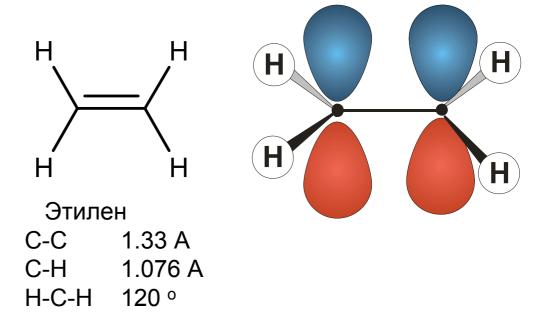
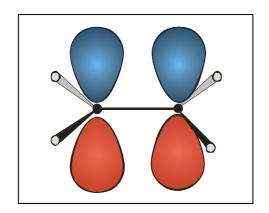

Алкенами (**олефинами**) называются углеводороды, содержащие одну двойную углерод-углеродную связь. Брутто-формула C_nH_{2n} .



Отдельные представители класса алкенов

Строение этилена



Гибридизация атома углерода в этилене — sp^2 , а в этане — sp^3 , поэтому:

- ковалентный радиус атома углерода в этилене меньше, чем в этане;
- электроотрицательность углерода в этилене больше, чем в этане

Энергия связи С=С

Как оценить энергию С-С л-связи экспериментально?

Двойная С-С-связь в молекуле этилена состоит из одной σ –связи и одной π –связи.

Энергия С-С связи в этане порядка 80 ккал/моль Энергия С-С связи в этилене порядка 140 ккал/моль, следовательно, энергия одной π -связи в этилене порядка 60 ккал/моль

Эксперимент:

$$\stackrel{\mathsf{D}}{\longleftarrow} \stackrel{\mathsf{D}}{\longleftarrow} \stackrel{\mathsf{D}}{\longleftarrow} \stackrel{\mathsf{H}}{\longleftarrow} = 65$$
 ккал/моль

Структурная изомерия алкенов

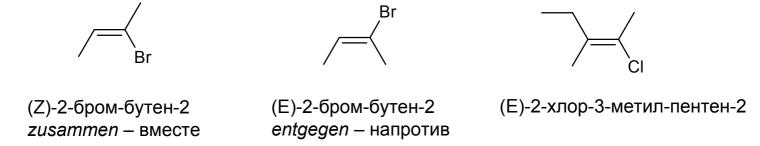
Алкены могут быть разветвленными и неразветвленными (аналогично алканам, изомеры углеродного скелета молекулы).

Кроме того, появляется возможность существования изомеров **по положению двойной связи**.

Терминальные алкены – алкены, содержащие концевую двойную связь

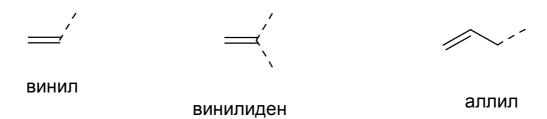
Стереоизомерия алкенов

Для нетерминальных алкенов возможно существование π -диастереомеров (μ uc-mpaнc-изомерия)

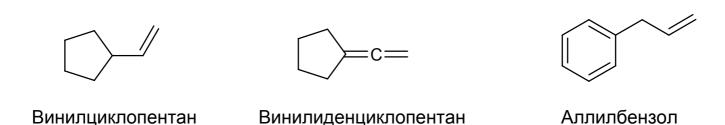

Номенклатура алкенов

В систематической номенклатуре ИЮПАК названия всех алкенов производятся от названия **алканов** заменой окончания «-**ан**» на «-**ен**». Положение двойной связи в углеродной цепи определяется цифрой (локантом) и выносится в начало или в конец названия.

Начало нумерации цепи определяется наиболее близким положением двойной связи и никоим образом не связано с положением и числом алкильных заместителей в главной цепи. Главная цепь должна включать двойную связь.


Если у двойной связи имеется 3 или 4 заместителя, используется только Z, E-номенклатура. Префиксы *цис*- и *транс*- (Z- и E-) выносятся в начало названия.

При этом старшинство заместителей определяется аналогично используемой в *R*,*S*-системе:



Номенклатура алкенов

Некоторые радикалы, содержащие двойную связь, имеют тривиальные названия:

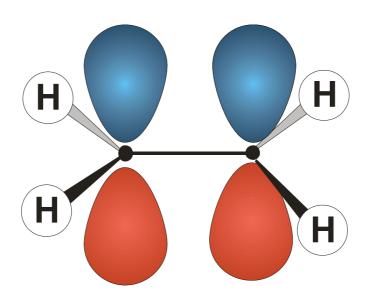
Соответственно называются и вещества, в состав которых входят эти радикалы:

Получение алкенов

1. Дегидрогалогенирование (исходя из галогенидов):

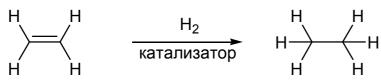
2. Реакция ГОФМАНА (исходя из гидроокисей аммонийных солей):

