спектроскопия ядерного магнитного резонанса

Блох, Парселл ₁₉₄₅ – открытие явления 1952 – Нобелевская премия

Магнитное ядро

Ядра некоторых элементов, содержащие нечетное число протонов или нейтронов, несимметричны и могут быть представлены в виде микроскопических вращающихся магнитов. Попадая в магнитное поле, такие ядра ведут себя подобно волчку в поле тяготения – они начинают **прецессировать**. Эта прецессия характеризуется угловым моментом J и приводит к возникновению магнитного момента µ.

В общем случае угловой момент Ј, и обусловленный
его наличием магнитный момент связаны
_

соотношением $\mu = \gamma \mathbf{J}$

(где γ – т.н. **гиромагнитное отношение**, являющееся характеристикой ядра)

Ядро	Гиромагнитное		
	отношение <i>γ</i> , 10 ⁻⁸		
	рад/(Тл·с)		
¹ H	2.675		
² H	0.411		
$^{10}\mathrm{B}$	0.288		
11 B	0.858		
¹³ C	0.673		
^{14}N	0.193		
^{15}N	-0.271		
¹⁷ O	-0.363		
¹⁹ F	2.517		
³¹ P	1.083		

Магнитное ядро

Таким образом, одельное ядро имеет магнитный момент, прецессирующий с некоторой частотой вокруг направления поля. Эта частота называется **ларморовой частотой ядра** ω . Связь ω с напряженностью внешнего магнитного поля:

$$ω = γ B_0/2π$$

Для удобства рассмотрения поведения ядра в магнитном поле система координат вводится таким образом, чтобы направление оси z совпадало с направлением магнитного поля. В этом случае магнитный момент ядра имеет постоянную проекцию на ось z и вращающуюся с ларморовой частотой проекцию на плоскость x-y. Энергия системы определяется ориентацией проекции магнитного момента на ось z (в простейшем случае – в направлении поля или против направления поля).

Важное замечание: в спектроскопии ЯМР удобно использовать частотные характеристики для определения напряженности магнитного поля. "Магнит с рабочей частотой 400 МГц" = магнит с такой напряженностью поля, при которой частота ларморовой прецессии протонов равна 500 МГц.

Магнитное квантовое число ядра

μ и J *квантованы.* Разрешенные, или **собственные** значения J₇ определяются соотношением

$$J_Z = \frac{h}{2\pi} m_I$$

где *m_I* – **магнитное** квантовое число

*m*₁ может принимать значения = I, I-1; ... -I, где I – спиновое квантовое число. Имеющее магнитный момент ядро может иметь любую из 2I+1 возможных ориентаций (находиться в одном из 2I+1 спиновых состояний):

```
При I = 1/2: возможны 2 ориентации (-1/2 и +1/2)
I = 1: 3 ориентации (-1, 0, +1)
I = 3/2: 4 ориентации (-3/2, -1/2. +1/2, +3/2)
```

Магнитные ядра

Все ядра с нечетными массовыми числами, а также ядра, имеющие нечетное число протонов и нейтронов, обладают магнитным моментом (I≠0). В первом случае I принимает полуцелые значения (1/2, 3/2, 5/2...), во втором - целые (1, 2, 3...).

Важные для спектроскопии ЯМР ядра:

```
<sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F, <sup>31</sup>P: I = 1/2
<sup>2</sup>H, <sup>14</sup>N: I = 1
<sup>11</sup>B, <sup>35</sup>CI, <sup>37</sup>CI, <sup>79</sup>Br и <sup>81</sup>Br: I = 3/2
```

Величина проекции магнитного момента $\mu_Z = \gamma h m_l/2\pi$. Для протонов $\mu_Z = \pm \gamma h/4\pi$

Магнитные ядра во внешнем поле

В отсутствие внешнего магнитного поля спиновые состояния ядер имеют одинаковую энергию (вырождены по энергии). При наложении внешнего поля вырождение снимается

Ядерный магнитный резонанс

Физическая основа спектроскопии ядерного магнитного резонанса – поглощение электромагнитного излучения ядрами атомов вещества, помещенного в магнитное поле.

