Cеми-эмпирические вычисления: Mopac

Сначала попробуем получить оптимизированную структуру порфирина.

Загрузим модуль pybel и посмотрим, какие форматы он может читать и писать:

In [57]:
import pybel
print pybel.informats
print ""
print pybel.outformats
{'txyz': 'Tinker XYZ format', 'text': 'Read and write raw text', 'alc': 'Alchemy format', 'CONTFF': 'MDFF format', 'castep': 'CASTEP format', 'nwo': 'NWChem output format', 'cdx': 'ChemDraw binary format', 'xml': 'General XML format', 'pwscf': 'PWscf format', 'jin': 'Jaguar input format', 'rsmi': 'Reaction SMILES format', 'xtc': 'XTC format', 'g09': 'Gaussian Output', 'pcm': 'PCModel Format', 'mopin': 'MOPAC Internal', 'dallog': 'DALTON output format', 'mopcrt': 'MOPAC Cartesian format', 't41': 'ADF TAPE41 format', 'fchk': 'Gaussian formatted checkpoint file format', 'g03': 'Gaussian Output', 'cube': 'Gaussian cube format', 'axsf': 'XCrySDen Structure Format', 'mpc': 'MOPAC Cartesian format', 'mpo': 'Molpro output format', 'mop': 'MOPAC Cartesian format', 'pos': 'POS cartesian coordinates format', 'dat': 'Generic Output file format', 'moo': 'MOPAC Output format', 'dx': 'OpenDX cube format for APBS', 'mol': 'MDL MOL format', 'inchi': 'InChI format', 'hin': 'HyperChem HIN format', 'cml': 'Chemical Markup Language', 'outmol': 'DMol3 coordinates format', 'xyz': 'XYZ cartesian coordinates format', 'lpmd': 'LPMD format', 'xsf': 'XCrySDen Structure Format', 'qcout': 'Q-Chem output format', 'output': 'Generic Output file format', 'orca': 'ORCA output format', 'mdl': 'MDL MOL format', 'exyz': 'Extended XYZ cartesian coordinates format', 'dalmol': 'DALTON input format', 'unixyz': 'UniChem XYZ format', 'pdbqt': 'AutoDock PDBQT format', 'gzmat': 'Gaussian Z-Matrix Input', 'arc': 'Accelrys/MSI Biosym/Insight II CAR format', 'pcjson': 'PubChem JSON', 'out': 'Generic Output file format', 'smy': 'SMILES format using Smiley parser', 'c09out': 'Crystal 09 output format', 'feat': 'Feature format', 'crk3d': 'Chemical Resource Kit 3D format', 'got': 'GULP format', 'mopout': 'MOPAC Output format', 'tdd': 'Thermo format', 'mmod': 'MacroModel format', 'siesta': 'SIESTA format', 'bs': 'Ball and Stick format', 'mmd': 'MacroModel format', 'box': 'Dock 3.5 Box format', 'bgf': 'MSI BGF format', 'fa': 'FASTA format', 'POSFF': 'MDFF format', 'vmol': 'ViewMol format', 'acr': 'ACR format', 'pqs': 'Parallel Quantum Solutions format', 'crk2d': 'Chemical Resource Kit diagram(2D)', 'CONFIG': 'DL-POLY CONFIG', 'pdb': 'Protein Data Bank format', 'ck': 'ChemKin format', 'c3d2': 'Chem3D Cartesian 2 format', 'aoforce': 'Turbomole AOFORCE output format', 'c3d1': 'Chem3D Cartesian 1 format', 'CONTCAR': 'VASP format', 'MDFF': 'MDFF format', 'gamout': 'GAMESS Output', 'mmcif': 'Macromolecular Crystallographic Info', 'txt': 'Title format', 'ct': 'ChemDraw Connection Table format', 'therm': 'Thermo format', 'log': 'Generic Output file format', 'pc': 'PubChem format', 'dmol': 'DMol3 coordinates format', 'molden': 'Molden format', 'ml2': 'Sybyl Mol2 format', 'fract': 'Free Form Fractional format', 'msi': 'Accelrys/MSI Cerius II MSI format', 'cdxml': 'ChemDraw CDXML format', 'g98': 'Gaussian Output', 'prep': 'Amber Prep format', 'gpr': 'Ghemical format', 'cub': 'Gaussian cube format', 'gam': 'GAMESS Output', 'gukin': 'GAMESS-UK Input', 'cmlr': 'CML Reaction format', 'abinit': 'ABINIT Output Format', 'POSCAR': 'VASP format', 'ins': 'ShelX format', 'tmol': 'TurboMole Coordinate format', 'png': 'PNG 2D depiction', 'cif': 'Crystallographic Information File', 'gamess': 'GAMESS Output', 'car': 'Accelrys/MSI Biosym/Insight II CAR format', 'mcif': 'Macromolecular Crystallographic Info', 'smi': 'SMILES format', 'can': 'Canonical SMILES format', 'caccrt': 'Cacao Cartesian format', 'fhiaims': 'FHIaims XYZ format', 'inp': 'GAMESS Input', 'gukout': 'GAMESS-UK Output', 'sy2': 'Sybyl Mol2 format', 'fasta': 'FASTA format', 'mpqc': 'MPQC output format', 'mold': 'Molden format', 'molf': 'Molden format', 'jout': 'Jaguar output format', 'yob': 'YASARA.org YOB format', 'mcdl': 'MCDL format', 'ent': 'Protein Data Bank format', 'adfout': 'ADF output format', 'gro': 'GRO format', 'smiles': 'SMILES format', 'fs': 'Fastsearch format', 'mol2': 'Sybyl Mol2 format', 'cdjson': 'ChemDoodle JSON', 'pqr': 'PQR format', 'g94': 'Gaussian Output', 'g92': 'Gaussian Output', 'fch': 'Gaussian formatted checkpoint file format', 'VASP': 'VASP format', 'fck': 'Gaussian formatted checkpoint file format', 'HISTORY': 'DL-POLY HISTORY', 'fsa': 'FASTA format', 'gamin': 'GAMESS Input', 'rxn': 'MDL RXN format', 'mrv': 'Chemical Markup Language', 'sdf': 'MDL MOL format', 'gal': 'Gaussian Output', 'res': 'ShelX format', 'sd': 'MDL MOL format', 'ccc': 'CCC format', 'acesout': 'ACES output format'}