3. Дегидратация (исходя из спиртов):

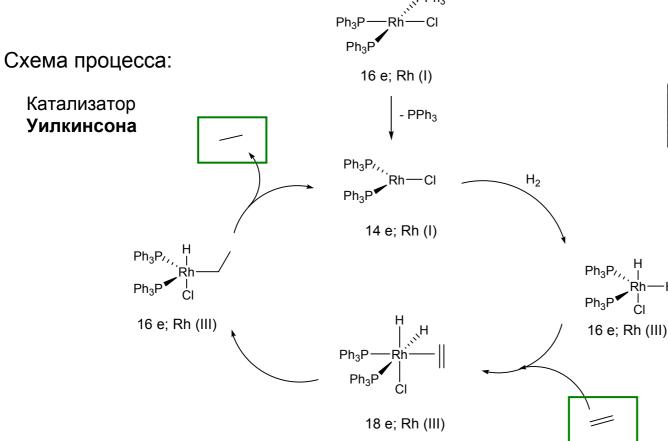

4. Крекинг (из линейных углеводородов):

$$\longrightarrow = + = / + \dots$$

Физические свойства алкенов


Алкен	Формула	Температура кипения, °С	Плотность. г/мл	Температура плавления, °С
Этен (этилен)	CH ₂ =CH ₂	- 104	0,57 при – 110°C	- 169
Пропен (пропилен)	CH ₃ CH=CH ₂	- 47	0,61 при – 50°C	- 186
Бутен-1	CH ₃ CH ₂ CH=CH ₂	- 6	0,595	- 130
<i>цис-</i> Бутен-2	CH_3 $C = C$ H	4	0,62	- 139
тренс-Бутен-2	CH_3 $C = C$ CH_3	1	0,604	- 105
2-Метилпропен (изобутилен)	$(CH_3)_2C=CH_2$	- 7	0,595	- 140
Гептен-1	$CH_3(CH_2)_4CH=CH_2$	93	0,70	- 119
Октен-1	CH ₃ (CH ₂) ₅ CH=CH ₂	122	0,72	
Нонен-1	$CH_3(CH_2)_6CH=CH_2$	146	0,73	
Децен-1	$CH_3(CH_2)_7CH=CH_2$	171	0,74	

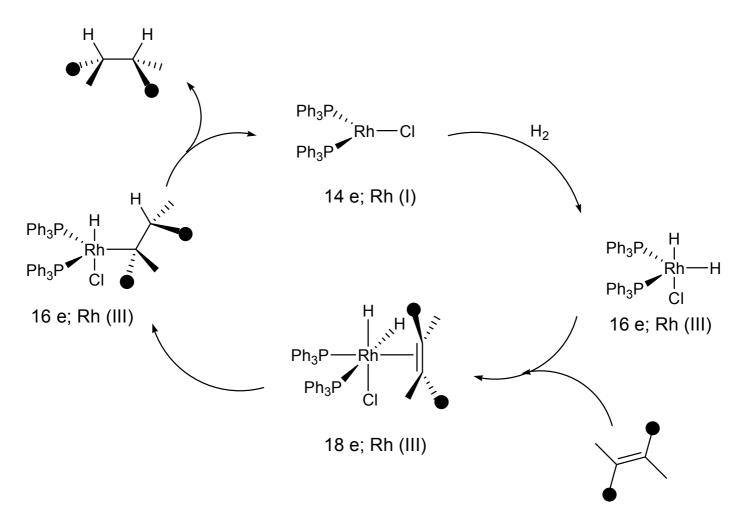
Химические свойства алкенов



- 1. Алкены являются слабыми нуклеофилами, поэтому способны реагировать с электрофильными реагентами
- 2. Алкены в большей степени склонны к разрыву π –связи, чем σ –связи, поэтому для них характерны реакции **присоединения** , приводящие к образованию насыщенных соединений

1. Гидрирование алкенов

катализатор= (Ph₃P)₃RhCl; (Ph₃P)₃RhHCl; PtO₂; Pd/C etc



Geoffrey Wilkinson
Нобелевская премия
по химии за 1973

-Внутримолекулярное образование связи С-Н!

Схема процесса для замещенных алкенов:

Син- присоединение водорода!

1. Гидрирование алкенов

Примеры реакций:

1. Гидрирование алкенов

Термодинамика гидрирования бутиленов:

Термодинамика гидрирования других алкенов (ккал/моль)

Выводы:

- *транс*-алкены обычно **более** стабильны, чем *цис*-алкены;
- дизамещенные алкены стабильнее монозамещенных, чем больше заместителей у двойной связи, тем стабильнее алкен

Электрофильное присоединение к алкенам

Алкены – слабые **нуклеофилы**. Они взаимодействуют с **электрофильными** реагентами с образованием малостабильных карбокатионоидных интермедиатов, которые при взаимодействии с каким-либо нуклеофилом превращаются в продукт формального присоединения E-Nu к алкену.

