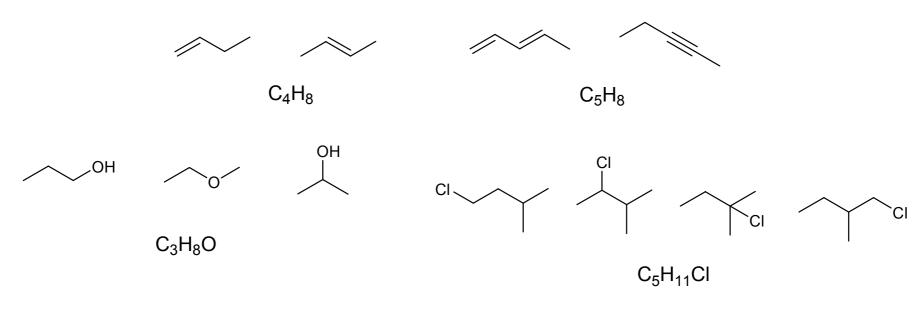
Изомерия и номенклатура органических соединений

Стереохимия органических соединений


Изомерия

СТРУКТУРНАЯ ИЗОМЕРИЯ:

изомерия углеродного скелета

$$\begin{array}{c|c} & & & & \\ \hline \\ & C_5H_{12} & & & \\ \hline \\ & & C_6H_{12} & & \\ \end{array}$$

изомерия положения

Изомерия

СТРУКТУРНАЯ ИЗОМЕРИЯ - КОРРЕКТИВА: рассмотрим С₄Н₁₀О

О – валентность = 2, т.е. атом может являться частью скелета молекулы.

В данном случае в скелете 5 атомов

изомерия скелета

изомерия положения

Изомерия

ПРОСТРАНСТВЕННАЯ ИЗОМЕРИЯ (СТЕРЕОИЗОМЕРИЯ)

об этом – чуть позже

Определение числа структурных изомеров

1: определение степени ненасыщенности

НАСЫЩЕННЫЕ СОЕДИНЕНИЯ – формальные производные насыщенных углеводородов – алканов общей формулы C_nH_{2n+2} .

-Hal, -OH, -NH
$$_2$$
, etc. ~ -H OH OH NH $_2$

НЕНАСЫЩЕННЫЕ СОЕДИНЕНИЯ – соединения, содержащие кратные связи, а также циклические соединения.

СТЕПЕНЬ НЕНАСЫЩЕННОСТИ – число двойных связей или циклов в молекуле.

Определение числа структурных изомеров

2: определение возможных изомеров скелета. При подсчете образующих скелет атомов учитываются имеющие валентность 2 и более.

3: определение числа изомеров положения (кратные связи, двух- и более – валентные гетероатомы, одновалентные гетероатомы как заместители

Химическая номенклатура

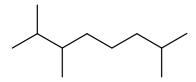
ХИМИЧЕСКАЯ НОМЕНКЛАТУРА — свод правил для построения названий химических соединений

ЗАДАЧИ НОМЕНКЛАТУРЫ:

- ▶ определение структуры по названию соединения ИМЕЕТ ЕДИНСТВЕННОЕ РЕШЕНИЕ
- ▶ определение названия соединения по его структуре зачастую ИМЕЕТ НЕСКОЛЬКО ВЕРНЫХ ОТВЕТОВ.

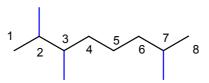
ОСНОВНЫЕ ТИПЫ НОМЕНКЛАТУР:

- > Заместительная
- Радикало-функциональная
- Аддитивная
- Субтрактивная
- Соединительная
- > Заменительная
- Тривиальная


Общие принципы номенклатуры IUPAC

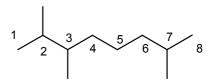
▶ В зависимости от структуры соединения выбирается наиболее подходящий тип номенклатуры (правила IUPAC рекомендуют преимущественное использование заместительной).

