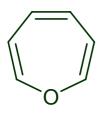
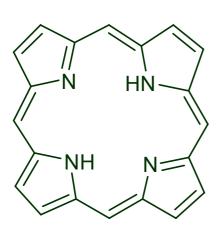
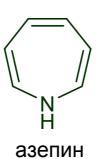


Гетероциклические соединения

Гетероциклические соединения (гетероциклы) – соединения, в которых гетероатом (O, N, S, P и т.д.) находится в цикле.




<u>Шестичленные гетероциклы</u>

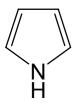

Семичленные и высшие гетероциклы

оксепин

порфирин

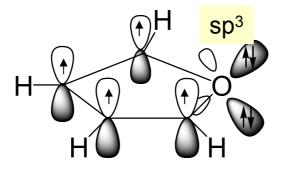
$$N = N$$

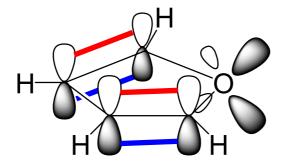
бензодиазепин


фталоцианин

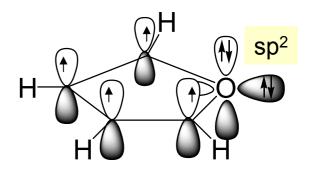
Гетероароматические соединения

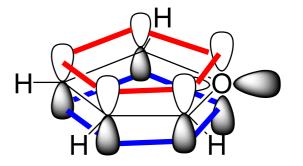
Гетероароматическими соединениями называются гетероциклические соединения, обладающие ароматическими свойствами. Критерием ароматичности для гетероароматических соединений является правило Хюккеля (4n+2)


фуран

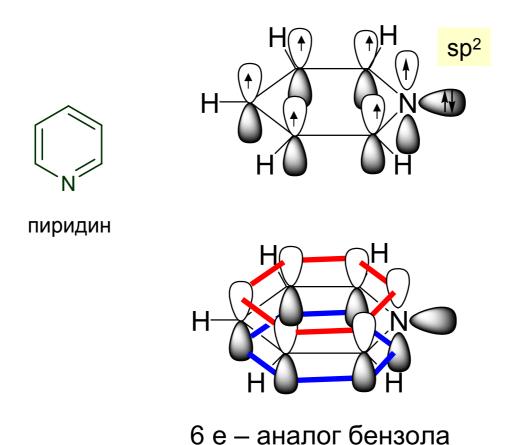


пиррол




тиофен

4 е – аналог бутадиена



6 е – аналог бензола

Гетероароматические соединения

Критерием ароматичности для гетероароматических соединений является правило Хюккеля (4n+2)

Тиофен и его аналоги

Простейшие производные тиофена, пиррола и фурана широко не участвуют в метаболизме животных, но часто применяются в фармакологии:

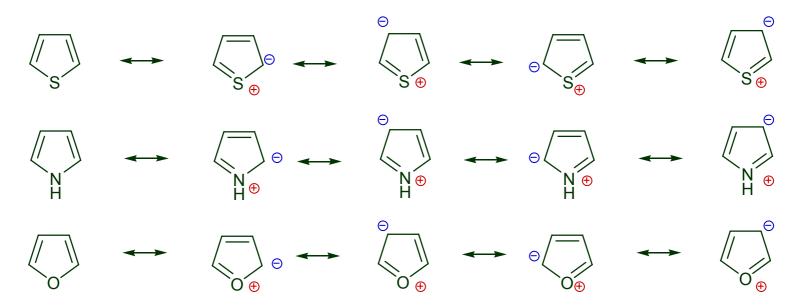
Порфобилиноген

(предшественник хлорофилла и гема)

Банминт

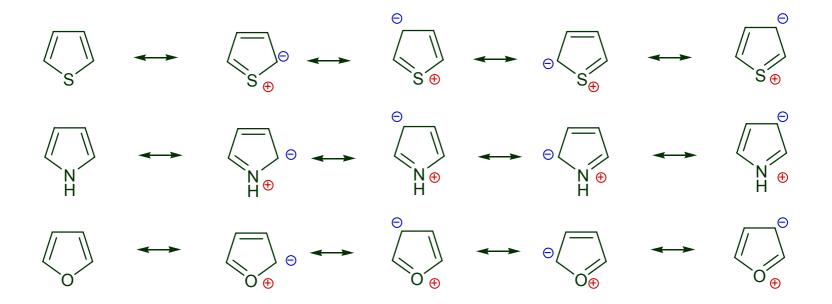
(антигельминтный препарат)

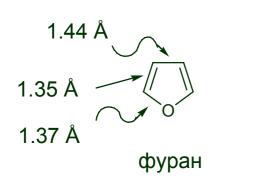
Катеролак

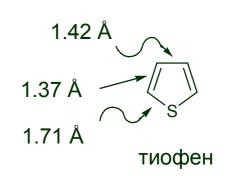

(анальгетик)

Фурацилин

(бактерицидный препарат)

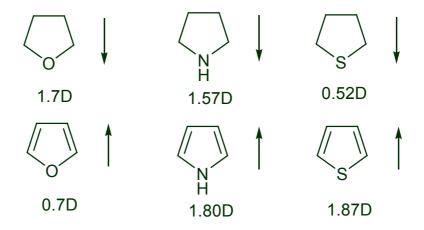

Строение тиофена пиррола, фурана


Тиофен, фуран и пиррол могут быть рассмотрены как суперпозиция следующих резонансных структур:



Учитывая, что сера имеет меньшую электроотрицательность по сравнению с кислородом и азотом, делокализация электронов в случае серы максимально эффективна, то есть мы можем предположить, что тиофен будет больше всего походить на бензол по химическим свойствам.

Строение тиофена пиррола, фурана



Доказательства наличия делокализации электронов.

1. Дипольные моменты ненасыщенных гетероциклов по сравнению с насыщенными

2. Экстремально низкая основность пиррола (рКа протонированного пиррола = -3.8)

Протонирование пиррола приводит к потере ароматичности, поэтому это очень невыгодный процесс.

Синтез гетероциклов ряда тиофена из у-дикетонов (реакция Пааля-Кнорра)

Пример реакции:

Тиофены получаются аналогично при взаимодействии γ-дикетонов с P₂S₅

$$\begin{array}{c|c}
 & P_2S_5 \\
\hline
 & S \\
\end{array}$$
32%

Фураны получаются при взаимодействии у-дикетонов с кислотами.

Пример:

Другие методы получения пятичленных гетероциклов

- Фурфурол может быть получен при обработке пентоз кислотой:

- производные тиофена содержатся в нефти.

Электрофильное замещение

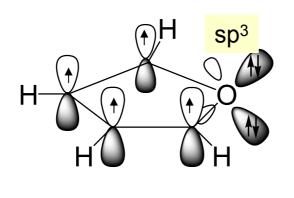
Тиофен, пиррол и фуран вступают в реакции электрофильного замещения аналогично бензолу и его производным!!! Обычно, замещение протекает по положению 2- гетероцикла.

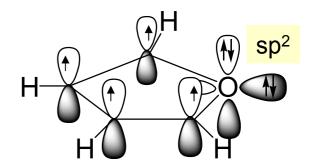
X= S, NR, O

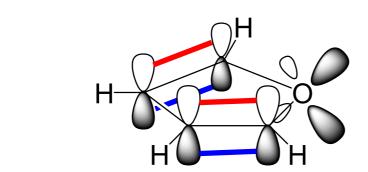
Примеры реакций электрофильного замещения у тиофена:

в этих условиях бензол не ацилируется

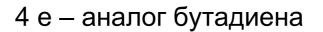
бензол сульфируется только олеумом

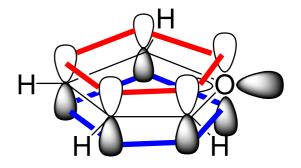

в этих условиях бензол не бромируется


Фуран не всегда демонстрирует свойства, характерные для ароматических соединений, например, бромирование фурана приводит к продуктам присоединения, а не замещения


$$+$$
 Br₂ \rightarrow Br \rightarrow Br \rightarrow MeO \rightarrow MeO \rightarrow MeO \rightarrow OMe

Фуран вступает в реакцию Дильса-Альдера в качестве диена:


У фурана перекрывание орбиталей диеновой системы и кислорода не так эффективно, как у тиофена



фуран

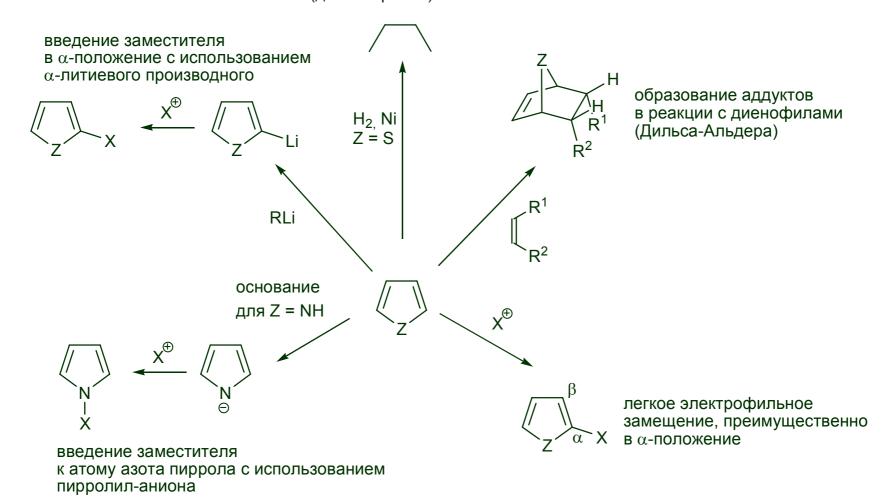
6 е – аналог бензола

Тиофен, фуран, а также N-замещенный пиррол легко **металлируются** в положение 2-. Это позволяет получать широкий круг производных, например:

$$\begin{array}{c|c}
 & 1) CO_2 \\
\hline
2) H_2O/H^{\oplus} \\
\hline
S & COOH
\end{array}$$

$$\begin{array}{c|c}
 & O \\
\hline
S & R_2 \\
\hline
PhCH_2Br & Ph
\end{array}$$

$$\begin{array}{c|c}
 & PhCH_2Br & Ph
\end{array}$$


Пиррол является слабой кислотой и депротонируется сильными основаниями:

Резонансные структуры пирролил-аниона:

Гидрирование тиофена и его аналогов

При гидрировании на никеле Ренея тиофен разрушается, что сопровождается десульфуризацией

восстановительное удаление атома серы (для тиофенов)

Индол

Индол практически полностью существует в 1H-форме, содержание 3H-индола составляет 1/1.000.000. 3H-индол можно генерировать в растворе, после этого он изомеризуется в 1H-индол в течение ~100 секунд.

Индол – одно из наиболее широко распространенных в природе гетероциклических соединений:

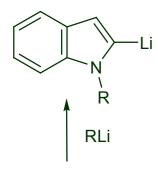
$$H_2N-CH\cdot C-OH$$
 CH_2
 HN
 NH_2
 HO
 NH_2
 HO

Синтез индола по Фишеру

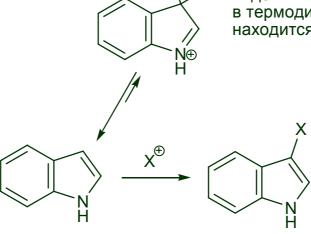
- сложный процесс;
- высокий выход;
- какой механизм?

Механизм реакции Фишера

Примеры:


Химические свойства индола:

1. Подобно пирролу индол может быть **депротонирован** и **проалкилирован** по атому азота в присутствии основания


2. Индол легко вступает в **реакции с электрофилами**, при этом атака обычно идет в положение 3-:

Реакционная способность индола гораздо выше, чем у бензола, поэтому реакции идут по пятичленному кольцу.

3. Гидрирование индола

литиирование N-замещенных индолов позволяет вводить заместители в α -положение

индолы - очень слабые основания, в термодинамическом катионе протон находится в β -положении

легкое электрофильное замещение, в β -положение. В 3-замещенных индолах реакция идет в α -положение

Азолы

Азолы – группа гетероциклов, которые формально образуются из фурана, пиррола и тиофена путем замены С-Н группы цикла атомом азота.

имидазол

пиразол

тиазол

оксазол

Азолы широко участвуют в основных биохимических процессах, а также используются в фармакологии:

$$O_2N$$
 N
 Me

Метронидазол (антибактериальное средство)

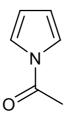
Имидазол достаточно основен, рКа=7 (пиридин 5.2; аммиак 9.2; пиррол ~-3)

В кристалле имидазол располагается следующим образом:

Синтез имидазлов

1. Исходя из глиоксаля:

2. Исходя из ацилированых аминокетонов (аналог синтеза Пааля-Кнорра)

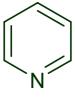

Азолы более устойчивы и менее реакционноспособны, чем пирролы и фураны.

Химические свойства

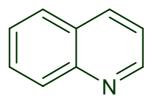
Азолы более устойчивы и менее реакционноспособны, чем пирролы и фураны.

- N-незамещенный имидазол гладко ацилируется по атому азота

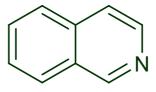
- Ацетилимидазол легко гидролизуется в отличие от ацетилпиррола

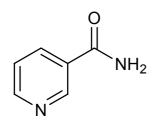


Не гидролизуется в обычных условиях


Период полураспада 41 минута в воде при рН= 7

Механизм гидролиза амидной связи трипсином


Пиридин



хинолин

изохинолин

Пиридины широко участвуют в биологических процессах, а также очень часто используются в фармакологии:

ниацин (никотинамид)

Изониазид (антитуберкулезное средство)

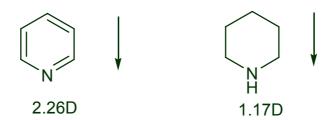
пиридоксин (витамин В6)

$$\begin{array}{|c|c|c|}\hline \\ N - S \\ H & O_2 \end{array}$$

Сульфапиридин (антибактериальный препарат)

никотин

Приальдоксим (антидот при отравлении фосфатами)

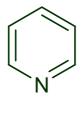

Строение пиридина

Пиридин и его резонансные структуры:

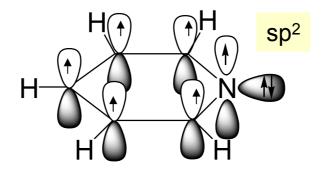
Гетероаналог бензола, 6е в цикле: ароматичен по правилу Хюккеля.

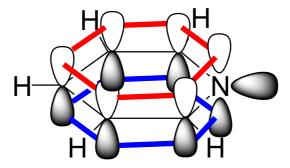
В отличие от гетероциклов ряда тиофена, электронная плотность в пиридине стянута на гетероатом, что подтверждается данными по дипольным моментам:

Наиболее важные химические свойства пиридина:


- ОСНОВНОСТЬ;
- нуклеофильность;
- электрофильное замещение в пиридине;
- нуклеофильное присоединение к пиридину

Методы получения


1. В большом количестве находится в каменноугольной смоле.