2. Гидрогалогенирование алкенов

Рассмотрим реакцию этилена с галогенводородами (E+= H+, Nu-= Hal-):

Рассмотрим реакцию изобутилена с бромоводородом:

Взаимодействие изобутилена с HBr протекает с образованием *трет*-бутилбромида, а не изобутилбромида, так как в первом случае процесс протекает через образование **более стабильного** карбкатионоидного интермедиата! Стабильность карбкатионов: $CR_3^+>CHR_2^+>CH_2R^+>CH_3^+$

Правило Марковникова: кислоты присоединяются к несимметричным алкенам таким образом, что водород присоединяется к атому углерода, несущему наибольшее число атомов водорода (наиболее гидрогенизированному атому углерода).

2. Гидрогалогенирование алкенов

Стабильность карбокатионов определяется двумя электронными эффектами:

- Индуктивным эффектом

$$CH_3$$
 H C CH_2 H C

+І-эффект метильных групп

$$\mathsf{CR_3^+} \mathord{>} \mathsf{CHR_2^+} \mathord{>} \mathsf{CH_2R^+} \mathord{>} \mathsf{CH_3^+}$$

- Мезомерным эффектом

Аллил-катион

$$\bigoplus_{\Theta}$$
 CH_2 \bigoplus_{Θ} \bigoplus_{Θ}

Бензил-катион

2. Гидрогалогенирование алкенов

Устойчивость карбокатионов коррелирует с энтальпией ионизации хлоридов в газовой фазе.

Энтальпии ионизации хлоридов в газовой фазе (ккал/моль)

$$RCI \longrightarrow R^{\oplus} + CI^{\ominus}$$

Шкала стабильности карбокатионов:

$$CR_3^+ > CHR_2^+, CH_2CHCH_2^+, C_6H_5CH_2^+ > CH_2R^+ > CH_3^+$$

Взаимодействие алкенов с галоидводородами широко применяется в органическом синтезе.

Примеры:

+ HBr
$$+$$
 HBr $+$ HBr

2. Гидрогалогенирование алкенов

Иногда присоединение галогенводородов к алкенам сопровождается **перегруппировками**, приводящими к изомерным продуктам:

$$\begin{array}{c|c} CH_3 & HCI \\ \hline CH_3NO_2 & \\ \hline \\ CI & \\ \hline \\ CI & \\ \hline \\ CI & \\ \hline \\ CH_3 & \\ \hline \\ CI & \\ \hline \\ CH_3 & \\ \hline \\ R3\% & \\ \hline \end{array}$$

Движущей силой изомеризации промежуточного карбокатиона является стремление понизить свою энергию.

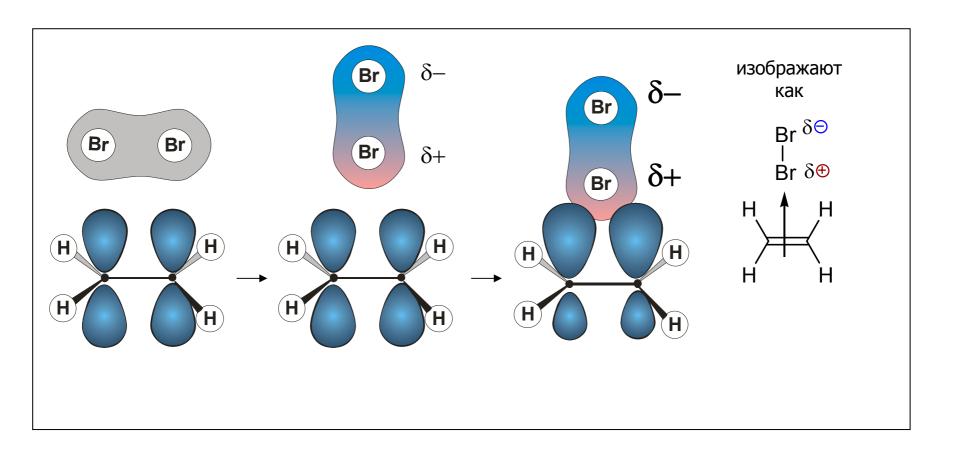
3. Кислотно-катализируемая гидратация алкенов

В том случае, если мы действуем сильной кислотой ($E^+=H^+$, ненуклеофильный противоион) в присутствии воды $Nu=H_2O$ (или другого нуклеофила), то возможно присоединение воды (или другого нуклеофила) к алкену.

Примеры:

3. Кислотно-катализируемая гидратация алкенов

В промышленности таким образом получают спирты и даже эфиры:


Этилен и другие алкены реагирует с бромом с образованием продукта присоединения.

Реакция идет с высоким выходом, в очень мягких условиях и не требует присутствия какого-либо катализатора.

За счет чего взаимодействуют две неполярные молекулы?

Химические свойства Алкены

За счет взаимодействуют две неполярные молекулы? Молекула брома способна поляризоваться!

Механизм присоединения брома к этилену:

1. Образование π -комплекса

H H Br—Br
$$\delta \Theta$$

Br
 $\delta \Theta$

2. Образование бромониевого катиона

3. Образование дибромида.

Обычно: анти-присоединение!!!

Стереохимия присоединения брома к цис- и транс- бутенам-2:

$$H_3C$$
 Br H_1 H_3C Br CH_3 Br

Примеры:

$$\operatorname{\mathsf{Br}}_2$$
 $\operatorname{\mathsf{Br}}$ $\operatorname{\mathsf{Br}}$

$$\frac{\mathsf{Br}_2}{\mathsf{CCl}_4} \qquad \frac{\mathsf{Br}}{\mathsf{Br}} \qquad 0$$

Аналогично брому с алкенами реагируют и другие галогены: Cl_2 , CIBr, ICI и др..

Продукт присоединения иода к алкенам нестабилен:

Взаимодействие несимметричных алкенов с несимметричными галогенами протекает "по правилу Марковникова".

$$H_{3}C \qquad H \qquad + CI - Br \qquad H_{3}C \qquad H \qquad CI_{\delta \oplus}$$

$$H_{3}C \qquad H \qquad H_{3}C \qquad H \qquad H_{3}C \qquad H \qquad CI_{\delta \oplus}$$

$$H_{3}C \qquad H \qquad H_{3}C \qquad$$

При взаимодействии алкенов с галогенами в присутствии «внешнего» нуклеофила возможно протекание *сопряженного присоединения*:

$$+ Br_{2} \xrightarrow{H_{2}O} \begin{bmatrix} H_{2}O & H_{2}O & H_{2}O \\ Br & H_{2}O & H_{2}O \end{bmatrix} Br + Br_{2} \xrightarrow{H_{2}O} \begin{bmatrix} H_{2}O & H_{2}O \\ H_{2}O & H_{2}O \end{bmatrix} CH_{3} CH$$

(В качестве реагента здесь можно рассматривать HOCI)

В процессе присоединения галогена к алкенам иногда отщепляется протон:

В процессе присоединения галогена к алкенам возможно протекание перегруппировок:

Движущей силой таких перегруппировок является образование более стабильного катиона

Скорость электрофильного присоединения к двойной связи увеличивается при наличии электронодонорных алкильных заместителей при двойной связи.

Относительная реакционная способность алкенов в реакции присоединения галогенов

Алкен	Относительная реакционная способность		
	при хлорировании	при бромировании	

	при хлорировании	при бромировании
этилен	-	0.01
бутен-1	1.00	1.00
цис-бутен-2	63	27
транс-бутен-2	20	17.5
2-метилпропен (изобутилен)	58	57
2-метилбутен-2 (триметилэтилен)	11000	13700
2,3-диметилбутен-2 (тетраметилэтилен)	430000	190000

5. Взаимодействие алкенов с гидридами бора (гидроборирование)

Было найдено, что гидрид бора гладко и с высоким выходом реагирует с несложными алкенами, причем продуктом реакции является триалкилборан.

$$R$$
 + BH_3 $T\Gamma\Phi$ R

Гидрид бора легко получается и представляет собой димер состава ${\sf B_2H_6}$ - диборан

$$3NaBH_4 + 4BF_3 (C_2H_5)_2O \longrightarrow 2B_2H_6 + 3NaBF_4 + 4(C_2H_5)_2O$$

Диборан

5. Взаимодействие алкенов с гидридами бора (гидроборирование)

Гидроборирование протекает в три стадии:

Стереохимия гидроборирования (син-присоединение через четырехцентровое переходное состояние):

Электроотрицательность по Полингу:

$$CH_3$$
 + BD_3 $T\Gamma\Phi$

Вместо диборана в синтетической практике часто используются другие гидриды бора:

2
 + 2 +

Ценность использования алкилборанов в органическом синтезе заключается в том, что связь C-B может быть селективно разорвана с образованием алканов, спиртов, галогенидов и других соединений:

Превращение алкенов в алканы:

$$\begin{array}{c} \mathsf{CH_2CH_2R} \\ \mathsf{RH_2CH_2C} \\ \mathsf{H} \\ \mathsf{H_3C} \\ \mathsf{OH} \\ \end{array} \begin{array}{c} \mathsf{CH_2CH_2R} \\ \mathsf{H} \\ \mathsf{CH_2CH_2R} \\ \mathsf{CH_3} \\ \mathsf{H} \\ \mathsf{CH_2CH_2R} \\ \mathsf{CH_3} \\$$

Превращение алкенов в первичные спирты:

Механизм окисления алкилборанов:

Примеры реакций:

Селективность гидроборирования можно повысить, используя дисиамилборан:

Превращение алкенов в алкилгалогениды:

Триалкилбораны реагируют с галогенами в щелочной среде с образованием соответствующих борных кислот и алкилгалогенидов:

Примеры реакций:

Из терминальных алкенов получаются первичные галогениды!

Механизм процесса:

Конфигурация сохраняется в процессе реакции!

Сохранение конфигурации при эпоксидировании:

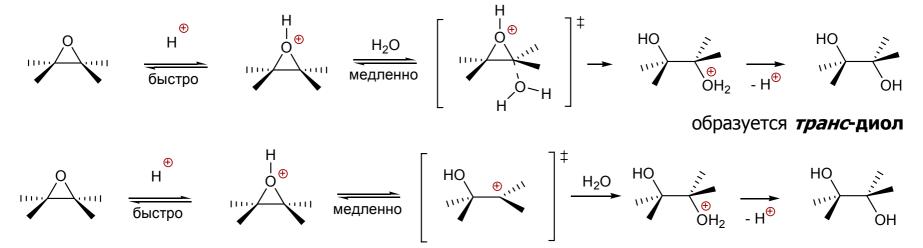
м-хлорнадбензойная кислота

Получение надкислот:

$$OH$$
 + H_2O_2 $MgSO_4$ $NaOH, H_2O$ - диолксан

Примеры реакций:

5. Эпоксидирование алкенов


Получение окисей этилена и пропилена в промышленности:

Для получения окиси пропилена используется один из двух методов

$$/=$$
 + $/$ OH $/$ OH $/$ OH $/$ CI $/$ C

5. Эпоксидирование алкенов

Кислотный гидролиз эпоксидов:

Возможна как син, так и анти-атака. Цис- и транс-диолы.

Основной гидролиз эпоксидов:

7. Син-гидроксилирование алкенов (реакция ВАГНЕРА)

малостабилен

Пример:

$$\begin{array}{c} & & \text{KMnO}_4 \\ \hline & \text{H}_2\text{O}, \ 0\text{-}5 \ \text{C}, \ \text{pH} \sim 8 \end{array}$$

- Только цис-продукт;
- Средний выход продукта

8. Син-гидроксилирование алкенов (реакция КРИГЕ)

стабилен

Примеры:

Химические свойства

8. Син-гидроксилирование алкенов (реакция КРИГЕ)

Реакцию Криге можно проводить, используя OsO₄ в качестве катализатора

$$+ H2O2 OsO4 OHO (58%)$$

9. Окислительное расщепление алкенов

С использованием KMnO₄ и K₂Cr₂O₇

$$\begin{array}{c}
R_1 \\
R_3
\end{array} + KMnO_4$$

$$\begin{array}{c}
R_1 \\
R_3
\end{array} + CO_2$$

Низкие и средние выходы продуктов, не имеет препаративного значения.

9. Окислительное расщепление алкенов

С использованием OsO₄

В отличие от KMnO_₄ получаются **альдегиды**!

Примеры:

$$CH_3(CH_2)_9CH=CH_2$$
 $\xrightarrow{1) OsO_4 - диоксан}$ $CH_3(CH_2)_9CHO$ (68%)
2) NalO₄ - вода; 25⁰C

10. Аллильное бромирование алкенов (реакция ВОЛЯ-ЦИГЛЕРА)

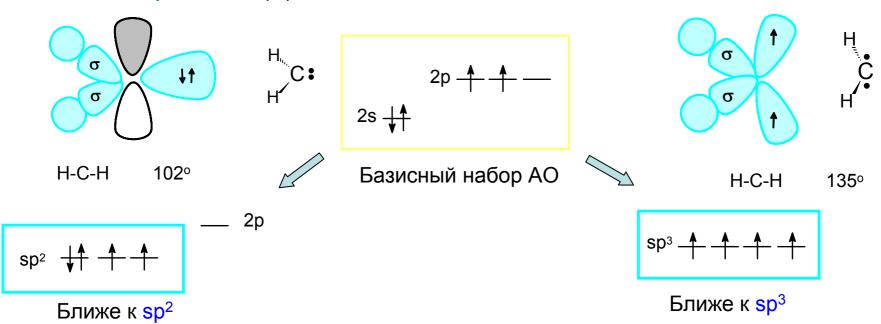
Химические свойства Алкены

10. Аллильное бромирование алкенов

Механизм процесса:

$$N-Br$$
 + HBr $N-H$ + Br_2

$$O \xrightarrow{O-O} O \xrightarrow{CCI_{4,} 80C} O \xrightarrow{PhPh} O \xrightarrow{CCI_{4,} 80C} Ph \xrightarrow{Br_2} Ph-Br + Br$$


$$\bullet$$
 + Br₂ + Br

Бромирование несимметричного алкена:

- Ограниченное применение для бромирования несимметричных алкенов

11. Взаимодействие алкенов с карбенами

Карбенами называют нейтральные нестабильные частицы с двухкоординационным углеродом общей формулы $R_1 - C - R_2$, где атом углерода содержит только шесть валентных электронов. Рассмотрим незамещенный карбен CH_2 , называемый также **метиленом**. Он может находиться в **синглетной** и **триплетной** форме.