В ЗАМЕСТИТЕЛЬНОЙ НОМЕНКЛАТУРЕ:


- ▶ Выявляется главная (характеристическая) функциональная группа, которая будет обозначена суффиксом и составит основу названия. Остальные заместители должны быть названы в префиксе.
- Определяется примыкающая к главной функциональной группе (или включающая в себя эту группу) родоначальная структура (главная углеродная цепь, базовая циклическая структура).
- > Называется родоначальная структура и главная группа.
- Определяется степень ненасыщенности, при этом в названии отражается число и тип кратных связей.
- ▶ В название вводится обозначение префиксов. Порядок перечисления либо по старшинству, либо (как это принято в Chemical Abstracts) по алфавиту. Последний подход проще, и является предпочтительным но не следует забывать о том, что в русском и английском языках порядок перечисления заместителей может не совпадать.
- > Проводится **нумерация**, в название вставляются **локанты**.

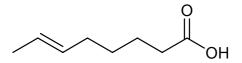
ПРИМЕР:

определяем родоначальную структуру и нумеруем главную цепь


октан

отмечаем заместители, определяем локанты

триметил


2,3,7-триметил

составляем название

2,3,7-триметилоктан

ПРИМЕР:

определяем родоначальную структуру, характеристическую группу и нумеруем главную цепь

октан

-овая кислота

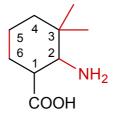
отмечаем наличие кратной связи, определяем локанты

октен

6-октен

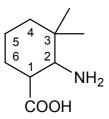
$$8$$
 7 6 5 4 3 2 1 OH

составляем название


6-октеновая кислота

ПРИМЕР:

определяем родоначальную структуру, характеристическую группу и нумеруем главную цепь


циклогексан

карбоновая кислота

отмечаем заместители, определяем локанты

2-амино-**3**,**3**диметил

составляем название

2-амино-3,3диметилциклогексанкарбоновая кислота

Тривиальные названия

Для ряда нефункциональных заместителей используются тривиальные названия:

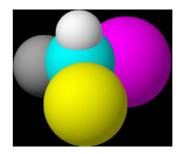
$$H_3$$
С H_3 С H_3 С CH_2 CH_2 CH_2 H_3 С CH_3 CH_3 CH_3 С C

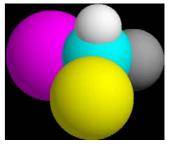
Тривиальные названия широко используются в химии:

- аминокислот
- углеводов
- природных соединений

Об этом более подробно – в соответствующих темах

Стереохимия - история возникновения


- Жан Батист **Био (начало** XIX в.): кристаллические формы некоторых веществ могут изменять направление проходящих через них лучей поляризованного света.
- Луи Пастер (1848 г.): "оптическая изомерия" растворов веществ, гипотеза о том, что молекулы этих соединений являются зеркальным отображением друг друга

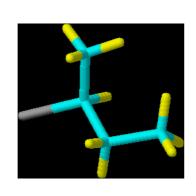


Якоб-Хендрик **Вант-Гофф** 1852-1911

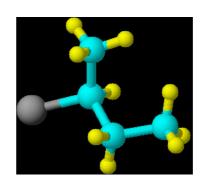
В 1874 г Вант-Гофф предположил, что оптическая активность органических соединений связана с асимметрической молекулярной структурой - атом углерода находится в центре тетраэдра, а в четырех его углах располагаются атомы или группы атомов, отличающиеся друг от друга.

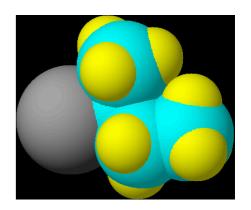
CHFCIBr:

т.е. постулировалось наличие связи между свойством вещества – **оптической активностью** – и свойством молекулы –**хиральностью**, или несоответствием своему зеркальному отражению


Основные понятия

Стереохимия изучает влияние пространственного строения молекул на химические и физико-химические свойства соединений.