{'xed': 'XED format', 'cssr': 'CSD CSSR format', 'txyz': 'Tinker XYZ format', 'text': 'Read and write raw text', 'alc': 'Alchemy format', 'report': 'Open Babel report format', 'CONTFF': 'MDFF format', 'mna': 'Multilevel Neighborhoods of Atoms (MNA)', 'feat': 'Feature format', 'acesin': 'ACES input format', 'jin': 'Jaguar input format', 'fix': 'SMILES FIX format', 'cache': 'CAChe MolStruct format', 'adf': 'ADF cartesian input format', 'pov': 'POV-Ray input format', 'cub': 'Gaussian cube format', 'pcm': 'PCModel Format', 'mopin': 'MOPAC Internal', 'mpqcin': 'MPQC simplified input format', 'mopcrt': 'MOPAC Cartesian format', 'mpd': 'MolPrint2D format', 'cube': 'Gaussian cube format', 'mpc': 'MOPAC Cartesian format', 'nul': 'Outputs nothing', 'mop': 'MOPAC Cartesian format', 'dx': 'OpenDX cube format for APBS', 'mol': 'MDL MOL format', 'inchi': 'InChI format', 'hin': 'HyperChem HIN format', 'cml': 'Chemical Markup Language', 'lpmd': 'LPMD format', 'gjf': 'Gaussian 98/03 Input', 'nw': 'NWChem input format', 'gjc': 'Gaussian 98/03 Input', 'mdl': 'MDL MOL format', 'exyz': 'Extended XYZ cartesian coordinates format', 'dalmol': 'DALTON input format', 'unixyz': 'UniChem XYZ format', 'pdbqt': 'AutoDock PDBQT format', 'gzmat': 'Gaussian Z-Matrix Input', 'pcjson': 'PubChem JSON', 'crk3d': 'Chemical Resource Kit 3D format', 'mp': 'Molpro input format', 'cacint': 'Cacao Internal format', 'tdd': 'Thermo format', 'mmod': 'MacroModel format', 'bs': 'Ball and Stick format', 'mmd': 'MacroModel format', 'box': 'Dock 3.5 Box format', 'bgf': 'MSI BGF format', 'fa': 'FASTA format', 'k': 'Compare molecules using InChI', 'POSFF': 'MDFF format', 'vmol': 'ViewMol format', 'molreport': 'Open Babel molecule report', 'crk2d': 'Chemical Resource Kit diagram(2D)', 'gr96': 'GROMOS96 format', 'CONFIG': 'DL-POLY CONFIG', 'pdb': 'Protein Data Bank format', 'ck': 'ChemKin format', 'rsmi': 'Reaction SMILES format', 'c3d2': 'Chem3D Cartesian 2 format', 'xyz': 'XYZ cartesian coordinates format', 'c3d1': 'Chem3D Cartesian 1 format', 'CONTCAR': 'VASP format', 'MDFF': 'MDFF format', 'mmcif': 'Macromolecular Crystallographic Info', 'txt': 'Title format', 'ct': 'ChemDraw Connection Table format', 'therm': 'Thermo format', 'paint': 'Painter format', 'dmol': 'DMol3 coordinates format', 'molden': 'Molden format', 'ml2': 'Sybyl Mol2 format', 'fract': 'Free Form Fractional format', 'cht': 'Chemtool format', 'zin': 'ZINDO input format', 'cdxml': 'ChemDraw CDXML format', 'gpr': 'Ghemical format', 'gau': 'Gaussian 98/03 Input', 'sdf': 'MDL MOL format', 'gukin': 'GAMESS-UK Input', 'cmlr': 'CML Reaction format', 'POSCAR': 'VASP format', 'copy': 'Copy raw text', 'tmol': 'TurboMole Coordinate format', 'png': 'PNG 2D depiction', 'confabreport': 'Confab report format', 'pointcloud': 'Point cloud on VDW surface', 'cif': 'Crystallographic Information File', 'outmol': 'DMol3 coordinates format', 'stl': 'STL 3D-printing format', 'mcif': 'Macromolecular Crystallographic Info', 'smi': 'SMILES format', 'can': 'Canonical SMILES format', 'svg': 'SVG 2D depiction', 'cac': 'CAChe MolStruct format', 'caccrt': 'Cacao Cartesian format', 'qcin': 'Q-Chem input format', 'fhiaims': 'FHIaims XYZ format', 'inp': 'GAMESS Input', 'gukout': 'GAMESS-UK Output', 'sy2': 'Sybyl Mol2 format', 'fasta': 'FASTA format', 'ascii': 'ASCII format', 'molf': 'Molden format', 'msms': "M.F. Sanner's MSMS input format", 'mold': 'Molden format', 'yob': 'YASARA.org YOB format', 'mcdl': 'MCDL format', 'fpt': 'Fingerprint format', 'ent': 'Protein Data Bank format', 'fps': 'FPS text fingerprint format (Dalke)', 'lmpdat': 'The LAMMPS data format', 'gro': 'GRO format', 'csr': 'Accelrys/MSI Quanta CSR format', 'smiles': 'SMILES format', 'inchikey': 'InChIKey', 'fs': 'Fastsearch format', 'orcainp': 'ORCA input format', 'mol2': 'Sybyl Mol2 format', 'cdjson': 'ChemDoodle JSON', 'pqr': 'PQR format', 'pqs': 'Parallel Quantum Solutions format', 'fh': 'Fenske-Hall Z-Matrix format', 'VASP': 'VASP format', 'fsa': 'FASTA format', 'gamin': 'GAMESS Input', 'rxn': 'MDL RXN format', 'com': 'Gaussian 98/03 Input', 'mrv': 'Chemical Markup Language', 'sd': 'MDL MOL format'}

Возьмем структуру порфирина в формате SMILES, добавим протоны, создадим черновую 3D структуру.

In [2]:
mol=pybel.readstring('smi','C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2')
mol.addh()
mol.make3D(steps=10000)  #чтобы получить адекватную оптимизированную структуру
mol
mol.write(format='pdb',filename='start.pdb',overwrite=True)

Эта структура похожа на правильную: она практически плоская и с двумя атомами водорода у центральных атомов азота.

In [9]:
from IPython.display import display,Image
Image(filename='start.png')
Out[9]:

Проведём семиэмпирические расчёты в MOPAC методами PM6, PM7 и AM1

In [40]:
mop_pm6=mol.write(format='mopin', filename='pm6.mop', opt={'k':'PM6 CHARGE=%d' % mol.charge}, overwrite=True)
In [41]:
%%bash
less pm6.mop
PM6 CHARGE=0


C    0.000000  1    0.000000  1    0.000000  1     0   0   0
C    1.350270  1    0.000000  1    0.000000  1     1   0   0
C    1.467290  1  109.215179  1    0.000000  1     2   1   0
C    1.340039  1  121.843956  1  180.443862  1     3   2   1
C    1.420694  1  128.551262  1  179.882320  1     4   3   2
C    1.384525  1  129.765328  1  186.934591  1     5   4   3
C    1.413857  1  108.274946  1  180.658993  1     6   5   4
C    1.379310  1  107.578125  1  359.921670  1     7   6   5
N    1.375356  1  123.718103  1    8.380843  1     5   4   3
C    1.420276  1  131.774044  1  180.121433  1     8   7   6
C    1.340672  1  125.494004  1  172.962573  1    10   8   7
C    1.439937  1  124.296014  1  181.009543  1    11  10   8
C    1.332951  1  110.442585  1  178.745946  1    12  11  10
C    1.471382  1  101.517662  1    0.172970  1    13  12  11
N    1.300814  1  114.476087  1    0.218197  1    14  13  12
C    1.480274  1  116.130319  1  180.519896  1    14  13  12
C    1.335580  1  123.436229  1  182.268807  1    16  14  13
C    1.442246  1  125.495231  1  179.666486  1    17  16  14
C    1.335776  1  110.608904  1  180.797820  1    18  17  16
C    1.465683  1  101.120379  1  359.908165  1    19  18  17
N    1.300635  1  114.672191  1  359.824393  1    20  19  18
C    1.474858  1  118.749872  1  179.349157  1    20  19  18
C    1.337749  1  118.889515  1  178.886295  1    22  20  19
N    1.364787  1  104.172858  1    0.164139  1     3   2   1
H    1.077259  1  126.301562  1  179.961124  1     1   2   3
H    1.078200  1  126.047283  1  180.118487  1     2   1   3
H    1.088831  1  116.954961  1    0.537489  1     4   3   2
H    1.082096  1  125.435013  1    0.767765  1     6   5   4
H    1.081744  1  126.558828  1  180.252335  1     7   6   5
H    1.011882  1  127.095668  1    0.117762  1     9   5   4
H    1.086929  1  116.006986  1  354.073375  1    10   8   7
H    1.078929  1  124.048394  1  359.036504  1    12  11  10
H    1.072552  1  129.970540  1  180.163182  1    13  12  11
H    1.083138  1  116.564587  1    2.151126  1    16  14  13
H    1.078994  1  124.132541  1    0.637197  1    18  17  16
H    1.072451  1  130.440776  1  179.891904  1    19  18  17
H    1.080912  1  118.964977  1  357.852446  1    22  20  19
H    1.013898  1  127.420652  1  184.020970  1    24   3   2
In [27]:
mop_pm7=mol.write(format='mopin', filename='pm7.mop', opt={'k':'PM7 CHARGE=%d' % mol.charge}, overwrite=True)
In [32]:
%%bash
less pm7.mop
PM7 CHARGE=0