Синглетный **метилен** : $\mathbf{CH_2}$ на 10 ккал/моль менее стабилен, чем триплетный метилен. Синглетный **дихлоркарбен** : $\mathbf{CCI_2}$ на 13 ккал/моль стабильнее триплетного вследствие стабилизации его за счет неподеленной пары электронов хлора.

Химические свойства Алкены

Некоторые методы генерации карбенов

1. Фотолизом диазометана

$$H_2C = \stackrel{\bullet}{N} = \stackrel{\circ}{N} \stackrel{hv}{\longrightarrow} N \equiv N + : CH_2$$

Синглетный метилен очень быстро перегруппировывается в триплетный метилен

2. Взаимодействием хлороформа с основаниями

$$B = OH$$
, RO

11. Взаимодействие алкенов с карбенами

Взаимодействие синглетного карбена с алкенами протекает с сохраниением конфигурации исходного алкена:

Триплетный карбен как типичный бирадикал присоединяется к алкенам по двухстадийному механизму с промежуточным образованием нового бирадикала.

11а. Синтез не содержащих галоген циклопропанов – реакция СИММОНСА-СМИТА

$$CH_2I_2 + Zn(Cu) \longrightarrow ICH_2ZnI \longrightarrow (ICH_2)_2Zn + ZnI_2$$
 карбеноид

Примеры:

Взаимодействие алкенов с обычными органическими электрофилами:

$$=$$
 + E^{\oplus} \longrightarrow E \longrightarrow Nu^{\ominus} E \longrightarrow Nu

Взаимодействие алкенов с электрофильными производными переходных металлов:

Внутримолекулярное (очень быстрое!) взаимодействие алкена и группы Х

12. Метатезис алкенов

Общая схема реакции:

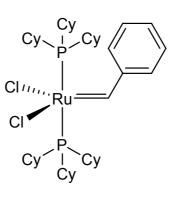
Реакция открыта в 50-х годах XX века. Первые катализаторы — галогениды переходных металлов в смеси с металлоорганическими соединениями (WCl $_6$ + Al(CH $_3$) $_3$ и т.п.) Конец XX века — разработка эффективных катализаторов на основе Мо и Ru (Ричард Шрок и Роберт Граббс), установление механизма реакции (Ив Шовен).

Richard **Schrock**

Yves **Chauvin**

Robert **Grubbs**

Нобелевская премия по химии 2005 года


"за разработку метода метатезиса в органическом синтезе"

12. Метатезис алкенов

Механизм:

1-го поколения

Катализаторы **Граббса**

Су = циклогексил

2-го поколения

Различают несколько видов метатезиса, по типу исходных соединений и продуктов:

ADMET - (Acyclic Diolefin Metathesis, cross methatesis) - с перераспределением заместителей.

ROM - (ring opening methatesis) - с раскрытием цикла.

RCM - (ring closing methatesis) - с циклизацией.

ROMP - (ring opening methatesis polimerisation) - с раскрытием цикла и полимеризацией.

Использование в органическом синтезе. **Пример**:

Клинические испытания против гепатита С

Использование в промышленности. **Примеры**:

Производство пропилена

Производство полинорборнена

Производство **полидициклопентадиена**

13. Гидроформилирование алкенов

Схема реакции:
$$CH_2=CH_2+CO+H_2=CH_3CH_2CHO$$

Катализатор:
$$Co_2(CO)_8 + H_2 = 2 [CoH(CO)_4]$$

образование ацетильного комплекса

 H_2

🧷 - вакантная орбиталь

Использование в промышленности. **Примеры**:

В настоящее время также используются родиевые фосфиновые катализаторы типа $[R_3P]_2RhX$, что позволяет поднять соотношение n/iso до 10 и даже выше

14. Полимеризация алкенов, полиолефины

Ряд алкенов являются очень доступными и являются сырьем для производства полимеров в количествах многих млн.тонн в год

Полимеризация – процесс синтеза высокомолекулярного вещества путём последовательного присоединения молекул низкомолекулярного вещества друг к другу. Элементный состав (молекулярные формулы) мономера и полимера одинаков. По природе инициатора полимеризация бывает анионной, катионной, радикальной и координационной

Радикальная полимеризация алкенов

Полимеризация винилхлорида (X= CI), стирола (X=Ph)

инициирование цепи

рост цепи

$$R^{\bullet}$$
 + $H_2C=CHX$ \longrightarrow R

$$R \xrightarrow{X} \frac{H_2C = CHX}{X} R \xrightarrow{X} \frac{H_2C = CHX}{X} \dots \longrightarrow R \xrightarrow{X} R$$

обрыв цепи

$$R \xrightarrow{\bullet} X \qquad -H^{\bullet} \qquad \qquad R \xrightarrow{\times} n$$

радикал не очень стабилен

Поливинилхлорид, полистирол

Катионная полимеризация алкенов Полимеризация изобутилена

инициирование цепи

$$H$$
 + H_2C \longrightarrow H_3C

рост цепи

$$H_3C$$
 H_2C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

обрыв цепи

карбкатион не очень стабилен

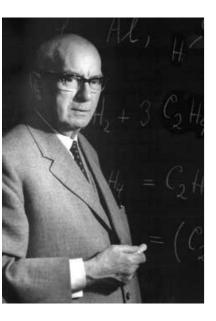
Полиизобутилен: каучукоподобный полимер

полиизобутилен

Анионная полимеризация алкенов

Полимеризация стирола

инициирование цепи


$$R^{\Theta}Li^{\Theta}+$$
 H_2C
 H_2C

рост цепи

обрыв цепи

полистирол

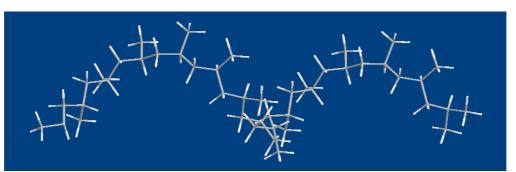
Координационная полимеризация (полимеризация Циглера-Натта)

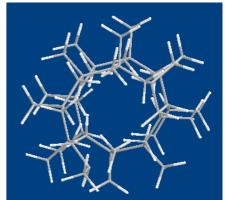
Карл Циглер (1898-1973). Открыл (1953) линейную низкотемпературную полимеризацию этилена с использованием катализаторов R₃Al/TiX₄. Нобелевская премия (1963).

Ti—
$$CH_2$$
— P
 $H_2C=CH_2$
 H_1
 H_1
 H_2
 H_1
 H_2
 H_1
 H_2
 H_3
 H_4
 H_4

Полиэтилен: в зависимости от условий полимеризации получают полимеры различной структуры, обладающие широким спектром свойств. Мировое производство – порядка 70 млн. т.

Полиэтилен


Координационная полимеризация пропилена (полимеризация Циглера-Натта)



Джулио Натта (1903-1979).
Открыл (1954)
стереоспецифическую
полимеризацию алкенов.
Нобелевская премия
(1963).

- вакантная орбиталь

Полипропилен: основная масса производимого полипропилена — **изотактический** полипропилен, получаемый с использованием катализаторов Циглера-Натта. Мировое производство — порядка 45 млн. т.

Стереорегулярный полипропилен

изотактический РР

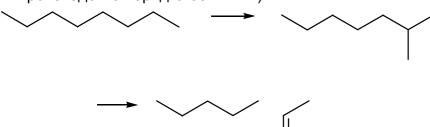
синдиотактический РР

атактический РР

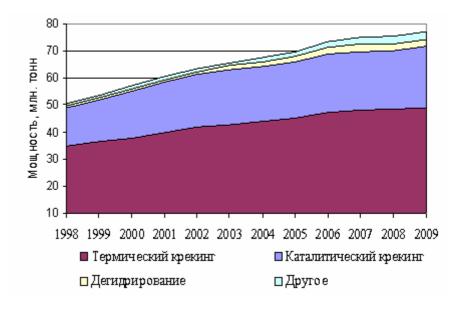
Наибольшее промышленное значение имеет изотактический полипропилен (iPP): трубы, волокна, пленки и т.д.

Отдельные представители

Этилен С $_2$ **H** $_4$ – бесцветный газ со слабым запахом; т. пл. -169,15 °C, т. кип. -103,71 °C .


Получают пиролизом жидких дистиллятов нефти или низших парафиновых углеводородов. Условия: 750-900 °C, 3 атм. Выход около 30% (одновременно образуются другие углеводороды, которые могут быть введены в цикл каталитического риформинга). Мировое производство – порядка 140 млн. т.

Используется в качестве исходного соединения для получения этилового спирта, этиленоксида (оксирана) и различных растворителей на его основе, этилбензола (и стирола).


Основние применение – производство полиэтилена (около 70 млн. т) и других полимеров.

Пропилен С $_3$ **H** $_6$ – бесцветный газ со слабым запахом; т.пл. -187,65 °C, т. кип. - 47,7 °C.

Получают пиролизом жидких дистиллятов нефти (вместе с этиленом), при кислотно-катализируемом крекинге высоких фракций нефти (мировое производство порядка 80 млн. т).

Более современным является метод, использующий реакцию метатезиса бутенов-2 и этилена.

Используется в производстве полипропилена (45 млн. т) и других полимеров, для получения изопропанола, ацетона и фенола, эпоксидных смол.