Стереоизомеры - соединения, имеющие одинаковое химическое строение (т.е. одинаковую последовательность химических связей), но различную геометрию, т.е. **различное расположение атомов в прос***теве*.


структурная формула

трехмерные модели:

Перспективные формулы:

Проекционные формулы: формулы ФИШЕРА проекции НЬЮМЕНА

Проекционные формулы

формулы ФИШЕРА

проекции НЬЮМЕНА

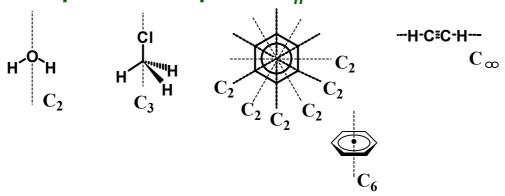
направление наблюдения
$$H_{1}$$
 H_{2} H_{3} H_{3} H_{3} H_{4} H_{3} H_{4} H_{4} H_{5} H_{5

Об этом более подробно – в теме "алканы"

Симметрия молекул

Молекула **симметрична**, если при перемене в ней местами определенных частей (атомов или групп атомов) ее структура не изменяется. Обмениваемые части по симметрии **эквивалентны** - т.е. они *неразличимы*, хотя и *не идентичны*. Обмен осуществляется с помощью **операций симметрии**, которые проводятся относительно **элементов симметрии**.

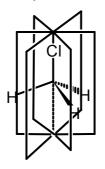
несимметричные
$$CI \to Br$$
 $CI \to Br$ симметричные $CI \to Br$


Элементы симметрии представляют собой геометрические места, относительно которых осуществляются операции симметрии.

1 рода: *оси симметрии* (или *оси вращения*), символ C_n , относительно которых осуществляется поворот на 360°/n (n \geq 2).

2 рода: плоскости симметрии (зеркальные плоскости), символ σ центры симметрии (центры инверсии), символ i зеркально-поворотные оси, символ \mathbf{S}_n


Ось симметрии


Если вращение молекулы относительно какой-либо проходящей через нее оси на угол 360° /n приводит к структуре, неотличимой от исходной, то говорят, что молекула *имеет ось симметрии n-го порядка С*_n.

Плоскость симметрии

Плоскость, проходящая через молекулу, является для последней **плоскостью симметрии**, если делит молекулу на две зеркально-тождественные части.

Центр симметрии

Если каждому атому в молекуле относительно точки, находящейся в центре молекулы, соответствует эквивалентный атом (само собой, эти атомы должны находиться на линии, проходящей через центр молекулы), то такая точка называется **центром симметрии** *i*.

Зеркально-поворотная ось симметрии

Относительно этого элемента симметрии осуществляется поворот на 360°/n относительно проходящей через молекулу оси с одновременным отражением в плоскости, перпендикулярной этой оси.

Операции симметрии

операции симметрии - геометрические операции, осуществляемые относительно элементов симметрии и переводящие молекулу в тождественную (неотличимую), эквивалентную или идентичную ориентацию.

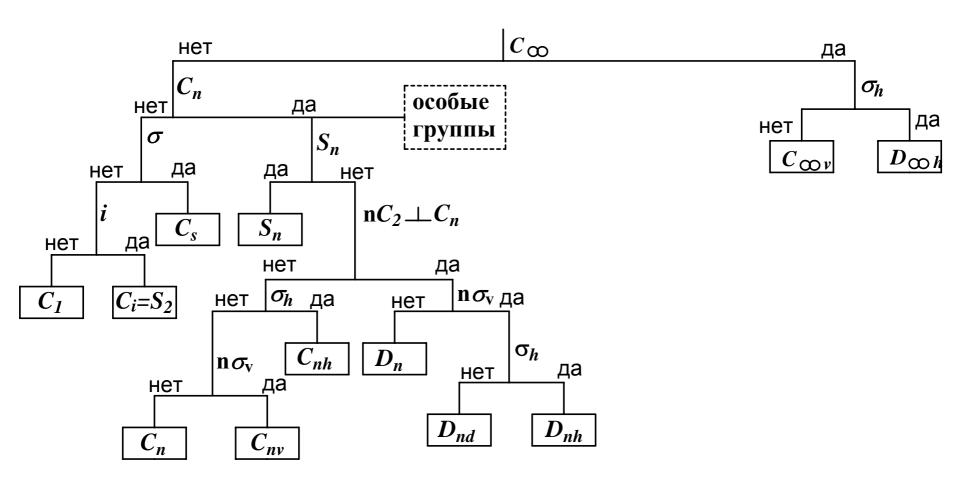
Операции, дающее идентичное (т.е. исходное) расположение атомов, называют операциями идентичности *I*.

