Соединения с кислородсодержащими функциональными группами: синтетический аспект

Спирты

1. Формальное присоединение воды к алкенам

По правилу Марковникова:

Против правила Марковникова:

Спирты

2. Гидролиз алкилгалогенидов

Br
$$\frac{\text{EtOH/H}_2\text{O}}{65\,^{\circ}\text{C}}$$
 OH 64% OH $+$ NaCl

3. Реакции оксиранов с гидридами

LiAIH₄ - атака H - по **менее** стерически нагруженному атому C оксирана, образуется **более** замещенный спирт

 $\mathbf{BH_3}$ - образуется менее замещенный спирт

$$\begin{array}{c|c} & & \\ & &$$

4. Взаимодействие оксиранов с литийорганическими соединениями и реактивами Гриньяра.

Атака - по **менее** стерически нагруженному атому С оксирана, образуется более замещенный спирт.

5. Восстановление карбонильных соединений и производных кислот комплексными гидридами.

$$\begin{array}{c} R \\ R \end{array} \longrightarrow \begin{array}{c} C \\ R \end{array} \longrightarrow \begin{array}{c}$$

6. Взаимодействие карбонильных соединений и производных кислот с литийорганическими соединениями и реактивами Гриньяра.

$$\stackrel{\delta\Theta}{\nearrow}$$
 $\stackrel{R"Li}{\nearrow}$
 $\stackrel{R"Li}{\nearrow}$
 $\stackrel{R"}{\nearrow}$
 $\stackrel{R}{\nearrow}$
 $\stackrel{R''}{\nearrow}$
 $\stackrel{R''}{\nearrow}$

Помимо сложных эфиров, в реакции используют галогенангидриды.

Амиды реагируют по-другому!!!

Карбонильные соединения

1. Окисление спиртов

Альдегиды: В

Следует использовать мягкие окислители!

комплексы ${\rm CrO_3}$ с пиридином или аминами в ${\rm CH_2CI_2}$ или ${\rm CHCI_3}$; ${\rm MnO_2}$ в ${\rm CH_2CI_2}$ или гексане

$$\begin{array}{c|c} OH & \hline \\ CrO_3(Py)_2 \\ \hline \\ CH_2Cl_2 \\ \hline \\ O_2N \\ \hline \\ 97\% \\ \end{array}$$

Кетоны:

Несколько более **широкий** выбор окислителей

$$\rightarrow$$
 OH \rightarrow O

[PyH]CrO₃Cl 98% CrO₃, H₂SO₄ 90%

2. Формальное присоединение воды к алкинам

2а. Катализируемая солями Hg (II) прямая гидратация по правилу Марковникова (реакция **Кучерова**)

$$= \frac{H_2O}{Hg^2 \oplus} -CHO$$

$$R = \frac{H_2O}{Hg^2 \oplus} R = \frac{H_2O}{O}$$

$$R = \frac{H_2O}{Hg^2 \oplus} R = \frac{R'}{O} + \frac{O}{R'}$$

2б. Гидроборирование – окисление, формальная гидратация против правила Марковникова

$$R = \frac{(sia)_2BH}{B(sia)_2} \xrightarrow{R} CHO$$
 $sia = -$

3. Ароматические кетоны: ацилирование

4. Ароматические альдегиды: формилирование по Вильсмейеру

реагируют только активные арены

5. Синтез из амидов

Взаимодействие литий- и магний-органических соединений с амидами карбоновых кислот принципиально отличается от реакций с эфирами и ангидридами.

Получающийся при этом интермедиат не способен к самопроизвольному распаду в мягких условиях.

Поэтому конечным продуктом этой реакции является кетон. Например:

6. Синтез через сложноэфирную конденсацию – алкилирование - гидролиз

Конденсация КЛАЙЗЕНА

конденсация сложных эфиров карбоновых кислот в присутствии сильных оснований. Необходимо, чтобы молекула сложного эфира имела подвижный атом водорода в α -положении. В реакции используют различные основания (EtONa, NaNH $_2$, NaH).