C    0.000000  1    0.000000  1    0.000000  1     0   0   0
C    1.350270  1    0.000000  1    0.000000  1     1   0   0
C    1.467290  1  109.215179  1    0.000000  1     2   1   0
C    1.340039  1  121.843956  1  180.443862  1     3   2   1
C    1.420694  1  128.551262  1  179.882320  1     4   3   2
C    1.384525  1  129.765328  1  186.934591  1     5   4   3
C    1.413857  1  108.274946  1  180.658993  1     6   5   4
C    1.379310  1  107.578125  1  359.921670  1     7   6   5
N    1.375356  1  123.718103  1    8.380843  1     5   4   3
C    1.420276  1  131.774044  1  180.121433  1     8   7   6
C    1.340672  1  125.494004  1  172.962573  1    10   8   7
C    1.439937  1  124.296014  1  181.009543  1    11  10   8
C    1.332951  1  110.442585  1  178.745946  1    12  11  10
C    1.471382  1  101.517662  1    0.172970  1    13  12  11
N    1.300814  1  114.476087  1    0.218197  1    14  13  12
C    1.480274  1  116.130319  1  180.519896  1    14  13  12
C    1.335580  1  123.436229  1  182.268807  1    16  14  13
C    1.442246  1  125.495231  1  179.666486  1    17  16  14
C    1.335776  1  110.608904  1  180.797820  1    18  17  16
C    1.465683  1  101.120379  1  359.908165  1    19  18  17
N    1.300635  1  114.672191  1  359.824393  1    20  19  18
C    1.474858  1  118.749872  1  179.349157  1    20  19  18
C    1.337749  1  118.889515  1  178.886295  1    22  20  19
N    1.364787  1  104.172858  1    0.164139  1     3   2   1
H    1.077259  1  126.301562  1  179.961124  1     1   2   3
H    1.078200  1  126.047283  1  180.118487  1     2   1   3
H    1.088831  1  116.954961  1    0.537489  1     4   3   2
H    1.082096  1  125.435013  1    0.767765  1     6   5   4
H    1.081744  1  126.558828  1  180.252335  1     7   6   5
H    1.011882  1  127.095668  1    0.117762  1     9   5   4
H    1.086929  1  116.006986  1  354.073375  1    10   8   7
H    1.078929  1  124.048394  1  359.036504  1    12  11  10
H    1.072552  1  129.970540  1  180.163182  1    13  12  11
H    1.083138  1  116.564587  1    2.151126  1    16  14  13
H    1.078994  1  124.132541  1    0.637197  1    18  17  16
H    1.072451  1  130.440776  1  179.891904  1    19  18  17
H    1.080912  1  118.964977  1  357.852446  1    22  20  19
H    1.013898  1  127.420652  1  184.020970  1    24   3   2
In [30]:
mop_am1=mol.write(format='mopin', filename='am1.mop', opt={'k':'AM1 CHARGE=%d' % mol.charge}, overwrite=True)
In [31]:
%%bash
less am1.mop
AM1 CHARGE=0


C    0.000000  1    0.000000  1    0.000000  1     0   0   0
C    1.350270  1    0.000000  1    0.000000  1     1   0   0
C    1.467290  1  109.215179  1    0.000000  1     2   1   0
C    1.340039  1  121.843956  1  180.443862  1     3   2   1
C    1.420694  1  128.551262  1  179.882320  1     4   3   2
C    1.384525  1  129.765328  1  186.934591  1     5   4   3
C    1.413857  1  108.274946  1  180.658993  1     6   5   4
C    1.379310  1  107.578125  1  359.921670  1     7   6   5
N    1.375356  1  123.718103  1    8.380843  1     5   4   3
C    1.420276  1  131.774044  1  180.121433  1     8   7   6
C    1.340672  1  125.494004  1  172.962573  1    10   8   7
C    1.439937  1  124.296014  1  181.009543  1    11  10   8
C    1.332951  1  110.442585  1  178.745946  1    12  11  10
C    1.471382  1  101.517662  1    0.172970  1    13  12  11
N    1.300814  1  114.476087  1    0.218197  1    14  13  12
C    1.480274  1  116.130319  1  180.519896  1    14  13  12
C    1.335580  1  123.436229  1  182.268807  1    16  14  13
C    1.442246  1  125.495231  1  179.666486  1    17  16  14
C    1.335776  1  110.608904  1  180.797820  1    18  17  16
C    1.465683  1  101.120379  1  359.908165  1    19  18  17
N    1.300635  1  114.672191  1  359.824393  1    20  19  18
C    1.474858  1  118.749872  1  179.349157  1    20  19  18
C    1.337749  1  118.889515  1  178.886295  1    22  20  19
N    1.364787  1  104.172858  1    0.164139  1     3   2   1
H    1.077259  1  126.301562  1  179.961124  1     1   2   3
H    1.078200  1  126.047283  1  180.118487  1     2   1   3
H    1.088831  1  116.954961  1    0.537489  1     4   3   2
H    1.082096  1  125.435013  1    0.767765  1     6   5   4
H    1.081744  1  126.558828  1  180.252335  1     7   6   5
H    1.011882  1  127.095668  1    0.117762  1     9   5   4
H    1.086929  1  116.006986  1  354.073375  1    10   8   7
H    1.078929  1  124.048394  1  359.036504  1    12  11  10
H    1.072552  1  129.970540  1  180.163182  1    13  12  11
H    1.083138  1  116.564587  1    2.151126  1    16  14  13
H    1.078994  1  124.132541  1    0.637197  1    18  17  16
H    1.072451  1  130.440776  1  179.891904  1    19  18  17
H    1.080912  1  118.964977  1  357.852446  1    22  20  19
H    1.013898  1  127.420652  1  184.020970  1    24   3   2

Запустим MOPAC, чтобы оптимизировать структуру и получить ее в PDB файле.

In [39]:
import subprocess
def run_mopac(smiles, method, prefix):  
    mol=pybel.readstring('smi',smiles)
    mol.addh()
    mol.make3D(steps=10000)
    mop=mol.write(format='mopin',filename = prefix+'.mop',opt={'k': method+' CHARGE=%d' % mol.charge},overwrite=True)
    mol.write(format='pdb',filename=prefix+'_before.pdb',overwrite=True)
    
    cmd1 = " export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/' "
    cmd2 = '/home/preps/golovin/progs/mopac/MOPAC2016.exe '+prefix+'.mop'
    subprocess.call(cmd1, shell=True)
    subprocess.call(cmd2, shell=True)
    opt=pybel.readfile('mopout',prefix+'.out')
    for i in opt:
        print i
        i.write(format='pdb',filename=prefix+'.pdb',overwrite=True)
In [42]:
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','PM6', 'por_pm6')
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','PM7', 'por_pm7')
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','AM1', 'por_am1')
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3	por_pm6.out

c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3	por_pm7.out

c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3	por_am1.out

Сравним полученные структуры

In [17]:
Image(filename='super.png')
Out[17]:

Методоми PM6 (атомы углерода показаны голубым) и PM7 (фиолетовый) получился плоский порфирин, а методом AM1 (жёлтый) - нет.

Теперь сравним свободные энергии Гиббса, полученные разными методами:

In [67]:
def mopac_thermo (pdb_f, method, prefix):
    mol=pybel.readfile("pdb", pdb_f).next()
    thermo_pm6=mol.write(format='mopin', filename= prefix+'.mop', opt={'k': method+' THERMO CHARGE=%d' % mol.charge}, overwrite=True)
    
    cmd1 = " export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/' "
    cmd2 = '/home/preps/golovin/progs/mopac/MOPAC2016.exe '+prefix+'.mop'
    subprocess.call(cmd1, shell=True)
    subprocess.call(cmd2, shell=True)
    dG = read_thermo_out(prefix+'.out', 298.0)
    print method, dG, 'KCAL/MOL'

def read_thermo_out (f, T):
    read = open(f)
    thermo = False
    temp = False
    for lines in read:
        line = None
        line = lines.strip()
        if len(line) == 0:
            continue
        if thermo == False:
            if line == 'CALCULATED THERMODYNAMIC PROPERTIES':
                thermo = True
        elif thermo == True:
            line_list = line.split()
            if temp == False:
                try:
                    if float(line_list[0]) == T:
                        temp = True
                except ValueError:
                    continue
            elif temp == True:
                if line_list[0] == 'TOT.':
                    return float(line_list[1]) - T*float(line_list[4])/1000.0               
In [68]:
mopac_thermo('por_pm6.pdb', 'PM6', 'thermo_pm6')
mopac_thermo('por_pm7.pdb', 'PM7', 'thermo_pm7')
mopac_thermo('por_am1.pdb', 'AM1', 'thermo_am1')
PM6 151.4358814 KCAL/MOL
PM7 159.0162338 KCAL/MOL
AM1 211.1215272 KCAL/MOL

Энергии, рассчитанные методами PM6 и PM7, намного меньше, чем методом AM1.

Рассчитаем возбужденные состояния порфирина и спектр поглощения молекулы. Для этого допишем в файлы pm6.mop и pm7.mop (порфирин, PM6 и PM7) по две строчки:

In [69]:
%%bash

cp por_pm6.mop pm6_spectr.mop
echo "" >> pm6_spectr.mop
echo "cis c.i.=4 meci oldgeo" >> pm6_spectr.mop
echo "some description" >> pm6_spectr.mop
In [70]:
%%bash

cp por_pm7.mop pm7_spectr.mop
echo "" >> pm7_spectr.mop
echo "cis c.i.=4 meci oldgeo" >> pm7_spectr.mop
echo "some description" >> pm7_spectr.mop
In [71]:
%%bash
export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/'
/home/preps/golovin/progs/mopac/MOPAC2016.exe pm6_spectr.mop

          MOPAC Job: "pm6_spectr.mop" ended normally on May 29, 2017, at 00:04.

In [72]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe pm7_spectr.mop

          MOPAC Job: "pm7_spectr.mop" ended normally on May 29, 2017, at 00:05.

In [73]:
opt=pybel.readfile('mopout','pm6_spectr.out')
for i in opt:
    print i
    i.write(format='pdb',filename='pm6_spectr.pdb',overwrite=True)
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3	pm6_spectr.out

In [74]:
opt=pybel.readfile('mopout','pm7_spectr.out')
for i in opt:
    print i
    i.write(format='pdb',filename='pm7_spectr.pdb',overwrite=True)
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3	pm7_spectr.out

В конце файлов .out приведены значения энергий для электронных переходов. На основании этих значений рассчитаем длину волн, при которых происходят эти переходы.

In [75]:
f = open('pm6_spectr.out', 'r')
lines = f.readlines()[-21:-13]
f.close()
energies_pm6 = [float(line.split()[1]) for line in lines]
print energies_pm6, 'eV'
[1.766599, 2.170697, 2.326212, 2.693203, 3.091099, 3.143718, 3.756557, 3.765182] eV
In [76]:
f = open('pm7_spectr.out', 'r')
lines = f.readlines()[-21:-13]
f.close()
energies_pm7 = [float(line.split()[1]) for line in lines]
print energies_pm7, 'eV'
[1.765982, 2.171785, 2.32922, 2.694986, 3.093183, 3.144863, 3.756235, 3.765077] eV

Получили из файлов значения энергий, теперь рассчитаем соотвутствующие им длины волн и частоты

In [77]:
wavelengths = [1239.84193/e for e in energies_pm6]
frequencies = [e/4.135667516 for e in energies_pm6]
print 'frequncy,THz\t wavelength,nm\tenergy,eV'
for i in range(len(energies_pm6)):
        print '%.4f \t %.4f \t %.4f' % (frequencies[i]*1000, wavelengths[i], energies_pm6[i])
frequncy,THz	 wavelength,nm	energy,eV
427.1618 	 701.8242 	 1.7666
524.8722 	 571.1723 	 2.1707
562.4756 	 532.9875 	 2.3262
651.2136 	 460.3596 	 2.6932
747.4244 	 401.1007 	 3.0911
760.1477 	 394.3871 	 3.1437
908.3315 	 330.0474 	 3.7566
910.4170 	 329.2914 	 3.7652
In [78]:
wavelengths = [1239.84193/e for e in energies_pm7]
frequencies = [e/4.135667516 for e in energies_pm7]
print 'frequncy,THz\t wavelength,nm\tenergy,eV'
for i in range(len(energies_pm7)):
        print '%.4f \t %.4f \t %.4f' % (frequencies[i]*1000, wavelengths[i], energies_pm7[i])
frequncy,THz	 wavelength,nm	energy,eV
427.0126 	 702.0694 	 1.7660
525.1353 	 570.8861 	 2.1718
563.2029 	 532.2992 	 2.3292
651.6447 	 460.0551 	 2.6950
747.9284 	 400.8304 	 3.0932
760.4245 	 394.2435 	 3.1449
908.2536 	 330.0757 	 3.7562
910.3916 	 329.3006 	 3.7651

Более новый метод PM7 даёт чуть большие энергии для молекулы порферина, чем метод PM6.

Теперь рассмотрим тимединовые димеры.

Дан .pdb файл тиминового димера. Известно, что ультрафиолет может превращать тимины в тиминовые димеры, также известно, что ДНК фотолиаза при облучении ультрафиолетом востановливает основания тиминов до нормального. Наша цель - увидеть переход из димера в тимины при возбуждении системы. Так как вычисление возбуждённых состояний в MOPAC затруднены, мы имитируем возбуждение ионизируя оба кольца, т.е. указывая заряд системы +2. И полученое возбуждённое состояние снова оптимизируем при заряде 0.

In [80]:
%%bash
less td.pdb
ATOM      1  N1  DTa    29      27.560  34.690  61.050  1.00  0.00
ATOM      2  C6  DTa    29      28.760  35.270  61.490  1.00  0.00
ATOM      3  H6  DTa    29      28.570  35.980  62.330  1.00  0.00
ATOM      4  C5  DTa    29      30.010  34.300  61.790  1.00  0.00
ATOM      5  C7  DTa    29      30.640  34.610  63.160  1.00  0.00
ATOM      6  H71 DTa    29      30.240  33.810  63.850  1.00  0.00
ATOM      7  H72 DTa    29      31.760  34.510  63.100  1.00  0.00
ATOM      8  H73 DTa    29      30.470  35.710  63.430  1.00  0.00
ATOM      9  C4  DTa    29      29.750  32.820  61.560  1.00  0.00
ATOM     10  O4  DTa    29      30.580  31.980  61.910  1.00  0.00
ATOM     11  N3  DTa    29      28.660  32.440  60.760  1.00  0.00
ATOM     12  H3  DTa    29      28.680  31.500  60.420  1.00  0.00
ATOM     13  C2  DTa    29      27.550  33.300  60.600  1.00  0.00
ATOM     14  O   DTa    29      26.490  32.830  60.090  1.00  0.00
ATOM     15  N1  DTb    30      29.300  36.430  59.150  1.00  0.00
ATOM     16  C6  DTb    30      29.710  36.070  60.470  1.00  0.00
ATOM     17  H6  DTb    30      30.030  36.930  61.010  1.00  0.00
ATOM     18  C5  DTb    30      30.790  34.910  60.540  1.00  0.00
ATOM     19  C7  DTb    30      32.210  35.390  60.750  1.00  0.00
ATOM     20  H71 DTb    30      32.910  34.540  60.810  1.00  0.00
ATOM     21  H72 DTb    30      32.420  36.020  59.870  1.00  0.00
ATOM     22  H73 DTb    30      32.310  36.050  61.650  1.00  0.00
ATOM     23  C4  DTb    30      30.660  33.970  59.390  1.00  0.00
ATOM     24  O4  DTb    30      31.300  32.880  59.370  1.00  0.00
ATOM     25  N3  DTb    30      29.920  34.310  58.230  1.00  0.00
ATOM     26  H3  DTb    30      29.700  33.540  57.610  1.00  0.00
ATOM     27  C2  DTb    30      29.080  35.490  58.170  1.00  0.00
ATOM     28  O   DTb    30      28.430  35.700  57.120  1.00  0.00
ATOM     29  HA  XXX    41      26.670  35.060  61.500  1.00  0.00
ATOM     30  HB  XXX    42      28.840  37.390  59.080  1.00  0.00
In [81]:
mol=pybel.readfile("pdb", "td.pdb").next()
mop=mol.write(format='mop',filename='td_pm6.mop',opt={'k':'PM6 CHARGE=%d' % mol.charge},overwrite=True)
mop=mol.write(format='mop',filename='td_pm7.mop',opt={'k':'PM7 CHARGE=%d' % mol.charge},overwrite=True)
In [82]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6.mop

          MOPAC Job: "td_pm6.mop" ended normally on May 29, 2017, at 00:16.

In [83]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7.mop

          MOPAC Job: "td_pm7.mop" ended normally on May 29, 2017, at 00:16.

In [84]:
opt=pybel.readfile('mopout','td_pm6.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm6.pdb',overwrite=True)
N1[C@H]2[C@@](C)(C(=O)NC1=O)[C@@]1([C@H]2NC(=O)NC1=O)C	td_pm6.out

In [85]:
opt=pybel.readfile('mopout','td_pm7.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm7.pdb',overwrite=True)
N1[C@H]2[C@@](C)(C(=O)NC1=O)[C@@]1([C@H]2NC(=O)NC1=O)C	td_pm7.out

Сравним исходную структуру (Розовый) и оптимизированные (PM6 - белый, PM7 - синий):

In [124]:
Image(filename='td1.png')
Out[124]:

Структуры отличаются не сильно, особенно рассчётные

Оптимизируем результат при заряде +2 (имитируем возбуждённое состояние):

In [86]:
%%bash
cp td_pm6.mop td_pm6_2.mop
#change line PM6 CHARGE=0 to PM6 CHARGE=+2
In [87]:
%%bash
cp td_pm7.mop td_pm7_2.mop
#change line PM6 CHARGE=0 to PM6 CHARGE=+2
In [105]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6_2.mop

          MOPAC Job: "td_pm6_2.mop" ended normally on May 29, 2017, at 00:42.

In [106]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7_2.mop

          MOPAC Job: "td_pm7_2.mop" ended normally on May 29, 2017, at 00:42.

In [107]:
opt=pybel.readfile('mopout','td_pm6_2.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm6_2.pdb',overwrite=True)
N1[CH][C@@](C)(C(=O)NC1=O)[C@@]1([CH]NC(=O)NC1=O)C	td_pm6_2.out

In [108]:
opt=pybel.readfile('mopout','td_pm7_2.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm7_2.pdb',overwrite=True)
N1[CH][C@@](C)(C(=O)NC1=O)[C@@]1([CH]NC(=O)NC1=O)C	td_pm7_2.out

Посмотрим, что получилось

In [123]:
Image(filename='td2.png')
Out[123]:

Теперь возьмем структуру этих полусоединенных тиминов и оптимизируем ее с зарядом системы 0.

In [109]:
mol=pybel.readfile("pdb", "td_pm6_2.pdb").next()
mop=mol.write(format='mop',filename='td_pm6_20.mop',opt={'k':'PM6 CHARGE=%d' % mol.charge},overwrite=True)
In [110]:
mol=pybel.readfile("pdb", "td_pm7_2.pdb").next()
mop=mol.write(format='mop',filename='td_pm7_20.mop',opt={'k':'PM7 CHARGE=%d' % mol.charge},overwrite=True)
In [111]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6_20.mop

          MOPAC Job: "td_pm6_20.mop" ended normally on May 29, 2017, at 00:43.

In [112]:
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7_20.mop

          MOPAC Job: "td_pm7_20.mop" ended normally on May 29, 2017, at 00:43.

In [113]:
opt=pybel.readfile('mopout','td_pm6_20.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm6_20.pdb',overwrite=True)
[nH]1cc(C)c(=O)[nH]c1=O.[nH]1cc(C)c(=O)[nH]c1=O	td_pm6_20.out

In [114]:
opt=pybel.readfile('mopout','td_pm7_20.out')
for i in opt:
    print i
    i.write(format='pdb',filename='td_pm7_20.pdb',overwrite=True)
[nH]1cc(C)c(=O)[nH]c1=O.[nH]1cc(C)c(=O)[nH]c1=O	td_pm7_20.out

Получились свободные тимины.

In [122]:
Image(filename='td3.png')
Out[122]:

Энергии всех состояний (Модуль THERMO считать отказался: MOPAC считает, что структуры могут быть всё же не оптимизированы):

In [120]:
%%bash
echo dimer
grep 'TOTAL ENERGY' td_pm6.out
echo semi-dimer
grep 'TOTAL ENERGY' td_pm6_2.out
echo two thymins
grep 'TOTAL ENERGY' td_pm6_20.out
dimer
          TOTAL ENERGY            =      -3273.57488 EV
semi-dimer
          TOTAL ENERGY            =      -3253.90524 EV
two thymins
          TOTAL ENERGY            =      -3273.70216 EV
In [121]:
%%bash
echo dimer
grep 'TOTAL ENERGY' td_pm7.out
echo semi-dimer
grep 'TOTAL ENERGY' td_pm7_2.out
echo two thymins
grep 'TOTAL ENERGY' td_pm7_20.out
dimer
          TOTAL ENERGY            =      -3317.89293 EV
semi-dimer
          TOTAL ENERGY            =      -3298.75116 EV
two thymins
          TOTAL ENERGY            =      -3318.43190 EV

Как следует из рисунков, при возбуждении системы тиминовый димер разрушился только наполовину. Однако, возбуждённое состояние оказалось переходным, из которого система может свалиться как в тиминовые нуклеотиды, так и обратно в димер. А так как система из двух тиминов оказалась чуть более выгодным, чем система из димера, то она свалилась именно в тимины.

Ab initio вычисления: Gamess US

Найдём оптимальную геометрию для нафталена и азулена и рассчитаем теплоты образования этих молекул разными подходами квантовой механики. Для этого нужно:

1) Построить и оптимизировать с помощью MOPAC структуры нафталена и азулена

2) Создать входные файлы для Gamess.

In [132]:
run_mopac('C1=CC=C2C=CC=CC2=C1','PM6','na')
run_mopac('C1=CC=C2C=CC=C2C=C1','PM6','az')
c1ccc2ccccc2c1	na.out

c1ccc2ccccc2c1	az.out

В геометрии азулена до и после оптимизации ничего не изменилось. Все тот же нафтален и до, и после оптимизации. Будем работать только с нафталеном. Создадим входные файлы для Gamess. В файле orca.inp добавим заголовок !HF RHF OPT 6-31G - это означает, что работаем ограниченным методом Хартри-Фока в базисе 6-31G. На этих данных запустим ORCA, чтобы оптимизировать геометрию молекулы нафталена.

In [133]:
opt=pybel.readfile('mopout','na.out')
for i in opt:
    print i
    i.write(format='orcainp',filename='orca.inp',overwrite=True)
c1ccc2ccccc2c1	na.out

In [134]:
%%bash
/srv/databases/orca/orca orca.inp | tee orca-opt.log
                                 *****************
                                 * O   R   C   A *
                                 *****************

           --- An Ab Initio, DFT and Semiempirical electronic structure package ---

                  #######################################################
                  #                        -***-                        #
                  #  Department of molecular theory and spectroscopy    #
                  #              Directorship: Frank Neese              #
                  # Max Planck Institute for Chemical Energy Conversion #
                  #                  D-45470 Muelheim/Ruhr              #
                  #                       Germany                       #
                  #                                                     #
                  #                  All rights reserved                #
                  #                        -***-                        #
                  #######################################################


                         Program Version 3.0.3 - RELEASE   -


 With contributions from (in alphabetic order):
   Ute Becker             : Parallelization
   Dmytro Bykov           : SCF Hessian
   Dmitry Ganyushin       : Spin-Orbit,Spin-Spin,Magnetic field MRCI
   Andreas Hansen         : Spin unrestricted coupled pair/coupled cluster methods
   Dimitrios Liakos       : Extrapolation schemes; parallel MDCI
   Robert Izsak           : Overlap fitted RIJCOSX, COSX-SCS-MP3
   Christian Kollmar      : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density
   Simone Kossmann        : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian
   Taras Petrenko         : DFT Hessian,TD-DFT gradient, ASA and ECA modules, normal mode analysis, Resonance Raman, ABS, FL, XAS/XES, NRVS
   Christoph Reimann      : Effective Core Potentials
   Michael Roemelt        : Restricted open shell CIS
   Christoph Riplinger    : Improved optimizer, TS searches, QM/MM, DLPNO-CCSD
   Barbara Sandhoefer     : DKH picture change effects
   Igor Schapiro          : Molecular dynamics
   Kantharuban Sivalingam : CASSCF convergence, NEVPT2
   Boris Wezisla          : Elementary symmetry handling
   Frank Wennmohs         : Technical directorship


 We gratefully acknowledge several colleagues who have allowed us to
 interface, adapt or use parts of their codes:
   Stefan Grimme, W. Hujo, H. Kruse, T. Risthaus : VdW corrections, initial TS optimization,
                                                   DFT functionals, gCP
   Ed Valeev                                     : LibInt (2-el integral package), F12 methods
   Garnet Chan, S. Sharma, R. Olivares           : DMRG
   Ulf Ekstrom                                   : XCFun DFT Library
   Mihaly Kallay                                 : mrcc  (arbitrary order and MRCC methods)
   Andreas Klamt, Michael Diedenhofen            : otool_cosmo (COSMO solvation model)
   Frank Weinhold                                : gennbo (NPA and NBO analysis)
   Christopher J. Cramer and Donald G. Truhlar   : smd solvation model


 Your calculation uses the libint2 library for the computation of 2-el integrals
 For citations please refer to: http://libint.valeyev.net

 This ORCA versions uses:
   CBLAS   interface :  Fast vector & matrix operations
   LAPACKE interface :  Fast linear algebra routines
   SCALAPACK package :  Parallel linear algebra routines


Your calculation utilizes the basis: 6-31G
Cite in your paper:
H - He: W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys. 56,
Li - Ne: 2257 (1972).  Note: Li and B come from J.D. Dill and J.A.
         Pople, J. Chem. Phys. 62, 2921 (1975).
Na - Ar: M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon,
         D.J. DeFrees and J.A. Pople, J. Chem. Phys. 77, 3654 (1982)
K  - Zn: V. Rassolov, J.A. Pople, M. Ratner and T.L. Windus, J. Chem. Phys.
         (accepted, 1998)
Note: He and Ne are unpublished basis sets taken from the Gaussian program

================================================================================
                                        WARNINGS
                       Please study these warnings very carefully!
================================================================================
Now building the actual basis set

WARNING: Geometry Optimization
  ===> : Switching off AutoStart
         For restart on a previous wavefunction, please use MOREAD


INFO   : the flag for use of LIBINT has been found!

================================================================================
                                       INPUT FILE
================================================================================
NAME = orca.inp
|  1> # ORCA input file
|  2> # na.out
|  3> !HF RHF OPT 6-31G 
|  4> * xyz 0 1
|  5>    C       -0.05678        -0.03497        -0.03698
|  6>    C        1.36912        -0.03497        -0.03698
|  7>    C        2.06233         1.14935        -0.03698
|  8>    C        1.36421         2.39853        -0.03729
|  9>    C        2.06068         3.64916        -0.03782
| 10>    C        1.36601         4.83230        -0.03539
| 11>    C       -0.06018         4.83073        -0.03283
| 12>    C       -0.75337         3.64707        -0.03455
| 13>    C       -0.05524         2.39765        -0.03623
| 14>    C       -0.75233         1.14744        -0.03646
| 15>    H       -0.57884        -0.99046        -0.03733
| 16>    H        1.89233        -0.98964        -0.03668
| 17>    H        3.15102         1.15957        -0.03669
| 18>    H        3.14956         3.63994        -0.04052
| 19>    H        1.88786         5.78761        -0.03506
| 20>    H       -0.58375         5.78525        -0.03022
| 21>    H       -1.84216         3.63593        -0.03418
| 22>    H       -1.84093         1.15662        -0.03608
| 23> *
| 24> 
| 25>                          ****END OF INPUT****
================================================================================

                       *****************************
                       * Geometry Optimization Run *
                       *****************************

Geometry optimization settings:
Update method            Update   .... BFGS
Choice of coordinates    CoordSys .... Redundant Internals
Initial Hessian          InHess   .... Almoef's Model

Convergence Tolerances:
Energy Change            TolE     ....  5.0000e-06 Eh
Max. Gradient            TolMAXG  ....  3.0000e-04 Eh/bohr
RMS Gradient             TolRMSG  ....  1.0000e-04 Eh/bohr
Max. Displacement        TolMAXD  ....  4.0000e-03 bohr
RMS Displacement         TolRMSD  ....  2.0000e-03 bohr

------------------------------------------------------------------------------
                        ORCA OPTIMIZATION COORDINATE SETUP
------------------------------------------------------------------------------

The optimization will be done in new redundant internal coordinates
Making redundant internal coordinates   ...  (new redundants) done
Evaluating the initial hessian          ...  (Almloef) done
Evaluating the coordinates              ...  done
Calculating the B-matrix                .... done
Calculating the G-matrix                .... done
Diagonalizing the G-matrix              .... done
The first mode is                       ....   45
The number of degrees of freedom        ....   48

    -----------------------------------------------------------------
                    Redundant Internal Coordinates


    -----------------------------------------------------------------
         Definition                    Initial Value    Approx d2E/dq
    -----------------------------------------------------------------
      1. B(C   1,C   0)                  1.4259         0.547599   
      2. B(C   2,C   1)                  1.3723         0.666820   
      3. B(C   3,C   2)                  1.4310         0.537392   
      4. B(C   4,C   3)                  1.4315         0.536480   
      5. B(C   5,C   4)                  1.3720         0.667500   
      6. B(C   6,C   5)                  1.4262         0.547009   
      7. B(C   7,C   6)                  1.3717         0.668239   
      8. B(C   8,C   7)                  1.4312         0.536967   
      9. B(C   8,C   3)                  1.4195         0.560728   
     10. B(C   9,C   8)                  1.4314         0.536609   
     11. B(C   9,C   0)                  1.3718         0.667955   
     12. B(H  10,C   0)                  1.0888         0.361677   
     13. B(H  11,C   1)                  1.0886         0.361900   
     14. B(H  12,C   2)                  1.0887         0.361773   
     15. B(H  13,C   4)                  1.0889         0.361528   
     16. B(H  14,C   5)                  1.0886         0.362021   
     17. B(H  15,C   6)                  1.0887         0.361840   
     18. B(H  16,C   7)                  1.0888         0.361628   
     19. B(H  17,C   9)                  1.0886         0.361905   
     20. A(C   9,C   0,H  10)          120.8826         0.357662   
     21. A(C   1,C   0,H  10)          118.6513         0.345849   
     22. A(C   1,C   0,C   9)          120.4661         0.430208   
     23. A(C   0,C   1,C   2)          120.3414         0.430077   
     24. A(C   2,C   1,H  11)          120.9335         0.357596   
     25. A(C   0,C   1,H  11)          118.7251         0.345884   
     26. A(C   1,C   2,C   3)          120.4594         0.428627   
     27. A(C   1,C   2,H  12)          120.8793         0.357575   
     28. A(C   3,C   2,H  12)          118.6614         0.344773   
     29. A(C   2,C   3,C   4)          121.6876         0.412314   
     30. A(C   2,C   3,C   8)          119.1637         0.415565   
     31. A(C   4,C   3,C   8)          119.1488         0.415439   
     32. A(C   5,C   4,H  13)          120.9042         0.357596   
     33. A(C   3,C   4,H  13)          118.6281         0.344635   
     34. A(C   3,C   4,C   5)          120.4677         0.428575   
     35. A(C   6,C   5,H  14)          118.7091         0.345841   
     36. A(C   4,C   5,H  14)          120.9349         0.357679   
     37. A(C   4,C   5,C   6)          120.3560         0.430072   
     38. A(C   7,C   6,H  15)          120.8999         0.357716   
     39. A(C   5,C   6,H  15)          118.6826         0.345812   
     40. A(C   5,C   6,C   7)          120.4175         0.430158   
     41. A(C   8,C   7,H  16)          118.6087         0.344704   
     42. A(C   6,C   7,H  16)          120.9408         0.357680   
     43. A(C   6,C   7,C   8)          120.4506         0.428730   
     44. A(C   7,C   8,C   9)          121.6620         0.412273   
     45. A(C   3,C   8,C   9)          119.1786         0.415457   
     46. A(C   3,C   8,C   7)          119.1594         0.415506   
     47. A(C   8,C   9,H  17)          118.6599         0.344709   
     48. A(C   0,C   9,H  17)          120.9492         0.357701   
     49. A(C   0,C   9,C   8)          120.3908         0.428646   
     50. D(H  11,C   1,C   0,H  10)     -0.0390         0.020507   
     51. D(C   2,C   1,C   0,C   9)     -0.0252         0.020507   
     52. D(H  11,C   1,C   0,C   9)    179.9568         0.020507   
     53. D(C   2,C   1,C   0,H  10)    179.9790         0.020507   
     54. D(C   3,C   2,C   1,C   0)     -0.0144         0.031075   
     55. D(H  12,C   2,C   1,H  11)      0.0006         0.031075   
     56. D(C   3,C   2,C   1,H  11)   -179.9960         0.031075   
     57. D(H  12,C   2,C   1,C   0)    179.9822         0.031075   
     58. D(C   8,C   3,C   2,H  12)   -179.9335         0.019727   
     59. D(C   4,C   3,C   2,H  12)      0.0279         0.019727   
     60. D(C   4,C   3,C   2,C   1)   -179.9754         0.019727   
     61. D(C   8,C   3,C   2,C   1)      0.0632         0.019727   
     62. D(H  13,C   4,C   3,C   2)      0.1518         0.019658   
     63. D(C   5,C   4,C   3,C   8)      0.0931         0.019658   
     64. D(C   5,C   4,C   3,C   2)   -179.8683         0.019658   
     65. D(H  13,C   4,C   3,C   8)   -179.8869         0.019658   
     66. D(H  14,C   5,C   4,H  13)     -0.0643         0.031143   
     67. D(H  14,C   5,C   4,C   3)    179.9563         0.031143   
     68. D(C   6,C   5,C   4,H  13)    179.9549         0.031143   
     69. D(C   6,C   5,C   4,C   3)     -0.0246         0.031143   
     70. D(H  15,C   6,C   5,H  14)     -0.0242         0.020462   
     71. D(H  15,C   6,C   5,C   4)    179.9571         0.020462   
     72. D(C   7,C   6,C   5,H  14)    179.9324         0.020462   
     73. D(C   7,C   6,C   5,C   4)     -0.0863         0.020462   
     74. D(H  16,C   7,C   6,H  15)      0.0513         0.031217   
     75. D(H  16,C   7,C   6,C   5)   -179.9043         0.031217   
     76. D(C   8,C   7,C   6,H  15)   -179.9187         0.031217   
     77. D(C   8,C   7,C   6,C   5)      0.1257         0.031217   
     78. D(C   9,C   8,C   3,C   2)     -0.0725         0.021539   
     79. D(C   7,C   8,C   3,C   4)     -0.0536         0.021539   
     80. D(C   7,C   8,C   3,C   2)    179.9088         0.021539   
     81. D(C   9,C   8,C   7,H  16)     -0.0452         0.019695   
     82. D(C   9,C   8,C   7,C   6)    179.9255         0.019695   
     83. D(C   3,C   8,C   7,H  16)    179.9740         0.019695   
     84. D(C   3,C   8,C   7,C   6)     -0.0553         0.019695   
     85. D(C   9,C   8,C   3,C   4)    179.9651         0.021539   
     86. D(H  17,C   9,C   8,C   7)      0.0455         0.019668   
     87. D(C   0,C   9,C   8,C   7)   -179.9464         0.019668   
     88. D(C   0,C   9,C   8,C   3)      0.0344         0.019668   
     89. D(H  17,C   9,C   0,H  10)      0.0188         0.031189   
     90. D(H  17,C   9,C   0,C   1)   -179.9769         0.031189   
     91. D(H  17,C   9,C   8,C   3)   -179.9737         0.019668   
     92. D(C   8,C   9,C   0,H  10)   -179.9895         0.031189   
     93. D(C   8,C   9,C   0,C   1)      0.0148         0.031189   
    -----------------------------------------------------------------

Number of atoms                         .... 18
Number of degrees of freedom            .... 93

         *************************************************************
         *                GEOMETRY OPTIMIZATION CYCLE   1            *
         *************************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
  C     -0.056780   -0.034970   -0.036980
  C      1.369120   -0.034970   -0.036980
  C      2.062330    1.149350   -0.036980
  C      1.364210    2.398530   -0.037290
  C      2.060680    3.649160   -0.037820
  C      1.366010    4.832300   -0.035390
  C     -0.060180    4.830730   -0.032830
  C     -0.753370    3.647070   -0.034550
  C     -0.055240    2.397650   -0.036230
  C     -0.752330    1.147440   -0.036460
  H     -0.578840   -0.990460   -0.037330
  H      1.892330   -0.989640   -0.036680
  H      3.151020    1.159570   -0.036690
  H      3.149560    3.639940   -0.040520
  H      1.887860    5.787610   -0.035060
  H     -0.583750    5.785250   -0.030220
  H     -1.842160    3.635930   -0.034180
  H     -1.840930    1.156620   -0.036080