Заселенность энергетических уровней

Распределение заселенности энергетических уровней между состояниями с $m_1 = +1/2$ и -1/2 (α и β):

 $N_{\alpha}/N_{\beta} = exp(-\Delta E/kT) = exp(-\gamma hB_{o}/2\pi kT)$, или $\approx 1-(\gamma hB_{o}/2\pi kT)$

Следовательно, чем выше напряженность поля, а также величина γ , кроме того: чем ниже температура, тем больше соотношение заселенностей уровней, т.е. интенсивность сигнала в спектре ЯМР

Интенсивность сигнала ядра пропорциональна

 $[(I+1)/I^2]\mu^3B_0^2$

Для ¹Н μ = 2.79, для ¹³С – 0.70, для ³¹Р – 1,13

Магнитные свойства различных ядер

Ядро	I	Гиромагнитное отношение γ 10 ⁻⁸ , рад/Тс	Относительная чувствительность при B _o =const	Природное содержание
¹ H	1/2	2.675	1	99.98
² H	1	0.411	0.009	0.0156
¹¹ B	3/2	0.858	0.165	81.17
¹³ C	1/2	0.673	0.016	1.108
¹⁴ N	1	0.193	0.001	99.635
¹⁵ N	1/2	-0.271	0.001	0.365
¹⁷ O	5/2	-0.363	0.029	0.037
¹⁹ F	1/2	2.517	0.834	100
²⁹ Si	1/2	-0.531	0.079	4.7
³¹ P	1/2	1.083	0.066	100

Релаксационные процессы и ширина линий в спектре ЯМР

Спин-решеточная релаксация T₁ – взаимодействие магнитного ядра с полями различной природы. Механизмы:

- взаимодействие с молекулами растворителя
- диполь-дипольные взаимодействия между соседними ядрами.
- взаимодействие магнитных ядер с парамагнитными частицами.

Спин-спиновая релаксация Т₂ – обмен спинами между ядрами.

МАЛАЯ ВЕЛИЧИНА Т₁ – ПРИЧИНА УШИРЕНИЯ ЛИНИЙ В СПЕКТРАХ

Ширина линий в спектре обусловлена принципом неопределенности

 $\Delta E \Delta t = h/2\pi$ и, поскольку E = hv, $\Delta v = 1/2\pi \Delta t$

Узкой линии (Δv = 1 Гц) соответствует время жизни ~0.16 с. При меньшем времени жизни спинового состояния линия резонансного сигнала **уширяется**

Спектрометры ЯМР с непрерывной регистрацией спектра

- 1. ампула с исследуемым образцом;
- 2. электромагнит;
- 3. "свипирующие" катушки;
- 4. приемная катушка;
- 5. генератор;
- 6. усилитель;

7. устройство вывода или обработки полученных данных

Поддерживая постоянным один из параметров (частоту генератора или напряженность поля), добиваются достижения **резонанса** для каждой группы ядер

В результате получают т.н. спектры прямого прохождения.

Спектрометры ЯМР с фурье-преобразованием

- •сверхпроводящий магнит;
- •импульсный источник радиочастотных колебаний;
- •устройство для анализа картины восстановления равновесного распределения (датчик);
- •комплексная система регистрации, хранения, обработки и выдачи данных (ПК).

Образец помещают в постоянное магнитное поле, подвергают воздействию кратких импульсов (краткость обуславливает широкий диапазон частот). Анализируется процесс релаксации (восстановления равновесного распределения). Процесс восстановления описывается совокупностью синусоидальных кривых , каждая из которых соответствует некоторой резонансной частоте. Фурье-преобразование дает спектр.

Спектроскопия ¹Н ЯМР Химический сдвиг

В исследуемом соединении помимо наложенного внешнего поля на протоны воздействуют электромагнитные поля молекулы – проявляется т.н. **диамагнитное экранирование**. Напряженность результирующего поля В_{лок}:

где **о – константа экранирования**

В результате экранирования резонансный сигнал протона наблюдается в **более** сильном поле (при меньшей частоте) по сравнению с сигналом изолированного ядра.

Изменение резонансной частоты каждого протона зависит от его химического окружения. Его часто называют химическим сдвигом резонансной частоты или просто

химическим сдвигом.

Пример спектра ¹Н ЯМР

¹Н ЯМР

Единицы измерения химических сдвигов

Величина экранирования σ пропорциональна внешнему полю, следовательно, ему пропорциональна и локальная напряженность поля B_{nok} – и резонансная частота поглощения v_o .

Используемые в различные приборах напряженности полей (и, соответственно, рабочие частоты) различны. Поэтому:

Вводится единая относительная шкала, выражаемая в миллионных долях – м.д., ppm (за 0 принимают сигнал протонов Si(CH₃)₄ (TMC), шкала растет в направлении ослабления поля), и величина относительного химического сдвига δ определяется следующим выражением:

$$\delta = (v_{\text{в-во}} - v_{\text{эталон}})/v_{\text{прибора}}$$

Допустим, при рабочей частоте прибора 400 МГц разница в частотах поглощения между протонами ТМС и исследуемого соединения составляет **800 Гц**. Тогда величина химического сдвига этих протонов равна 800/40000000×1000000, т.е. **2** м.д.

Структурные факторы, влияющие на химический сдвиг

- 1. Локальный диамагнитный вклад электронного облака вокруг протона σ_{лок}
- 2. Эффекты соседних атомов и групп σ':
 - Влияют на _{олок}, изменяя электронную плотность у протона (индуктивный и мезомерный эффекты заместителей)
 - Вызванная В_о циркуляция электронов в этих атомах и группах порождает возникновение вторичных магнитных полей, изменяющих поле В_{лок}

Кроме того, влияют и другие эффекты (электрические поля, силы Вандер-Ваальса, эффекты среды.

чем более электроноакцепторным является заместитель рядом с протоном, тем в более слабом поле будет расположен его сигнал (тем больше величина химического сдвига по шкале δ)

Интегрирование спектра ¹Н ЯМР

¹Н ЯМР

Химический сдвиг и кислотность

Индуцированные магнитные моменты соседних атомов и групп

Из-за взаимодействия электронных облаков функциональных групп с полем В_о возникают т.н. области **экранирования** и **дезэкранирования**.

Некоторые характерные примеры

Простая связь С-С:

¹H ЯМР

Н_а более экранирован, чем Н_b (∆ = 0,5 м.д.)

Индуцированные магнитные моменты соседних атомов и групп

Тройная связь С=С

Изменение электроотрицательности в ряду $sp^3 - sp^2 - sp$: 2.5 – 2.8 – 3.1

¹Н ЯМР

СпектроЯкопия ЯМР

Индуцированные магнитные моменты соседних атомов и групп

Индуцированные магнитные моменты соседних атомов и групп

В результате протоны, лежащие в плоскости молекулы и вне кольца,

сильно дезэкранированы

Напротив, протоны над и под плоскостью кольца экранированы

Индуцированные магнитные моменты соседних атомов и групп

Спин-спиновое взаимодействие

Уширенный сигнал при 12 м.д. соответствует протону -СООН-группы. Сигналы двух оставшихся -СН= - протонов удвоены (принято говорить: имеют форму **дублетов**). В этом и подобных случаях говорят о т.н. **спин-спиновом взаимодействии**. Следует отметить, что это взаимодействие между двумя протонами фактически передается через 3 химические связи: H-C, C=C и C-H.

Рассмотрим структурный фрагмент, содержащий два протона, имеющих различное окружение (спиновую систему АХ).

Для протона А

- а: в отсутствие внешнего поля спиновые состояния вырождены по энергии
- **б**: во внешнем поле ядра принимают одну из двух возможных различных по энергии ориентаций
- В: на внешнее магнитное поле вблизи ядра А влияют два различных поля, обусловленных различными спиновыми состояниями (+1/2 и -1/2) соседнего ядра Х. Суммарный стабилизирующий эффект оказывают антипараллельные ориентации спинов (↓↑ и ↑↓), дестабилизирующий параллельные (↑↑ и ↓↓). Переходы между спиновыми состояниями подчинены определенным правилам отбора: разрешенными являются переходы с Δm₁ = ±1 (+1/2, -1/2 → -1/2, -1/2 или +1/2, +1/2 → -1/2, +1/2). Таких переходов два. В результате получаем общую картину, изображенную на схеме

СпектроЯкопия ЯМР

Этими **двумя** *различными по энергии* разрешенными переходами и обусловлено появление дублета в А - компоненте спиновой системы АХ, отражающем возможность поглощения излучения ядром А при двух различных частотах. Все сказанное выше справедливо и для Х-компоненты спиновой системы.

РЕЗУЛЬТАТ – ПОЯВЛЕНИЕ ДВУХ ДУБЛЕТОВ В СПЕКТРЕ

Объяснение появления мультиплетности сигналов в ЯМР-спектрах системы АХ можно и нужно существенно упростить: ее причину можно искать в проявлении **"непрямого взаимодействия находящихся рядом протонов, передающееся посредством находящихся между ними электронов"**. Поскольку каждый их этих протонов может иметь 2 возможные спиновые ориентации, соседний способен поглощать электромагнитное излучение двух возможных энергий, что в рассмотренном случае и приводит к появлению двух дублетов, характерных для спиновой системы АХ.

Для анализа спиновых систем различных типов вводят понятие **полного спина совокупности протонов m**_r, который характеризует магнитные свойства не одного ядра, а **группы магнитно эквивалентных ядер**

1 Н: m_r может принимать значения -0.5 и +0.5 2 Н: -1, 0 и +1 3 Н: -1.5, -0.5, +0.5 и +1.5

Спин-спиновое взаимодействие

Спектр состоит из состоящего из 3 линий сигнала (общепринятое название –

триплет), имеющего интеграл 1 (-CH<) и **дублета**, имеющего интеграл 2 (-CH₂-).

Объяснение: - протон А может иметь 2 возможных спиновых состояния (+1/2 и - 1/2), **полный спин** этих состояний также равен +1/2 и -1/2, и сигнал X₂ - фрагмента имеет форму **дублета**. Два Х-протона могут иметь 4 возможных спиновых состояния (+1/2 | +1/2; +1/2 | -1/2; -1/2 | +1/2; -1/2 | -1/2), причем **полный спин** этих состояний составляет +1 (для (+1/2 | +1/2); 0 (для +1/2 | -1/2 и -1/2 | +1/2) или -1 (для -1/2 | -1/2). Но: Состояний с нулевым полным спином **два**! Поэтому сигнал протона А проявляется в виде **триплета**, интенсивность компонент которого - **1:2:1**. В общем случае для различных спиновых систем в спектроскопии ¹Н ЯМР действует следующее простое правило (правило n+1): *мультиплетность сигнала равна числу эквивалентных протонов, взаимодействующих с протонами этого типа плюс единица*. Если это правило выполняется, то говорят о *взаимодействии первого порядка*.

Очевидно, что полный спин также может принимать n+1 значений

¹Н ЯМР

Правило n+1:

Число линий в спектре протона иди группы эквивалентных протонов равно числу протонов соседней группы, с которыми наблюдается спин-спиновое взаимодействие, + 1.

Анализ системы A₂X₂ в диэтиловом эфире с использованием **представления о суммарном спине**:

Представим возможные сочетания спинов ядер, образующих систему A₂X₃, в форме таблицы, в которой каждой группе сочетаний спинов отдельных ядер соответствует определенное значение m_r, и подсчитать возможное количество сочетаний с одинаковыми m_r

-CI	H ₂ -	m _r (-CH ₂ -)	-CH ₃ -		m _r (-CH ₃ -)	
+1/2	+1/2	1 (1)	+1/2 +1/2 +1/2		3/2 (1)	
+1/2 -1/2	-1/2 +1/2	0 (2)	+1/2 -1/2 +1/2	+1/2 +1/2 -1/2	-1/2 +1/2 +1/2	1/2 (3)
-1/2 -1/2		-1 (1)	+1/2 -1/2 -1/2	-1/2 +1/2 -1/2	-1/2 -1/2 +1/2	-1/2 (3)
			-1/2 -1/2 -1/2		-3/2 (1)	

T.o.

```
сигнал протонов CH<sub>3</sub>-группы – триплет (2 протона -CH<sub>2</sub>-группы +1,
интенсивности компонент 1:2:1);
сигнал протонов -CH<sub>2</sub>-группы - квадруплет (3 протона CH<sub>3</sub>-группы +1,
интенсивности компонент 1:3:3:1)
```

Еще один пример системы A_2X_3 – спектр ¹Н ЯМР этилбромида:

Для определения относительных интенсивностей линий в любом мультиплете удобно использовать **треугольник Паскаля**:

Число соседних ядер	Наблюдаемая интенсивность линий	Название и общепринятое обозначение мультиплета
0	1	синглет, s
1	1 1	дублет, d
2	121	триплет, t
3	1331	квадруплет, q
4	14641	квинтиплет (квинтет), р
5	1 5 10 10 5 1	секстиплет (секстет)
6	1 6 15 20 15 6 1	септиплет (септет)
7	1 7 21 35 35 21 7 1	октиплет (октет)

¹Н ЯМР

Слева – 2 наложившихся триплета (соотношение 1:2:2:2:1)

Справа – квинтет (соотношение 1:4:6:4:1)

Энергия спин-спинового взаимодействия между ядрами A и X пропорциональна скалярному произведению их ядерных спиновых моментов μ_A и μ_X , и ее можно записать в виде:

$\mathbf{E} = \mathbf{J}_{\mathbf{A}\mathbf{X}}\mathbf{I}_{\mathbf{A}}\mathbf{I}_{\mathbf{X}}$

где I_A и I_X – ядерные спиновые векторы взаимодействующих ядер, пропорциональные их магнитным моментам µ, а J_{AX} – константа спин-спинового взаимодействия (КССВ) между А и Х

Важным следствием этого уравнения является следующее:

В противоположность химическому сдвигу (в единицах частоты) КССВ не зависит от напряженности внешнего поля (рабочей частоты спектрометра), и ее разумно и повсеместно принято измерять в Гц

Другой важный момент: легко интерпретируемые спектры ¹Н ЯМР наблюдаются, если сигналы протонов находятся на значительном удалении друг от друга – точнее, если велико соотношение $\Delta v/J$ (10 или более) – тогда наблюдаются т.н. **спектры первого порядка**. Очевидный путь увеличения $\Delta v/J$ – увеличение рабочей частоты спектрометра.

Спектр 3-хлорпропановой кислоты (сигнал -СООН протона при 11.5 м.д. не приведен):

Т.к. подавляющее число спектров регистрируется с использованием δ-шкалы, необходимо уметь определять КССВ, располагая хим.сдвигами компонент мультиплета, выраженными в м.д.:

 J_{AX} = ($\delta_1 - \delta_2$)/рабочая частота спектрометра

Спин-спиновое взаимодействие

Отклонение от спектра первого порядка при близости химических сдвигов образующих спиновую систему протонов можно проиллюстрировать на примере AB-системы, с близкими химическими сдвигами - Cl₂CHCHBr₂ при регистрации на ЯМРспектрометрах с рабочими частотами 100, 400 и 1000 МГц.

СпектроЯкопия ЯМР

¹Н ЯМР

Ранее уже говорилось об эквивалентных или о неэквивалентных протонах. Пришло время внести формальную ясность в этот вопрос. Итак:

Магнитно эквивалентными мы называем такие ядра, которые имеют одну и ту же резонансную частоту и общие для каждого из них значения КССВ с ядрами любой соседней группы.

Спин-спиновое взаимодействие между магнитно эквивалентными ядрами в спектре не проявляется

Следует различать понятия магнитной и химической эквивалентности!

Н¹ и Н² химически эквивалентны. Однако они **магнитно не эквивалентны**,

т.к.
$$J_{1,3} \neq J_{1,4}$$
 (или $J_{цис} \neq J_{транс}$)

Пары H¹-H⁴ и H²-H³ химически эквивалентны. Однако они **магнитно не эквивалентны**, т.к., например, $J_{1,2} \neq J_{1,3}$ Спектры органических соединений крайне редко представляют собой совокупности синглетов. Чаще всего спектры включают мультиплетные сигналы, и при их анализе помимо величин химических сдвигов большое значение имеют и константы спин-спинового взаимодействия (КССВ) *J*.

Классификация КССВ по числу связей между протонами:

Вицинальное взаимодействие

Классификация спиновых систем

Имеющие различные химические сдвиги ядра обозначают буквами латинского алфавита в порядке перехода из области слабых в область сильных полей. Их число указывается подстрочными индексами.

Если величина ∆v/J велика, используют далеко отстоящие буквы (AX, A₂X₃, AMX) При малой разности химических сдвигов используют близкие буквы (AB, и т.п.)

Если ядра химически эквивалентны, но магнитно не эквивалентны, используют обозначения "со штрихом": **АА'ХХ'** и т.д.