вращение на угол 360° /п относительно оси вращения C_n (обозначение C_n); **отражение** в плоскости симметрии σ (обозначение σ); **инверсия** в центре симметрии i (обозначение i); **вращение** c **отражением** - вращение на угол 360° /п и отражение в плоскости, перпендикулярной оси вращения; обозначение S_n)

Последовательное осуществление ряда операций симметрии также представляет собой операцию симметрии.

$$C_2C_2 = I$$

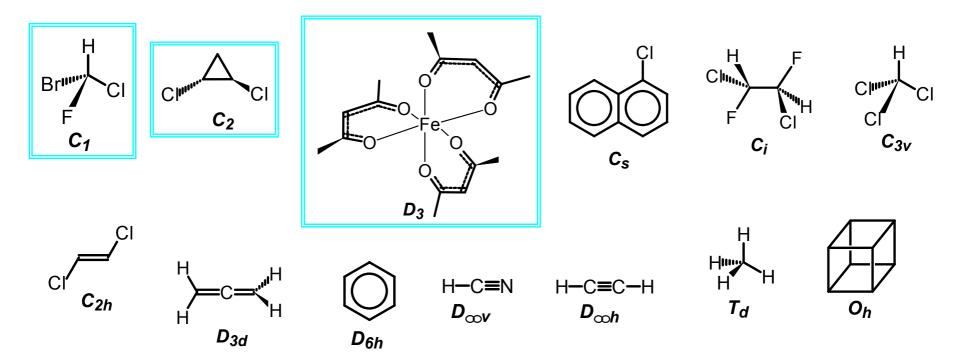
$$C_6C_6C_6 = C_2$$


$$\sigma\sigma = I$$

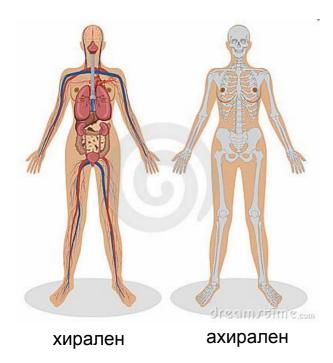
$$ii = I$$

$$C_2\sigma = S_2 = i$$

Группы симметрии


Группой симметрии называется набор всех возможных для данной молекулы операций симметрии. Каждая молекула принадлежит только к одной определенной точечной группе симметрии.

Хиральность

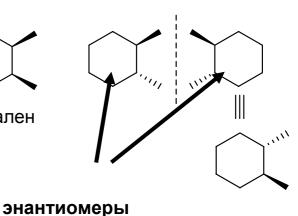

Тимеров Темперия 1 Темперия 1 Темперия 1

Хиральные молекулы принадлежат к точечным группам C_1 , C_n или D_n ; в них *отсутствуют* элементы симметрии второго рода. Молекулы, принадлежащие к группе C_1 , не имеют и элементов симметрии 1 рода - т.е. *асимметричны*.