В результате из двух молекул сложного эфира получают сложный эфир β-оксокислоты

$$H_3C$$
 ОЕ t H_3C ОЕ t $H_$

6. Синтез через сложноэфирную конденсацию – алкилирование - гидролиз

Это иллюстрируется тем, что под действием EtONa осуществить конденсацию этилизобутирата **не удается**:

дополнительные причины неудачи:

- низкая C-H кислотность этилизобутирата за счет +I эффекта метильных групп.
- стерические затруднения, создаваемые метильными группами.

Конденсация Клайзена приводит к ацетоуксусному эфиру и его аналогам, широко используемым в препаративной органической химии

6. Синтез через сложноэфирную конденсацию – алкилирование - гидролиз

Ацетоуксусный эфир

Является достаточно **сильной С-Н кислотой (рК_а = 10.5)**, и при действии EtONa или даже NaOH образует **натрийацетоуксусный эфир**, который может быть введен в реакции с RX с образованием продуктов алкилирования:

Карбоновые кислоты

1. Синтез из галогенпроизводных через промежуточное образование нитрилов

R-Hal
$$\xrightarrow{\text{CN}}$$
 R-CN $\xrightarrow{\text{H}^{\bullet}}$ /H₂O R-COOH

R – алкил (первичный или вторичный). Может содержать "кислые" группы: -OH etc. В реакцию не вступают винил- и арилгалогениды!

2. Синтез из галогенпроизводных через реактивы Гриньяра

R – любой алкил, винил, арил. Не может содержать "кислые" группы: -OH etc.

Малоновый эфир является **достаточно сильной С-Н кислотой** и легко образует **соли** с сильными основаниями (EtONa, NaNH₂, NaH). Эти соли широко используют в синтезе в качестве **С-нуклеофилов**.

Даже в присутствии оснований умеренной силы малоновый эфир способен реагировать по связи С-Н. Основное отличие от ацетоуксусного эфира: синтезы с малоновым эфиром протекают однозначно — нуклеофильным реакционным центром является центральный атом С.

COOEt
$$\frac{\text{EtONa}}{\text{EtOH}}$$
 $\stackrel{\text{RX}}{\text{Na}}$ $\stackrel{\text{COOEt}}{\text{COOEt}}$ $\stackrel{\text{RX}}{\text{RX}}$ $\stackrel{\text{COOEt}}{\text{COOEt}}$ $\stackrel{\text{H}}{\text{P}_2O}$ $\stackrel{\text{COOEt}}{\text{COOEt}}$ $\stackrel{\text{R}}{\text{R}}$ $\stackrel{\text{COOET}}{\text{R}}$ $\stackrel{\text{R}}{\text{R}}$ $\stackrel{\text{R}}{\text{R}}$

COOEt EtOH COOEt
$$COOEt$$
 $COOEt$ COO

COOEt
$$Br(CH_2)_2Br/NaOH$$
 $COOH$ CO

COOEt EtONa EtOH Na COOEt EtOOC-(CH₂)_n-X EtOOC (CH₂)_n COOEt COOEt COOEt
$$\frac{H^{\circ}}{H_2O}$$
 HOOC (CH₂)_n COOH $\frac{COOH}{L}$ EtOOC (CH₂)_n COOEt $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n-X EtOOC (CH₂)_n-X EtOOC (CH₂)_n-X EtOOC (CH₂)_n COOEt $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n-X EtOOC (CH₂)_n COOEt $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n COOEt $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n COOH $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n-X COOH $\frac{H^{\circ}}{H_2O}$ HOOC (CH₂)_n-X COOH

Конденсация Кневенагеля

COOH B COOH RCHO RCHO R COOH R COOH
$$\stackrel{\bullet}{\longrightarrow}$$
 COOH $\stackrel{\bullet}{\longrightarrow}$ COOH

аналогично для кетонов:

4. Галоформная реакция

Механизм реакции:

Примеры реакций:

$$\frac{Br_{2}, NaOH}{H_2O}$$
 — СООН 60% ПИВАЛЕВАЯ КИСЛОТА $\frac{Br_{2}, NaOH}{H_2O}$ — СООН 80% АНИСОВАЯ КИСЛОТА