¹Н ЯМР

Спин-спиновое взаимодействие

¹Н ЯМР

Спин-спиновое взаимодействие

¹Н ЯМР

СпектроЯкопия ЯМР

На практике также часто встречаются и **трехкомпонентные** системы

Схематичный анализ спиновой системы АМХ

¹Н ЯМР

```
СпектроЯкопия ЯМР
```


Спиновые системы из магнитно неэквивалентных, но химически эквивалентных протонов (системы "со штрихом").

Пример – пара-замещенная ароматика:

СпектроЯкопия ЯМР

¹Н ЯМР

Спектроскопия ¹³С ЯМР

число сигналов в спектре ¹³С ЯМР в принципе равно числу различных атомов углерода в молекуле органического соединения

В спектрах ¹³С ЯМР фиксируются атомы углерода, вообще не связанные с протонами:

Как и в ¹Н ЯМР, химический сдвиг зависит от окружения атома С и используется δ-шкала (стандарт – ТМС)

Относительная чувствительность ¹³С ЯМР спектроскопии в ~5700 раз ниже, чем ¹Н ЯМР – использование фурье-спектрометров

Рабочая частота: 400 МГц для 1 H ~ 100 МГц для 13 C

Спин-спиновое взаимодействие

¹³C-¹³C: практически не проявляется (низкое природное содержание) **¹³C-¹H**: **наблюдается** и позволяет напрямую определять число –CH₃, -CH₂- и -CH< - фрагментов

¹³С ЯМР

¹³С ЯМР

Широкополосная протонная развязка

(гетероядерный двойной резонанс)

Спектроскопия ЯМР на других магнитных ядрах

Наиболее важные магнитные ядра – 19 F и 31 P (I = 1/2)

³¹Р ЯМР спектроскопия

как правило, молекулы органических соединений содержат небольшое число атомов фосфора, величины КССВ ¹Н-С-³¹Р малы

следствие – простые спектры ³¹Р ЯМР

¹⁹ **F ЯМР** спектроскопия

КССВ ¹Н-С-¹⁹F, ¹Н-С-С-¹⁹F, ¹⁹F-С-¹⁹F и т.п. весьма велики, что существенно осложняет спектральную картину.

ВАЖНО – проявление спин-спиновых взаимодействий в ¹Н и ¹³С ЯМР спектрах соединений, содержащих другие магнитные ядра

Другие магнитные ядра

Спектроскопия ЯМР на других магнитных ядрах

Другие магнитные ядра

• Изотопные метки

• Дейтерированные растворители

при регистрации ¹Н ЯМР-спектров сигналы D-растворителей не мешают сигналам исследуемого в-ва, однако по сигналам остаточных протонов D-растворителей можно точно определять химических сдвиг ядра ²Н в D-растворителях используются при настройке фурье-спектрометров,

что делает использование этих растворителей необходимым

расщепление энергетических уровней ядра ²Н (I = 1, 3 возможных значения m_1)

Динамические эффекты

СпектроЯкопия ЯМР

Динамические эффекты

Зависимость формы линии от времени жизни протонов в различных положениях: на основе зависимости формы линии от частоты и времени T₂ –

уравнения Блоха

$$g(\nu) = \frac{(1 + \tau \pi \Delta)P + QR}{4\pi^2 P^2 + Q^2}$$

Р =
$$(0.25\Delta^2 - v^2 + 0.25\delta v^2)\tau + \Delta/4\pi$$

Q = $[-v - 0.5(p_A - p_B)\delta v]\tau$
R = $0.5(p_A - p_B)\delta v - v(1 + 2\pi\tau\Delta)$
 $\tau = \tau_A \tau_B/(\tau_A + \tau_B), \tau_A \ u \ \tau_B$ - средние времена
жизни в положениях A и B
 $p_A \ u \ p_B$ - мольные доли A и B
 δv - разность частот (Гц) в положениях
A и B
 Δ - ширина сигнала (Гц) на половине
высоты пика в отсутствие обмена $(\tau \rightarrow \infty)$,
для простоты Δ_A принято равным Δ_B

v - текущая частота (Гц)

Динамические эффекты

¹Н ЯМР спектры метанола при различных температурах

Динамические эффекты