Хиральность и энантиомерия

Хиральные объекты:





ахирален

хирален

хирален

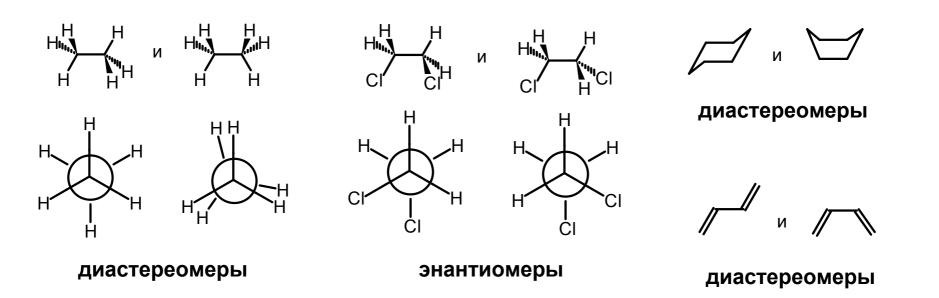
Энантиомеры – стереоизомеры, относящиеся друг к другу как предмет к своему зеркальному отражению.

Критерий : если через молекулу нельзя провести **плоскость симметрии**, она **хиральна**

Классификация стереоизомеров

Два хиральных стереоизомера, являющихся зеркальным отображением друг друга, называются **энантиомерами** или оптическими антиподами. Стереоизомеры, не являющиеся энантиомерами, называются **диастереомерами**.

Переход одного энантиомера в другой называют **инверсией**. Превращение чистого энентиомера в смесь энантиомеров носит название **рацемизации**


Конфигурация молекулы - пространственное расположение входящих в нее атомов или атомных группировок без учета структур, отличающихся только поворотом относительно формально простых связей.

Конформации *молекулы определенной конфигурации* представляют собой различные прос*транс*твенные расположения входящих в нее атомов или атомных группировок, различающиеся только поворотом относительно формально простых связей или изменением углов между связями.

Конфигурационные изомеры

$$H_2N$$
 H_2N H_3C H_3C


Конформационные изомеры

Центровая хиральность

Атом углерода, связанный с четырьмя различными заместителями, называется асимметрическим атомом углерода.

Центрами хиральности могут быть и четырехсвязные атомы других элементов:

Проекционные формулы Фишера

• формулу нельзя поворачивать на 90° - т.к. результатом будет энантиомер:

COOH COOH COOH
$$H_2N$$
 H_2 H_2 H_3 H_4 H_2 H_4 H_5 H_5 H_6 H_6 H_8 H_8

• формулу можно поворачивать на 180°

COOH COOH COOH CH₃ CH₃ COOH
$$= H_2N + H_2N + H_3 + H_2N + H_3 + H_3N + H_3 + H_3N + H_3N$$

• допустимо зафиксировать одну группу и "вращать" остальные

COOH COOH
$$H_2N \xrightarrow{} H = H_3C \xrightarrow{} NH_2 = H \xrightarrow{} CH_3$$

$$CH_3 \qquad H \qquad NH_2$$

• взаимная перестановка двух любых групп приводит к энантиомеру

COOH
$$H_2N \xrightarrow{COOH} H_2N \xrightarrow{COOH$$

Относительная номенклатура

Выбран стандарт, и ему произвольно присвоена определенная конфигурация:

используется в химии углеводов, аминокислот

Об этом более подробно – в темах "аминокислоты" и "углеводы"

Номенклатура Кана-Ингольда-Прелога

- заместители располагают в порядке уменьшения их старшинства
- располагают молекулу так, чтобы самый младший заместитель (Г) был направлен от наблюдателя
- если при этом последовательность старшинства оставшихся заместителей A>Б>В падает по часовой стрелке, то конфигурация асимметрического атома получает обозначение R (rectus правильный, лат.) Если же последовательность старшинства A>Б>В падает против часовой стрелки, то конфигурация асимметрического атома получает обозначение S (sinister неверный, левый, лат.)

