

AMNHЫ

The Chemical Company

КЛАССИФИКАЦИЯ АМИНОВ

по числу связанных с атомом N органических заместителей

по типу связанных с атомом N органических заместителей

$$N NH_2$$
 NH_2 N

ИЗОМЕРИЯ АМИНОВ

структурная и стереоизомерия.

$$N HN NH_2$$
 NH_2

структурные изомеры C_3H_9N

структурные изомеры, **не являющиеся изомерными аминами**

энантиомеры

$$H_2N$$
 H_2N
 NH_2
 H_2N

 σ -диастереомеры

 π -диастереомеры

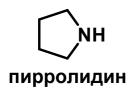
НОМЕНКЛАТУРА АМИНОВ

2 основных подхода:

- ▶ основа названия амин. Остальная органическая часть молекулы совокупность заместителей.
- ▶ основа названия старший углеводородный фрагмент; замесители обозначают локантами (цифры или буква N) и добавляют окончание амин

$$NH_2$$

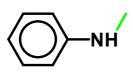
1-метилбутиламин 2-пентанамин


N-бутил-N-этиламин N-этил-1-бутанамин

N,N,N-триэтиламин N,N-диэтилэтанамин

N-[(2E)-3-метил-2-пентенил]-N-этиламин (2E)-3-метил-N-этил-2-пентен-1-амин

N-изопропил-N-(2-циклогексен-1-ил)амин N-изопропил-2-циклогексен-1-амин


НОМЕНКЛАТУРА АМИНОВ

1-азабицикло[2.2.1]гептан

бензиламин фенилметанамин

N-метил-N-фениламин N-метиланилин

N,N-дифениламин N-фениланилин

N¹-метил-N³-этил-1,3-пропандиамин

N-(3-метилфенил)-N-фенил-N-этиламин 3-метил-N-этил-N-фениланилин

Методы получения аминов

1. Алкилирование аммиака и аминов

реакция ГОФМАНА (1849):

$$\mathsf{NH}_3 \ \xrightarrow{\mathsf{RX}} \ \mathsf{R-NH}_3 \ \mathsf{X} \ \xrightarrow{\ \ \ } \ \mathsf{R-NH}_2 \ \longrightarrow \ \mathsf{R-NH}_2 \ \mathsf{X} \ \xrightarrow{\ \ \ \ } \ \mathsf{R-NH}$$

реакция МЕНШУТКИНА:

$$NH_2$$
 RX R

В лабораторной практике используются мало.

$$(CH_2)_7CH_3$$

 $CH_3(CH_2)_7-NH_2$ + $CH_3(CH_2)_7-NH$
45% 43%

причина образование **смесей** продуктов:

$$CH_3(CH_2)_7$$
—Br + NH₃ (3 моль) — \rightarrow

$$(CH_2)_7CH_3$$

+ $CH_3(CH_2)_7$ — N
 $(CH_2)_7CH_3$
1%

2. Синтез первичных аминов по ГАБРИЭЛЮ

R – первичный, вторичный но не третичный!

3. Восстановление нитросоединений

Николай Николаевич **Зинин** 1812-1880

метод наиболее важен для получения **анилинов**, etc.

$$R_n \xrightarrow{II} R_n \xrightarrow{II} R_n \xrightarrow{II}$$

- первооткрыватель реакции. Восстановитель - $(NH_4)_2S$

промышленное производство анилина:

металлы платиновой группы НЕ ИСПОЛЬЗУЮТСЯ!

лабораторные методы:

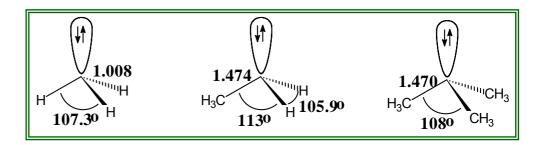
$$NO_2$$
 Zn, HCl
 NH_2
 $SnCl_2, HCl$
 O

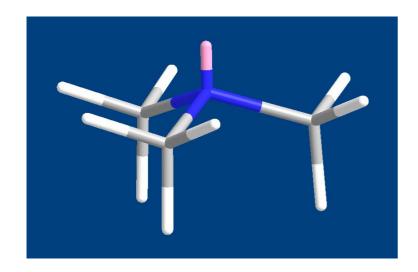
3. Восстановление нитросоединений

в кислой среде:

нитрозобензол

фенилгидроксиламин


в щелочной среде:


азоксибензол

гидразобензол

Строение аминов

пирамидальное строение; используется концепция об sp³-гибридизации атома N

величина энергетического барьера **ИНВЕРСИИ атома N** составляет для алифатических аминов ~25 кДж/моль

Асимметрический атом азота

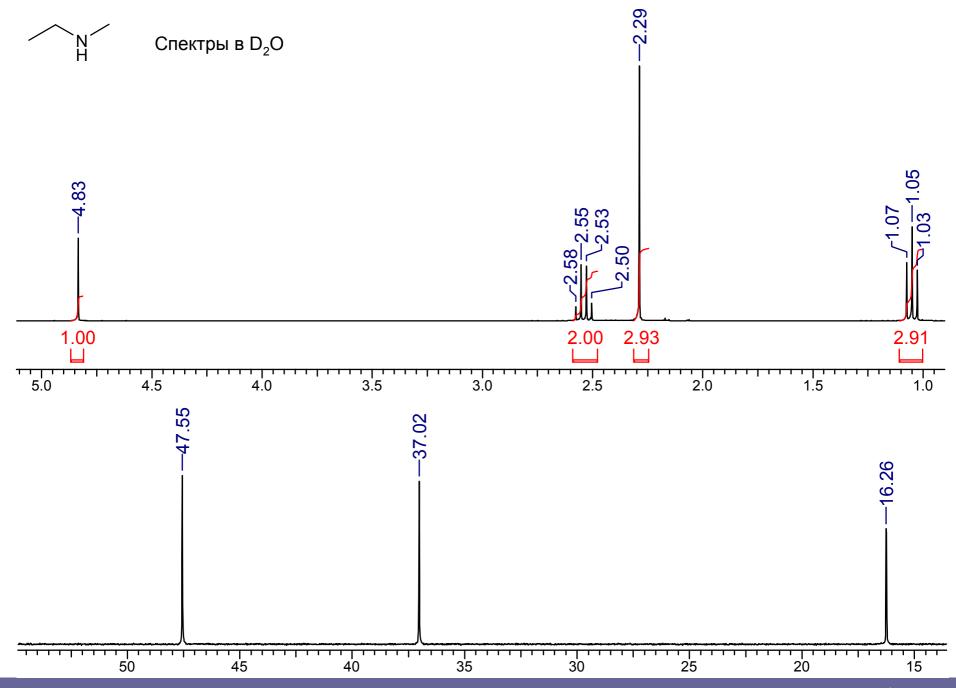
ВОЗМОЖНО ЛИ СУЩЕСТВОВАНИЕ СТЕРЕОИЗОМЕРОВ, ОБУСЛОВЛЕННОЕ ПРОСТРАНСТВЕННЫМ РАСПОЛОЖЕНИЕМ ЗАМЕСТИТЕЛЕЙ У АТОМА АЗОТА?

