крайнего случая возьмем атом углерода из фенилаланина и атом кислорода из окружения (так как у кислорода минимальный Ван-дер-Ваальсов радиус). Тогда получим, что между этими атомами расстояние составляет 0.75Å, что очевидно меньше диаметра кислорода, то есть и размеров молекулы воды.

2. Контакты типа лиганд-белок и лигандлиганд

Оксигемоглобин имеет два лиганда: сам гем и молекулу кислорода; в то время, как у гемоглобина имеется только гем.

Рассмотрим контакт гем-белок. Данный контакт является координационным для атома железа, так как уже говорилось о том, что свою функцию гем выполняет благодаря октаэдрической координации железа. Также можно отметить, что

рассмотрев расположение гема, можно убедиться в том, что он и вправду находится в окружении многих гидрофобных аминокислотных остатков, но в удержании гема участвуют напротив гидрофильные остатки.

Также стоит рассмотреть еще один контакт, а именно способ удержания кислорода в оксигемоглобине. Сама молекула кислорода образует водородную связь с гистидином над гемом и ковалентнуб связь с железом. Такое связывание заставляет субъединицу изменять свою конформацию, что и является ключевым фактором в явлении кооперативности.

Выводы

В первую очередь стоит заметить то, что сама структура молекулы — большое количество альфа спиралей (почти все аминокислотные остатки являются частью альфа спиралей) и отсутствие бета листов — соответствуют двум функциям необходимым гемоглобину, а именно компактности молекулы и способности четко расположить гидрофобные и гидрофильные остатки аминокислот, что укрепляет структуру и обеспечивает более хорошее связывание с транспортируемыми газами.

Также стоит отметить, что есть довольно сильные основания говорить о том, что явление кооперативности связано с образованием водородной связи кислорода с гистидиновым остатком.

Еще одним выводом можно считать то, что полученная длина водородной связи несколько выше среднего табличного. Это можно объяснить тем, что средняя длина подсчитывалась с учетом водородных связей в солевых мостиках, которые несколько больше, так как они лишь поддерживают устойчивость структуры, а не являются основой этой устойчивости.

Благодарности

Данная работа была написана благодаря Факультету Биоинженерии и Биоинформатики Московского Государственного Университета им. М.В.Ломоносова (ФББ МГУ).

А также отдельная благодарность Бетеньковой Р.Ю. и Аничкину А.А. за консультации по некоторым вопросам во время написания работы.

Список литературы

- [1]- Epstein, F. H.; Hsia, C. C. W. (1998). "Respiratory Function of Hemoglobin". New England Journal of Medicine.
- [2]- Linberg R, Conover CD, Shum KL, Shorr RG (1998). "Hemoglobin based oxygen carriers: how much methemoglobin is too much?". Artif Cells Blood Substit Immobil Biotechnol.
- [3]- Whitford D (2005). Proteins: structure and function. John Wiley & Sons.

- [4]- Srinivasan, Bharath; Forouhar, Farhad; Shukla, Arpit; Sampangi, Chethana; Kulkarni, Sonia; Abashidze, Mariam; Seetharaman, Jayaraman; Lew, Scott; Mao, Lei; Acton, Thomas B.; Xiao, Rong (March 2014). "Allosteric regulation and substrate activation in cytosolic nucleotidase II from Legionella pneumophila"
- [5]- Arunan, Elangannan; Desiraju, Gautam R.; Klein, Roger A.; Sadlej, Joanna; Scheiner, Steve; Alkorta, Ibon; Clary, David C.; Crabtree, Robert H.; Dannenberg, Joseph J. (2011-07-08). "Definition of the hydrogen bond (IUPAC Recommendations 2011)"
- [6]- Dougherty, Dennis A. (2006). Modern Physical Organic Chemistry. Sausalito, CA: University Science Books.
- [7]- Pauling L, Corey RB, Branson HR (April 1951). "The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain". Proceedings of the National Academy of Sciences of the United States of America.
- [8]- Martinez, Chelsea R.; Iverson, Brent L. (2012). "Rethinking the term "pi-stacking"