Отдельные представители

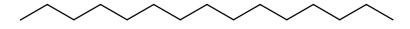
Изобутилен (CH_3)₂ $C=CH_2$ – бесцветный газ, т. кип. 6,9 °C, В промышленности получают дегидрированием изобутана при 500-600 °C, выделяют из газов крекинга.

Используют для получения полиизобутилена и других полимеров, а также для производства изооктана.

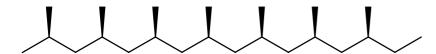
изооктан
$$H_2$$
 H_2 H_2 H_3 H_4 H_4 H_2 H_4 H_5 H_5 H_5 H_6 H_8 H_8

Полиолефины

Полиолефины – высокомолекулярные соединения, получаемые полимеризацией алкенов.


Наиболее широко известны:

Полиэтилен: в зависимости от условий полимеризации получают полимеры различной структуры, обладающие широким спектром свойств. Мировое производство – порядка 70 млн. т.


Полипропилен: основная масса производимого полипропилена — **изотактический** полипропилен, получаемый с использованием катализаторов Циглера-Натта. Мировое производство — порядка 45 млн. т.

Полиизобутилен: каучукоподобный полимер.

Эластомеры: сополимеры различного состава и природы, в качестве мономеров для их получения используются этилен, пропилен и другие алкены.

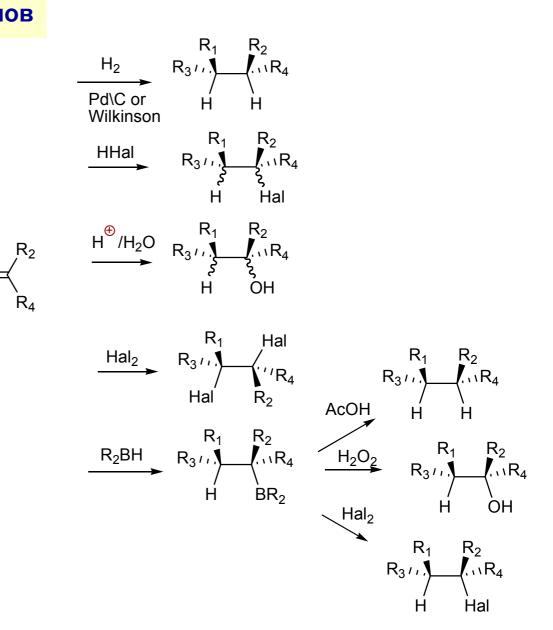
Полиэтилен

изотактический полипропилен

Полиизобутилен

Полиолефины

В настоящее время наблюдается устойчивый рост мирового производства полиолефинов с увеличением относительной доли современных, «наукоемких» полимеров.


Одна из целей – получение «заменителей» поливинилхлорида (ПВХ).

поливинилхлорид

Кроме того, разрабатываются технологии получения полиолефинов, способных заменить в некоторых областях натуральный каучук и сополимеры на основе бутадиена.

Основные превращения алкенов

$$R_1$$
 OH R_2 OH R_2 OH R_2 OH R_3 OH R_4 OH R_5 Or H R_4 OF R_5 OF R_5 OF R_5 OF R_5 OF R_6 OF R_7 OF R_8 OF

Программа

Алкены (олефины), брутто-формула, представители класса.

Изомерия. Номенклатура.

Этилен: геометрия и электронное строение, сравнение с этаном.

Физические свойства алкенов.

Получение алкенов: дегидрогалогенированием, дегидратацией (правило Зайцева), *дезаминированием* (реакция Гофмана), крекингом, гидрированием Ацетиленов.

Химические свойства алкенов.

Каталитическое гидрирование алкенов и его механизм. Относительные теплоты гидрирования алкенов, определение относительных энергий цис-/транс- и внутренних/терминальных алкенов. Гидрогалогенирование, галогенирование, гидратация алкенов. Механизм электрофильного присоединения к алкенам. Понятие об электрофильных агентах. Правило Марковникова и его современное толкование. Карбокатионы, их стабильность. Перегруппировки, сопровождающие реакции алкенов с электрофильными реагентами.

Взаимодействие алкенов с гидридами бора: стереохимия и использование в органическом синтезе (получение спиртов, галогенидов, насыщенных углеводородов).

Программа

Эпоксидирование алкенов (реакция Прилежаева), гидролиз эпоксидов.

Син-гидроксилирование алкенов (реакция Вагнера, реакция Криге).

Окислительное расщепление алкенов.

Аллильное галогенирование алкенов (реакция Воля-Циглера).

Взаимодействие алкенов с карбенами и карбеноидными частицами (реакция Симмонса-Смита). Карбены и методы их генерирования.

Гидроформилирование алкенов, механизм реакции и ее промышленное значение.

Полимеризация алкенов (радикальная, катионная, анионная), механизм реакции и ее промышленное значение. Полимеры. Пластические массы (пласмассы). Метатезис алкенов, механизм реакции и ее промышленное значение.

Сшитые полимеры.