2. Синтез Ганча

Химические свойства

пиридин

6 е – аналог бензола

Химические свойства

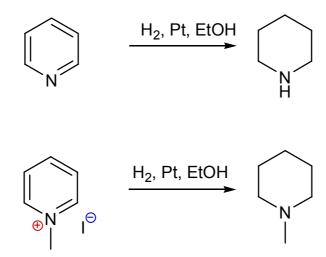
1. Пиридин – **слабое основание**, pKa= 5.2 (pKa аммиака 9.2). Очень часто используется в синтетической органической химии для связывания протона.

2. Пиридин – **нуклеофил**. Он способен реагировать с активными алкилгалогенидами с образованием пиридиниевых солей подобно аминам.

3. Пиридин с трудом вступает в реакции электрофильного ароматического замещения. При этом обычно образуются продукты мета-замещения.

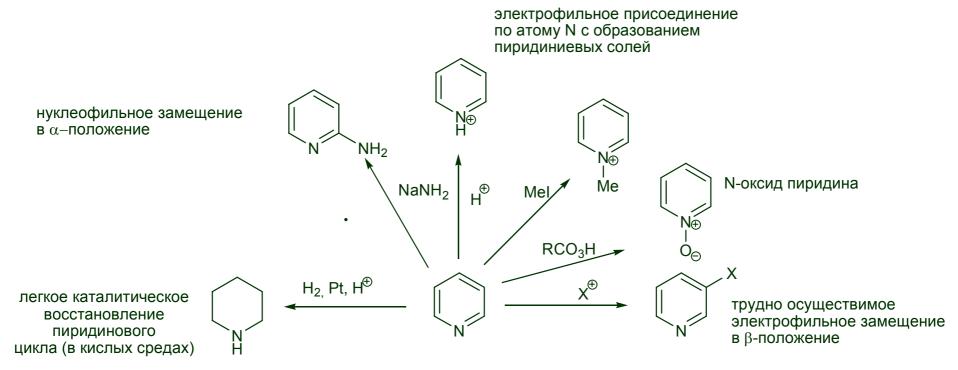
Две причины низкой реакционной способности пиридина:

- 1. Электронная плотность стянута с кольца на азот;
- 2. Электрофил атакует преимущественно атом азота, понижая реакционную способность кольца


4. Пиридин способен **окисляться по атому азота**. Получающаяся N-окись пиридина способна вступать в реакции электрофильного замещения:

Резонансные формы N-окиси пиридина:

N-окись пиридина может быть легко превращена в пиридин:


5. Пиридин **реагирует с сильными нуклеофилами**. Реакция с амидом натрия приводит к образованию 2-пиридиламина (реакция **Чичибабина**).

6. Пиридин можно **гидрировать**. Из пиридиниевых солей образуются Nзамещенные пиперидины

7. 2- и 4-алкилпиридины легко депротонируются.

Образующиеся соли вступают в реакции, характерные для карбанионов.

Свойства хинолина:

Программа

ГЕТЕРОАРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ

Пятичленные гетероароматические соединения с одним гетероатомом: фуран, тиофен, пиррол. Их нахождение в природе. Строение (участие пары электронов гетероатома в создании ароматического секстета). Изомерия, номенклатура монозамещенных гетероциклов. Получение из у-дикетонов (реакция Пааля-Кнорра).

Электрофильное замещение (на примере тиофена), ориентация вступления заместителя. Сравнение с реакционной способностью бензола.

Металлирование тиофена, фурана и пиррола.

Пиридин, нахождение в природе, строение, изомерия монозамещенных производных. Сравнение с реакционной способностью тиофена и бензола. Алкилирование по атому азота, входящему в гетероароматическое кольцо. Нуклеофильное замещение атома водорода, связанного с пиридиновым ядром, на аминогруппу (реакция Чичибабина).

Индол, имидазол и их сопоставление с пирролом. Синтез индола по Фишеру.