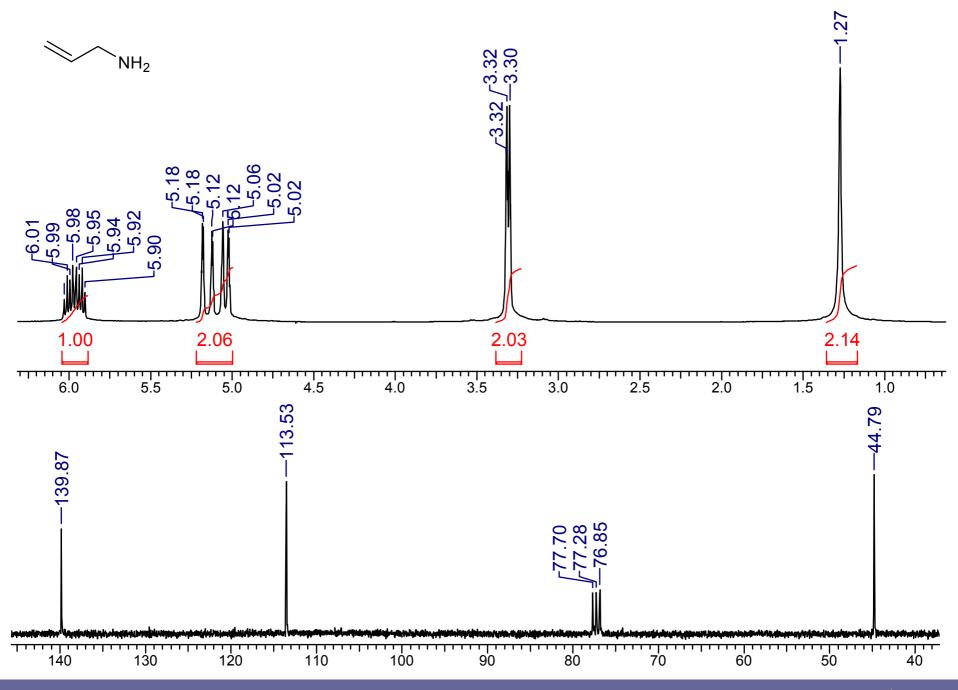
молекула амина **хиральна**, однако амин **оптически неактивен**: инверсия при атоме азота протекает **легко**

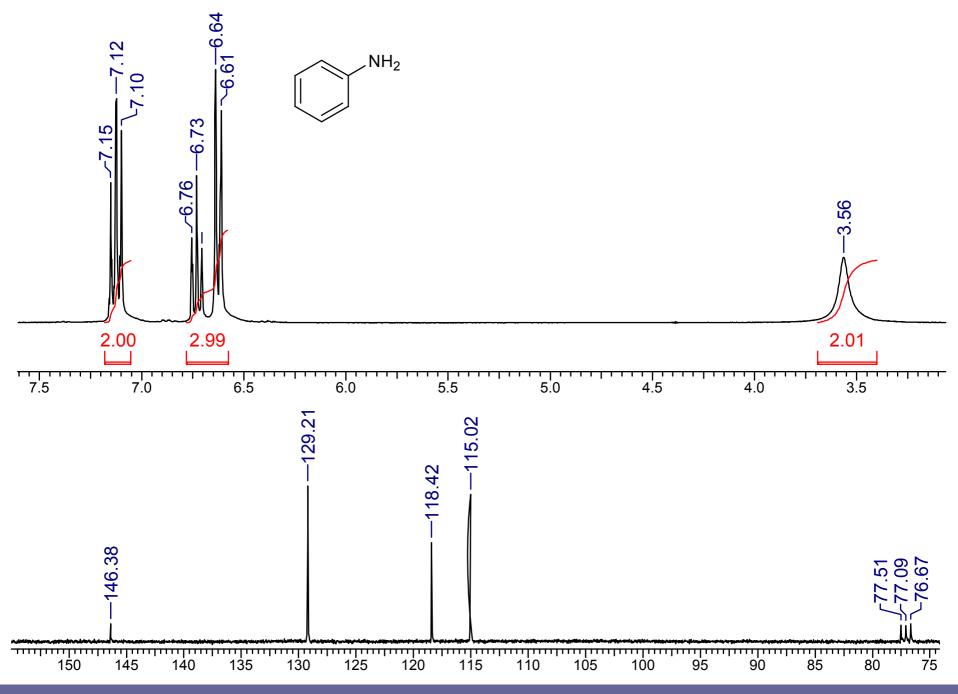
Асимметрический атом азота наблюдается:

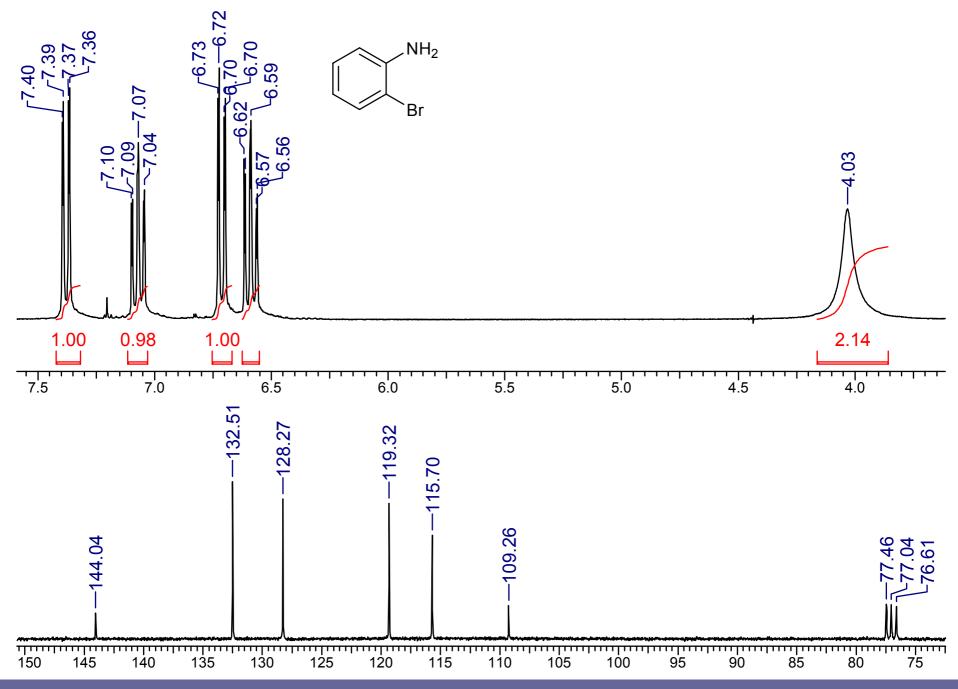
в голове моста бициклической системы

основание **Трегера** (S,S)-изомер


в четвертичных аммониевых соединениях


(R)-изомер


Физические свойства аминов


		т. пл.	т. кип.
Метиламин	CH₃NH₂	- 92.5	- 6.5
Диметиламин	(CH ₃) ₂ NH	- 96	7.4
Триметиламин	(CH ₃) ₃ N	- 124	3.5
Этиламин	CH₃CH₂NH₂	-80.6	16.6
Диэтиламин	(CH₃CH₂)₂NH	-50	55.8
Триэтиламин	(CH₃CH₂)₃N	-11.5	89.5
Пропиламин	CH ₃ CH ₂ CH ₂ NH ₂	-83	48.7
Этилендиамин	H ₂ NCH ₂ CH ₂ NH ₂	8.5	116.5
Анилин	NH ₂	6.2	184.4
N-Метиланилин	NH	-57	196.3
N,N-Диметиланилин		2.5	192.5

Основные реакции, в которые вступают амины

А. Кислотно-основные реакции

В. Реакции по аминогруппе

С. Реакции солей арендиазония

$$NH_2 \xrightarrow{NaNO_2/HCI} \sqrt{N\equiv N} \longrightarrow$$

D. Реакции, протекающие без формального участия аминогруппы (электрофильное замещение у анилинов)

А. Кислотно-основные свойства

А1. Амины как кислоты

Амины – **слабые** N-H **кислоты**

соли - амиды - сильные основания

А2. Амины как основания

Амины – достаточно сильные основания

равновесное взаимодействие с водой

$$R_3N + H_2O \longrightarrow R_3NH + OH$$

$$K_b = \frac{[R_3NH^{\oplus}][OH^{\ominus}]}{[R_3N]}$$
 константа основности

предпочитают пользоваться константой кислотности сопряженной кислоты - иона аммония

$$K_{a} = \frac{[R_{3}N][H_{3}O^{\oplus}]}{[R_{3}NH^{\oplus}]} = \frac{[R_{3}N][H_{3}O^{\oplus}][OH^{\ominus}]}{[R_{3}NH^{\oplus}][OH^{\ominus}]} = \frac{[H_{3}O^{\oplus}][OH^{\ominus}]}{K_{b}} = \frac{K_{W}}{K_{b}}$$

$$pK_a = pK_w - pK_b = 14 - pK_b$$

- и чем **больше** эта величина, тем **сильнее** основание

А2. Амины как основания

Алкиламины: R проявляет **+I – эффект**, что приводит к **увеличению** электронной плотности на атоме N и **повышению основности** амина по сравнению с NH₃

$$NH_3$$
 NH_2 NH_2 NH_2 NH_3 NH_4 NH_5 NH_5 NH_5 NH_6 NH_6

т.е. NH_3 – **самое слабое** основание

RNH₂ – **более сильное** основание (+I-эффект алкильной группы)

R₂NH – еще более сильное основание (+I-эффект двух алкильных групп)

R₃N – основание, **промежуточное** по силе между первичными и вторичными аминами: +I-эффект трех алкильных групп повышает основность, однако усиливаются стерические затруднения в ионе аммония

ВТОРИЧНЫЕ амины – самые сильные основания

А2. Амины как основания

Ариламины: электронная пара атома N частично сопряжена с ароматической системой, что приводит к снижению основности анилина по сравнению с NH₃

ДОНОРНЫЕ *заместители*: уменьшение вклада аммониевых структур **АКЦЕПТОРНЫЕ** *заместители*: увеличение

$$NH_2$$
 NH_2
 NH_2

ДОНОРНЫЕ заместители в пара- и (слабее) в мета-положениях увеличивают основность

АКЦЕПТОРНЫЕ заместишели сильно снижают основность

В1. Алкилирование

рекомендуется проводить в апротонных полярных растворителях

$$[CH_3(CH_2)_3]_3N + CH_3(CH_2)_3Br \xrightarrow{AM\Phi A} [CH_3(CH_2)_3]_4N \xrightarrow{\oplus} Br$$

четвертичные соли аммония – катализаторы межфазных реакций

В2. Элиминирование по Гофману

$$R-X + N \longrightarrow -N \stackrel{\oplus}{\longrightarrow} R \quad X^{\ominus} \xrightarrow{Ag_2O} \longrightarrow N \stackrel{\oplus}{\longrightarrow} R \quad OH^{\ominus}$$

нагревание приводит к образованию менее замещенного алкена:

реакция находит широкое синтетическое применение

В3. Образование сульфамидов. Сульфаниламидные препараты

Практическое применение: антибактериальные препараты

сульфамиды

ФУРНО 1935

пронтозил (красный стрептоцид)

сульфаниламид (белый стрептоцид)

В. Реакции по аминогруппе

В3. Сульфаниламидные препараты

$$H_2N$$
 — O —

фталазол

В3. Сульфаниламидные препараты

механизм действия:

затрудняют биосинтез фолиевой кислоты в бактериях

АНТИМЕТАБОЛИТ

$$H_2$$
N Фолиевая кислота

основано на **структурной близости сульфаниламида** и **п-аминобензойной кислоты**

В4. Окисление

Гладко протекает для третичных аминов

Первичные и вторичные амины – сложные смеси соединений, низкие выходы индивидуальных веществ

за исключением:
$$O_2N$$
 — NH_2 — CF_3CO_3H — O_2N — NO_2N — NO_2N

В. Реакции по аминогруппе

В4. Окисление

ПЕРКИН

1865

окисление анилина

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

mauve **(фр.) мальва**

мовеин

Анилиновый черный — азиновый краситель, продукт глубокого окисления анилина

Образование активных частиц в кислом растворе азотистой кислоты:

Реакционная способность нитрозирующих электрофильных агентов:

$$NO^{\oplus} >> H_2ONO >> NOBr > NOCl > N_2O_3 >> HONO$$

Первичные, вторичные, третичные Алифатические, ароматические

РЕАГИРУЮТ ПО-РАЗНОМУ

Третичные алифатические амины

$$R_3N$$
 $\xrightarrow{NaNO_2}$ R_3NH CI + $R_3N-N=O$ CI неустойчивы

Вторичные алифатические и ароматические амины

NH
$$\frac{\text{NaNO}_{2,} \text{ HCI / H}_{2}\text{O}}{\text{0-5 °C}}$$
 N-N=0
88%

NH NaNO_{2,} HCI / H₂O
0-5 °C
90%

N-нитрозоамины являются сильными канцерогенами

Первичные алифатические амины

$$R-NH_2 + N \longrightarrow R-N-N \longrightarrow R-N-N-O \longrightarrow R-N-N-N-O \longrightarrow R-N-N-O \longrightarrow$$

пример:

NH₂

NaNO₂, HCI / H₂O

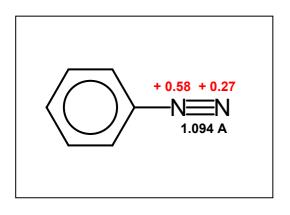
26%

10%

25%

Первичные ароматические амины

ГРИСС 1858


$$Ar-NH_2 \xrightarrow{NaNO_2, HCI/H_2O} Ar-N \equiv N CI$$

Реакция ДИАЗОТИРОВАНИЯ – образование относительно устойчивых **солей арендиазония**

необходимо проводить реакцию в сильнокислой среде для подавления побочных процессов:

$$Ar-N\equiv N$$
 + $Ar-NH_2$ — $Ar-N=N-N-Ar$ триазен $Ar-N\equiv N$ + $Ar-N=N$ — $Ar-N$ — $Ar-N$ — $Ar-N$ —

Соли арендиазония

Термическая устойчивость:

хлориды, бромиды — **нестабильны** борфториды и т.п. — **относительно устойчивы.**

ЗАМЕЩЕНИЯ ДИАЗОГРУППЫ

(реакции с выделением азота)

РЕАКЦИИ

АЗОСОЧЕТАНИЯ

(реакции без выделения азота)

С1. Замещение диазогруппы на -ОН

лабораторный метод получения фенолов

С2. Замещение диазогруппы на -F

ШИМАН

1927

$$BF_4 \stackrel{\textcircled{\tiny }}{N_2} \stackrel{\textcircled{\tiny }}{ \longrightarrow} N_2 \stackrel{\textcircled{\tiny }}{ \longrightarrow} 180 \, ^{\circ}C \qquad F \stackrel{\textcircled{\tiny }}{ \longrightarrow} F$$

С. Реакции солей арендиазония

С2. Замещение диазогруппы на -F

С3. Замещение диазогруппы на -І

С4. Реакция Зандмейера

замещение диазогруппы на -CI, -Br, -CN

С5. Восстановление диазосоединений

наиболее эффективный реагент – H_3PO_2

$$O_2N$$
 O_2N
 O_2N

Схема синтеза 2,4,6-трибромбензойной кислоты:

COOH COOH Br NH₂
$$Br_2$$
 Br_2 Br NH_2

С6. Азосочетание

вступает в реакции с **активными аренами: аминами, фенолами,** etc.

$$Ar-N_2$$
 + Z $Ar-N=N$ азосоединение

кислоты замедляют реакцию:

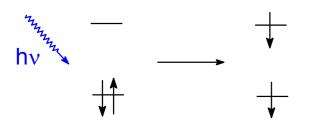
$$N_2$$
 + N_2 + N_2 + N_2 + N_2 + N_3 + N_2 + N_3

С. Реакции солей арендиазония

С6. Азосочетание

ВЛИЯНИЕ ОСНОВАНИЙ:

Т.о., с фенолами реакцию проводят в слабоосновной среде с аминами (анилинами) реакцию проводят в слабокислой среде


Продукты реакции – **АЗОСОЕДИНЕНИЯ**. Основное использование – **АЗОКРАСИТЕЛИ**

HO
$$\longrightarrow$$
 COOH

тирозин

- субстрат, который "всегда с нами", природная аминокислота. Растворы солей диазония окрашивают кожу в желтооранжевый цвет.

Окрашенные соединения

Появление окраски обусловлено злектронными переходами при поглощении квантов электромагнитного излучения, если частота излучения лежит в области 3,8 х 10¹⁴-7,6 х 10¹⁴ Гц (что соответствует длине волны λ 380-760 нм).

Некоторые основные термины теории ВИТТА

Хромофор - ненасыщенная группа, наличие которой в молекуле обеспечивает электронное поглощение. Примеры — N=N, C=C, C=O, NO $_2$ и др.

Ауксохром - насыщенная группа, которая, будучи присоединенной к хромофору, изменяет основные спектральные параметры (положение, интенсивность максимума поглощения). Примеры - OH, NH₂, CI и др.)

Батохромный сдвиг (красный сдвиг) - сдвиг поглощения в сторону более длинных волн **Гипсохромный** сдвиг (синий сдвиг) - сдвиг поглощения в сторону более коротких волн

Гиперхромный эффект - увеличение интенсивности поглощения **Гипохромный** эффект - уменьшение интенсивности поглощения

В настоящее время оперируют терминами электронной теории цветности, непосредственно связанной с теорией электронного строения органических соединений.

Терминология Витта по сей день используется в химии красителей.

Окрашенные соединения

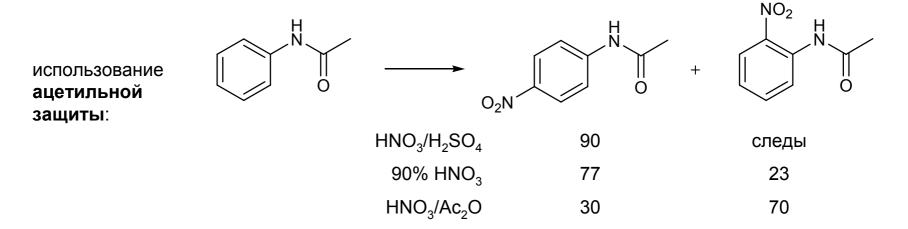
полное пропускание видимого света – **бесцветное** полное отражение – **белое** взаимодействие с частью спектра – **окрашенное**

- 1. Поглощение **во всей** видимой области, кроме отражения 595-605 нм. Оранжевая окраска.
- 2. Поглощение в **некоторой** области, допустим, 595-605 нм. Глаз наблюдает цвет, **дополнительный** к поглощенному зеленовато-синий

Несколько полос поглощения различной интенсивности – появление **оттенков**

λ, нм	Спектральный цвет	Дополнительный цвет
400-435	Фиолетовый	Зеленовато- желтый
435-480	Синий	Желтый
480-490	Зеленовато- синий	Оранжевый
490-500	Синевато- зеленый	Красный
500-560	Зеленый	Пурпурный
560-580	Желтовато- зеленый	Фиолетовый
580-595	Желтый	Синий
595-605	Оранжевый	Зеленовато-синий
605-730	Красный	Синевато- зеленый
730-760	Пурпурный	Зеленый

Аминогруппа – ориентант I рода, сильно облегчающая протекание S_F-реакций


D1. Галогенирование

мягкие условия, не требует катализа кислотами Льюиса

введение одного атома галогена:

D2. Нитрование

прямое нитрование анилина приводит к ОКИСЛЕНИЮ

получение орто-нитроанилина:

D. Реакции электрофильного замещения

D2. Нитрование

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline NH & & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ \hline NH & & \\ NH & & \\ NH & & \\ \hline NH & & \\ NH$$

тетрил

D3. Сульфирование

метод запекания МН₃ НSO₄ 180 °C

> сульфаниловая кислота

D3. Сульфирование

Общий метод получения сульфаниламидов:

$$\begin{array}{c|c}
O & H \\
S & Z \\
O & HCI/H_2O
\end{array}$$

D. Реакции электрофильного замещения

D4. Реакция Вильсмейера

$$\frac{POCl_3/DMF}{H_2O}$$
 АсONа H_2O 85% DMF – N,N-диметилформамид CHO

механизм:

Отдельные представители

NH
NH

Метиламины бесцветные газы с характерным запахом (запах селедочного рассола обусловлен триметиламином) Получение:

- 1) Аминирование метанола.
- 2) Восстановительное аминирование СО (в присутствии водорода).

Чистый метиламин можно получать гидрированием HCN, диметиламин – аминированием диметилового эфира.

Применение: производство инсектицидов, растворителей (ДМФА, диметилформамид), лекарственных препаратов, ПАВ.

Диметиламин используется в производстве ракетного топлива – НСДМГ («гептил»)

$$NH$$
 $N-NO$ $N-NH_2$

Триэтиламин Et_3N – бесцветная жидкость с характерным запахом. В промышлшенности получают аминированием этанола (наряду с другими этиламинами).

Широко используется в лабораторной практике в качестве достаточно сильного растворимого в любый органических растворителях основания.

Нейрин – продукт дегидратации **холина**. Содержится в нервных клетках. Относится к группе птомаинов (нервных ядов).

$$_{
m HO}$$
 — $_{
m N}$ — $_{
m OH}$ $_{
m OH}$ $_{
m OH}$ $_{
m OH}$ $_{
m He \Bar{u} puh}$

Отдельные представители

Этилендиамин — широко используется как комплексообразователь. В лабораторной практике часто применяют тетраметильное производное - **TMEDA**.

$$N_2$$
 NH $_2$ NH $_2$ TMEDA

Путресцин и **кадаверин** – продукты разложения аминокислот орнитина и лизина. Относятся к группе птомаинов (хотя их токсичность невелика). **Гексаметилендиамин** – в промышленности получают гидрированием динитрила адипиновой кислоты и используют в синтезе полиамидов (найлон).

адиподинитрил

СООН
$$H_2N$$
 H_2N H

Гексаметилентетрамин (уротропин) – образуется при взаимодействии формальдегида и аммиака.

Используется – в качестве "сухого горючего", ингибитор коррозии. Промышленное применение – в производстве гексогена, ВВ группы **нитраминов**.

гексаметилендиамин

Анилин – жидкость с характерным запахом.

Получение: 1. восстановление нитробензола водородом в газовой или жидкой фазе (никель-медный катализатор); 2. Аммонолиз фенола при 300-600 °C и давлении более 10 атм.

Производится в промышленности начиная с 1847 года.

BASF – Badische Anilin und Soda Fabrik.

Области применения:

1850-1940 – азокрасители

1950-1970 – ускорители вулканизации (каптакс, альтакс)

после 1970 - полиуретаны

$$H_2N$$
 NH_2 CH_2O NH_2 CS_2 $KANTAKC$ NH_2 CS_2 NH_2 NH_2 CS_2 NH_2 NH_2 CS_2 NH_2 NH

дифенилметандиизоцианат

(исходное в производстве полиуретанов)

Программа

Алифатические амины.

Классификация, номенклатура и изомерия.

Способы получения аминов: из галогенпроизводных (реакция Гофмана), при восстановительном аминировании карбонильных соединений, при восстановлении азотистых производных, при перегруппировке Гофмана, реакции Габриэля.

Электронное строение аминогруппы.

Амины как основания. Сравнение основных свойств аммиака, первичных, вторичных и третичных аминов, а также амидов.

Алкилирование, ацилированне аминов.

Действие азотистой кислоты на первичные, вторичные и третичные амины.

Четвертичные аммониевые основания и их соли. Диамины, аминоспирты.

Ароматические амины.

Получение при восстановлении соответствующих нитросоединений.

Взаимное влияние аминогруппы и бензольного кольца. Реакции электрофильного замещения, защита аминогруппы.

Сравнение основных свойств алифатических и ароматических аминов.

Влияние заместителя в кольце на основные свойства аминогруппы.

Сульфаниловая кислота. Цвиттер-ионы. Понятие о сульфамидных препаратах.

Диазотирование первичных ароматических аминов азотистой кислотой.

Соли диазония, их реакции, протекающие без выделения и с выделением азота.

Азосочетание как реакция электрофильного замещения в ароматическом ядре.

$$\begin{array}{c|c} & & & \\ &$$

$$OH$$
 OH O_2N OH OH

$$OH$$
 O_2N OH OH OH

$$\begin{array}{c|c} \text{K[Cu(CN)_2]} & \\ \hline \\ \text{CN} & \\ \hline \\ \text{O}_2\text{N} & \\ \hline \\ \text{CN} & \\ \hline \end{array}$$

$$OH$$
 O_2N OH OH OH

$$\begin{array}{c|c} \text{K[Cu(CN)_2]} & \text{OH} & \\ \hline \\ \text{CN} & \\ \hline \\ \text{O}_2\text{N} & \\ \hline \\ \text{CN} & \\ \end{array}$$