некоторые примеры:

Правила старшинства заместителей

• Заместители располагаются в порядке уменьшения порядковых номеров атомов, непосредственно связанных с центром хиральности:

I > Br > CI > S > P > F > O > N > C > B > H > неподеленная электронная пара

• Если один или несколько непосредственно связанных с центром хиральности атомов одинаковы, то обращают внимание на порядковый номер связанных с ними "вторых" атомов, затем "третьих" атомов, etc., двигаясь все время по той ветви, которая содержит атомы с большим порядковым номером:

$$-CH_{2}CI > -CH_{2}F > -CH_{2}OH > -CH_{3}$$

$$-CH_{3} + CH_{3} + CH_{3}$$

$$-CH_{2}CH_{3} + CH_{3}$$

$$-CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

$$-CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

$$-CH_{3} + CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

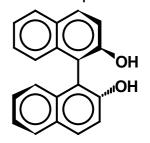
$$-CH_{3$$

Представление кратных связей

• Двойные и тройные связи рассматриваются так, как если бы они были "расщеплены" соответственно на две или три простые связи:

• Старшинство изотопов убывает с уменьшением их массового числа

ОРГАНИЧЕСКИЕ ГРУППЫ В ПОРЯДКЕ УМЕНЬШЕНИЯ СТАРШИНСТВА


Другие типы энантиомерии

Аксиальная хиральность: возникает в том случае, если в молекуле реализуется конфигурация "растянутого" по некоторой оси тетраэдра: т.е. вместо центра хиральности выступает *ось хиральности*, и создающие асимметричность заместители a,b,c,d принадлежат не одному атому, а разным структурным элементам молекулы, расположенным на этой оси:

конфигурационные энантиомеры:

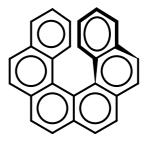
$$H_{3}C$$
 CH_{3}
 $H_{3}C$
 CH_{3}
 $H_{3}C$
 CH_{3}

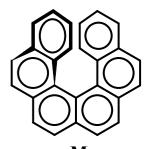
конформационные энантиомеры:

6,6'-динитродифеновая кислота

бинафтол

Планарная хиральность:


$$Br$$
 $(CH_2)_8$ (E) -циклооктен


Спиральность:

ОЧЕНЬ ВАЖНО:

биомолекулы -

- ПОЛИСАХАРИДЫ
- БЕЛКИ
- НУКЛЕИНОВЫЕ КИСЛОТЫ

гексагелицен

Диастереомерия

понятия "диастереомер" и "энантиомер" являются:

- взаимоисключающими
- дополняющими друг друга
 - В отличие от энантиомеров, диастереомеры отличаются друг от друга по своим химическим и физическим свойствам

Переход одного диастереомера в другой называют эпимеризацией.

По пути реализации этого процесса (мысленный эксперимент!!!) диастереомеры подразделяют на:

- *диастереомерные конформации* (претерпевающие эпимеризацию при вращении относительно формально простых связей)
- о-*диастереомерные конфигурации*, претерпевающие эпимеризацию путем разрыва и последующего образования о-связей
- π -диастереомерные конфигурации, превращающиеся одна в другую путем разрыва и последующего образования π -связи.

π -диастереомерия

В структурах, содержащих двойную связь, может наблюдаться стереоизомерия

Универсальная номенклатура (предложена **БЛЕКВУДОМ**): базируется на **правилах старшинства КАНА- ИНГОЛЬДА-ПРЕЛОГА**

Z – старшие заместители по одну сторону от двойной связи
 E – старшие заместители по разные

Стороны:

$$H$$
 CH_3
 H_3C
 NO_2
 $COOH$
 H_3C
 NH_2
 $COOH$
 $N=N$
 $N=N$
 $N=N$
 $N=N$

наблюдается и для соединений содержащих кратные связи при гетероатомах

$$H_3C$$
 $N=N$
 $N=N$

σ-диастереомерия

2 эквивалентных асимметрических атома углерода:

2 неэквивалентных асимметрических атома углерода:

Для молекул, не имеющих асимметрических атомов: