Отчёт о качестве расшифровки структуры мутантного комплекса тиаминазы 2 с формил аминометил-пиримидином Bacillus subtilis (PDB код 2QCX) методом рентгеноструктурного анализа

студентки четвёртого курса Факультета биоинженерии и биоинформатики

МГУ им. М. В. Ломоносова

Носиковой Екатерины

Москва, 2015

Аннотация

В отчёте рассмотрены некоторые индикаторы качества модели структуры 2QCX, а также проведён анализ индикаторов локального качества структуры для ряда аминокислотных остатков. В ходе работы над отчётом удалось познакомиться с возможностями, которые предоставляют серверы для оценки качества структур белковых молекул.

Введение

TenA (EC 3.5.99.2) — Тиаминаза 2, является уникальным семейством ферментов и катализирует 2 реакции, а именно, гидролиз тиамина (рис.1) и гидролиз 4 -амино- 5 - аминометил - 2 — метилпиримидина (рис.2).

Рисунок 1. Реакция 1: Тиамин + H2O <=> 4 -амино- 5 -гидроксиметил- 2 -метилпиримидин+ 5- (2 - гидроксиэтил) -4 -метилтиазол + H

Рисунок 2: Реакция 2: 4 -Амино- 5 - аминометил - 2 -метилпиримидин + H2O <=> 4 -амино- 5 - гидроксиметил- 2 -метилпиримидина + Аммиак

Семейство белков TenA ,присутствующее у прокариот, растений и грибов, подразделяется на 2 подсемейства: *TenA_C* (в активном сайте которого содержится цистеин) и *TenA_E* (активный сайт не содержит цистеин).

Тиаминдифосфат является необходимым кофактором для таких ферментов как: транскетолаза, альфа-кетоглутарат дегидрогеназа и тд.

Тиамин содержит фрагменты HMP (4-амино-5-гидроксиметил-2 – метилпиримидин) и THZ (4 метил-5- (2 -гидроксиэтил) тиазол). Растения, грибы и большинство прокариотических организмов синтезируют оба из этих фрагментов *de novo,* и только затем происходит образование тиамина из HMP и THZ.

Сохранение постоянного количества тиамина является важной и необходимой задачей. Известно, что при гидролизе тиамина образуется амино- НМР. Было показано, что белки семейства TenA играют важную роль в поддержании баланса тиамина, путем гидролиза амино-НМР до НМР, но, тем не менее, оставалось совершенно непонятно какое из подсемейств катализирует эту реакцию.

Авторами статьи [1] было выяснено, что именно TenA_C обладает активностью катализировать реакцию амино- HMP до HMP (рис.1) TenA_E такой активности не проявляет. Считается, что эта реакция является ключевой для экономии затрат тиамина.

Также было выяснено, что экспрессия TenA_C и TenA_E генов значительно коррелирует.

Далее разговор пойдет только о TenA Y112F мутантном комплексе (pdb – код : 2QCX) у которого присутствует остаток цистеина в активном центре.

Целью данной работы является анализ и оценка качества белка 2QCX из организма Bacillus subtilis.

Результаты и обсуждение

Модель структуры 2QCX была получена в 2007 году (**Zhang, Y., Jenkins, A.L., Begley, T.P., Ealick, S.E.**). Разрешение структуры – 2.2 Å.

Из данных EDS получено, что количество уникальных рефлексов 27575, количество использованных рефлексов равно 26547. Полнота данных равна 96.3 %.

Общая информация о модели 2QCX систематизирована в таблице 1.

Таблица 1. Общая информация о модели 2QCX		
Разрешение	2.2 Å	
Диапазон разрешения	41.45 - 2.20 Å	
Число измеренных рефлексов	27575	
Число использованных рефлексов	26547	
Полнота данных	96.3 %.	
Пространственная группа	P 41 21 2	
Параметры ячейки	a=58.62 Å, b=58.62 Å, c=296.47 Å	
	alpha=90.00, beta=90.00, gamma=90.00	

Для решения фазовой проблемы использовался метод молекулярного замещения (MR) с использованием структуры из того же семейства TenA из Bacillus subtilis – **1YAF.**

К показателям качества модели, приведенным в pdb-файле и статье, относятся: R-фактор, R-free, B-фактор и ранее описанные- разрешение, полнота. R-фактор — параметр, оценивающий, насколько полученная кристаллографическая модель соответствует набору экспериментально полученных рефлексов. Для данной структуры *R-фактор* равен **19.7**%, что меньше 25%, значит значение хорошее. *R-free* оказалось равным **23.3**%, это почти хороший результат, так как если говорить строго, то для хорошего Rfree должен быть меньше 20%. Для оценки качества также можно рассчитать коэффициент, равный разнице между R-free и R-фактором, если он не превышает 10%, то можно считать, что переопимизации модели не произошло. В данном случае этот коэффициент равен **3.6%**, что подтверждает теорию об отсутствии переоптимизации. Также для оценки модели использовали карту Рамачандрана и пространственный R-фактор, Zscore для RSR.

Для построения карты Рамачандрана был использован сервер MolProbity . Результат анализа торсионных углов этим сервером представлен на рисунке 3 и содержит 6 карт (множество пар двугранных углов ф и ψ для всех типов аминокислотных остатков разбито для удобства на 6 групп). На карте находится 1 остаток, находящийся в запрещенной области – А 0 GLY (-64.3, -128.7) (значения в скобках соответствуют углам ф и ψ)

442 из 449 остатков (98.4%) остатков лежат внутри предпочитаемой области на карте Рамачандрана (Рис.3)

Рисунок 3: Карта Рамачандрана для структуры белка 2QCX. Карта построена сервисом MolProbity. На карте виден 1 маргинальный остаток.

Рисунок 4: Фрагмент карты Рамачандрана для структуры белка 2QCX с маргинальным остатком A 0 GLY (-64.3, -128.7).

Общая информация о модели 2QCX систематизирована в таблице 1.

Таблица 2. Величины некоторых индикаторов качества структуры в целом для модели 2QCX		
R-фактор	0.197	
R _{free}	0.233	
R _{free} - R	0.036	
RSR-фактор (среднее значение и стандартное отклонение)	0.172 (0.076)	
Число маргиналов по карте Рамачандрана	1	
Число остатков в предпочитаемой области	440 (98.43%)	
карты Рамачандрана		
Валентные углы, существенно отклоняющиеся	0	
от теории		
Ковалентные связи, существенно	1 (0.03%)	
отклоняющиеся от теории		
Отклонения Cβ > 0.25 Å	0	
MolProbity score^	1.39	

RSR — показатель того, насколько построенная модель соответствует « экспериментальной» электронной плотности. Для построенной модели равно 0.172 (0.076), что близко к 20% и не является хорошим показателем.

Если рассмотреть картину распределения RSR, для всех аминокислотных остатков всех белковых цепей (Рис.5), полученную с сервиса EDS, то, нетрудно заметить, что в цепи есть довольно много остатков, чей RSR > 0.2;

Рисунок 5. Распределение RSR для всех аминокислотных остатков всего белка, на каждой картинке графики для каждой цепи.

Z-score для RSR - параметр, позволяющий сравнивать RSR остатка модели со средним RSR в выборке моделей PDB с таким же разрешением. Проанализировав Z-score этой модели (Pиc.6), можно сказать, что почти всех аминокислотных остатков белка (у 13.81% Z-score > 2) имеет RSR лучше, чем в других моделях с разрешением 2.00-2.20 Å. Среднее значение Z-score по всем остаткам равно -0.81.

Рисунок 6. Изображение Z- score для цепи A, B.

Высокие положительные значения **Z > 2** свидетельствуют о том, что остаток плохо вписан в электронную плотность по сравнению с другими структурами с тем же разрешением (=>маргинал)

Как видно из рисунка 6, в структуре присутствует довольно много маргинальных остатков.

Далее было выбрано 12 различных примеров маргинальных остатков.

таолица 5. примеры аминокислотных маргинальных остатков	Таблица З. Г	Примеры аминокислотных маргинальных с	статков.
---	--------------	---------------------------------------	----------

Маргинальный остаток	Критерий выбора	
0 GLY A	В запрещенной области на карте Рамачандрана	
47 TYR A	отклонение от нормы углов, образующих остов,	
29 Asp B		
103 Phe B		
34 ILE A	Нехарактерные торсионные углы (Zscore < -2)	
87 ARG B		
136 TYR A	Угол tau (N-Calpha-C) имеет SD > 4о	
22 Pro A	Имеет "puckering" фазу с которой невозможно	
	существовать внутри структуры белка	
20 Val B	Zscore = -2.62	
219 Ser A	Нетипичная конформация боковых цепей	
220 ASP A	(остатки могут являться частью странной петли)	
1 Met B		

Далее был произведен детальный анализ 5 маргинальных остатков.

I. Глицин-0 – маргинал по карте Рамачандрана.

Как показал анализ, глицин - 0 попадает в запрещенную область на карте Рамачандрана (φ =-64.3, ψ =128.7 3). Эти остаток является первым в цепи А можно предположить инверсию пептидной цепи.

На Рисунке 7 изображен остаток и срез электронной плотности на уровне 1.5 о. Видно, что электронная плотность плохо описывает остаток глицина, поэтому, вероятно, действительно нужно провести инверсию вокруг пептидной связи на 180°.

Помимо нахождения в запрещенной области карты Рамачандрана, остаток глицина-О также попадает в маргиналы по Zscore=5.51 (больше установленного порога 2).

Рисунок 7. Изображение глицина-0. Светло-голубым показан срез электронной плотности на уровне 1,5 σ

Таким образом, очевидно, что Gly 0 является маргинальным остатком.

II. Пролин-22 – согласно pdbreport имеет "puckering" фазу с которой невозможно существовать внутри структуры белка.

Было очень интересно, как выглядит такой остаток и как коррелирует со своей электронной плотностью. Было решено построить изображение на уровне подрезки 2 σ.

Изображение представлено на рисунке 8.

Рисунок 8. Слева маргинальный остаток Pro-22, справа типичный остаток Pro. Как видно из изображения Pro-22 действительно имеет нетипичную конформацию.

Далее был рассмотрен остаток 219 Ser A (нетипичная конформация боковых цепей). Была построена функция электронной плотности с уровнем подрезки 1.5 σ.

Рисунок 9. Остаток 219 Ser A в модели 2QCX и изображение электронной плотности (уровень подрезки 1.5 σ).

Рисунок 9 позволяет сделать вывод, что маргинальность Ser219 связана с ошибкой расшифровки и не является правдой.

Интересно также было посмотреть на 20 Val B, который является маргиналом из-за того, что обладает Zscore = -2.62. Была построена структура этого остатка и изображение электронной плотности с уровнем подрезки 2 о.

Рисунок 10. Остаток 20 Val B в модели 2QCX и изображение электронной плотности (уровень подрезки 2*σ*).

Видно, что ЭП плохо описывает остаток, что говорит о несоответствии модели ЭП.

Последним было решено проанализировать 136 TYR A, который является маргинальным, так как yroл tau (N-Calpha-C) имеет SD > 4 о. На рисунке 11 можно увидеть изображение остатка и электронной плотности (уровень подрезки 2 о).

Рисунок 11. Остаток 136 ТҮК А в модели 2QCX и изображение электронной плотности (уровень подрезки 2σ).

Действительно, на рисунке видно, что угол tau (N-Calpha-C) имеет совсем не стандартное значение, но при этом ЭП довольно хорошо описывает остаток, что является удивительным.

Сравнение модели из PDB с моделью из PDB_redo

На сервере PDB REDO была построена структура 2qcx_final по имеющимся экспериментальным данным о 2qcx. В таблице 4 перечислены некоторые характеристики для 2qcx и 2qcx_final.

Значения R и R_{free} улучшились, и разница их также уменьшилась. Значит, новая модель лучше подогнана под экспериментальные данные. Число маргинальных остатков по карте Рамачандрана стало равно 0. Можно сделать вывод, что оптимизация структуры средствами PDB_REDO была проделана успешно.

Таблица 4. Величины некоторых индикаторов качества структуры в целом для модели 2QCX (2QCX_REDO					
Характеристика	2qcx	2qcx_final(pdb_redo)			
R-фактор	0.197	0.1779			
R _{free}	0.233	0.2072			
R _{free} - R	0.036	0.0293			
Число маргиналов по карте	1	0			
Рамачандрана					
Число остатков в	440 (98.43%)	445 (99.55%)			
предпочитаемой области					
карты Рамачандрана					
Валентные углы, существенно	0	0			
отклоняющиеся от теории					
Ковалентные связи,	1 (0.03%)	0			
существенно отклоняющиеся					
от теории					
Отклонения Cβ > 0.25 Å	0	0			
MolProbity score [^]	1.39	1.26			

Заключение

2QCX представляет собой модель хорошего разрешения. Качество её также можно оценить как «среднее», о чём свидетельствуют индикаторы оценки качества этой структуры. Из наблюдаемых в 2QCX аномалий можно отметить высокие показатели RSR-фактора и Zscore. В модели структуры удалось также обнаружить остатки, для которых предполагается инверсия боковых цепей (рисунок 7). Стоит отметить, что сервер PDB_REDO значительно улучшил показатели модели.

Список литературы

- 1. http://www.ncbi.nlm.nih.gov/pubmed/25014715
- 2. http://www.ncbi.nlm.nih.gov/pubmed/18054064
- 3. http://www.genome.jp/dbget-bin/www_bget?ec:3.5.99.2
- 4. http://www.rcsb.org/pdb/explore.do?structureId=2qcx
- 6. http://molprobity.biochem.duke.edu/
- 7. http://www.cmbi.ru.nl/pdbreport/cgi-bin/nonotes?2QCX
- 8. http://eds.bmc.uu.se/cgi-bin/eds/uusfs?pdbCode=2QCX
- 9. http://www.cmbi.ru.nl/pdb_redo/uw/2qcx/