----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
  NO LB      ZA    FRAG    MASS        X           Y           Z
   0 C     6.0000    0    12.011         -0.107298649884049         -0.066083722903226         -0.069882072432408
   1 C     6.0000    0    12.011          2.587261844474264         -0.066083722903226         -0.069882072432408
   2 C     6.0000    0    12.011          3.897238897769815          2.171956732022391         -0.069882072432408
   3 C     6.0000    0    12.011          2.577983289156711          4.532564823994139         -0.070467887533923
   4 C     6.0000    0    12.011          3.894120849648845          6.895913018860075         -0.071469442384902
   5 C     6.0000    0    12.011          2.581384796197769          9.131723596947664         -0.066877407879473
   6 C     6.0000    0    12.011         -0.113723718739381          9.128756726917407         -0.062039708976635
   7 C     6.0000    0    12.011         -1.423662977512253          6.891963491240179         -0.065290037926979
   8 C     6.0000    0    12.011         -0.104388471637810          4.530901864996289         -0.068464777831967
   9 C     6.0000    0    12.011         -1.421697662332975          2.168347355106601         -0.068899414842769
  10 H     1.0000    0     1.008         -1.093849075358977         -1.871698146603643         -0.070543476579280
  11 H     1.0000    0     1.008          3.575985455003202         -1.870148571173827         -0.069315154592232
  12 H     1.0000    0     1.008          5.954564842508542          2.191269733111066         -0.069334051853571
  13 H     1.0000    0     1.008          5.951805842353018          6.878489743905321         -0.076571702946489
  14 H     1.0000    0     1.008          3.567538379184574         10.936997869943974         -0.066253798255279
  15 H     1.0000    0     1.008         -1.103127630676531         10.932538116267921         -0.057107523767100
  16 H     1.0000    0     1.008         -3.481177894864373          6.870911942108297         -0.064590839257428
  17 H     1.0000    0     1.008         -3.478853531719650          2.185695041015998         -0.068181318911879

--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   1.425900     0.000     0.000
 C      2   1   0   1.372281   120.341     0.000
 C      3   2   1   1.431021   120.459     0.000
 C      4   3   2   1.431484   121.688   180.025
 C      5   4   3   1.372003   120.468   180.132
 C      6   5   4   1.426193   120.356   359.975
 C      7   6   5   1.371702   120.417   359.914
 C      4   3   2   1.419451   119.164     0.063
 C      1   2   3   1.371818   120.466   359.975
 H      1   2   3   1.088810   118.651   179.979
 H      2   1   3   1.088643   118.725   179.982
 H      3   2   1   1.088738   120.879   179.982
 H      5   4   3   1.088922   118.628     0.152
 H      6   5   4   1.088552   120.935   179.956
 H      7   6   5   1.088688   118.683   179.957
 H      8   7   6   1.088847   120.941   180.096
 H     10   1   2   1.088639   120.949   180.023

---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   2.694560     0.000     0.000
 C      2   1   0   2.593234   120.341     0.000
 C      3   2   1   2.704239   120.459     0.000
 C      4   3   2   2.705113   121.688   180.025
 C      5   4   3   2.592710   120.468   180.132
 C      6   5   4   2.695114   120.356   359.975
 C      7   6   5   2.592141   120.417   359.914
 C      4   3   2   2.682373   119.164     0.063
 C      1   2   3   2.592360   120.466   359.975
 H      1   2   3   2.057553   118.651   179.979
 H      2   1   3   2.057237   118.725   179.982
 H      3   2   1   2.057417   120.879   179.982
 H      5   4   3   2.057765   118.628     0.152
 H      6   5   4   2.057065   120.935   179.956
 H      7   6   5   2.057321   118.683   179.957
 H      8   7   6   2.057623   120.941   180.096
 H     10   1   2   2.057229   120.949   180.023

---------------------
BASIS SET INFORMATION
---------------------
There are 2 groups of distinct atoms

 Group   1 Type C   : 10s4p contracted to 3s2p pattern {631/31}
 Group   2 Type H   : 4s contracted to 2s pattern {31}

Atom   0C    basis set group =>   1
Atom   1C    basis set group =>   1
Atom   2C    basis set group =>   1
Atom   3C    basis set group =>   1
Atom   4C    basis set group =>   1
Atom   5C    basis set group =>   1
Atom   6C    basis set group =>   1
Atom   7C    basis set group =>   1
Atom   8C    basis set group =>   1
Atom   9C    basis set group =>   1
Atom  10H    basis set group =>   2
Atom  11H    basis set group =>   2
Atom  12H    basis set group =>   2
Atom  13H    basis set group =>   2
Atom  14H    basis set group =>   2
Atom  15H    basis set group =>   2
Atom  16H    basis set group =>   2
Atom  17H    basis set group =>   2
------------------------------------------------------------------------------
                           ORCA GTO INTEGRAL CALCULATION
------------------------------------------------------------------------------

                         BASIS SET STATISTICS AND STARTUP INFO

 # of primitive gaussian shells          ...  172
 # of primitive gaussian functions       ...  252
 # of contracted shell                   ...   66
 # of contracted basis functions         ...  106
 Highest angular momentum                ...    1
 Maximum contraction depth               ...    6
 Integral package used                   ... LIBINT
 Integral threshhold            Thresh   ...  2.500e-11
 Primitive cut-off              TCut     ...  2.500e-12


                              INTEGRAL EVALUATION

 One electron integrals                  ... done
 Pre-screening matrix                    ... done
 Shell pair data                         ... done (   0.003 sec)

-------------------------------------------------------------------------------
                                 ORCA SCF
-------------------------------------------------------------------------------

------------
SCF SETTINGS
------------
Hamiltonian:
 Ab initio Hamiltonian  Method          .... Hartree-Fock(GTOs)


General Settings:
 Integral files         IntName         .... orca
 Hartree-Fock type      HFTyp           .... RHF
 Total Charge           Charge          ....    0
 Multiplicity           Mult            ....    1
 Number of Electrons    NEL             ....   68
 Basis Dimension        Dim             ....  106
 Nuclear Repulsion      ENuc            ....    456.5587927602 Eh

Convergence Acceleration:
 DIIS                   CNVDIIS         .... on
   Start iteration      DIISMaxIt       ....    12
   Startup error        DIISStart       ....  0.200000
   # of expansion vecs  DIISMaxEq       ....     5
   Bias factor          DIISBfac        ....   1.050
   Max. coefficient     DIISMaxC        ....  10.000
 Newton-Raphson         CNVNR           .... off
 SOSCF                  CNVSOSCF        .... on
   Start iteration      SOSCFMaxIt      ....   150
   Startup grad/error   SOSCFStart      ....  0.003300
 Level Shifting         CNVShift        .... on
   Level shift para.    LevelShift      ....    0.2500
   Turn off err/grad.   ShiftErr        ....    0.0010
 Zerner damping         CNVZerner       .... off
 Static damping         CNVDamp         .... on
   Fraction old density DampFac         ....    0.7000
   Max. Damping (<1)    DampMax         ....    0.9800
   Min. Damping (>=0)   DampMin         ....    0.0000
   Turn off err/grad.   DampErr         ....    0.1000
 Fernandez-Rico         CNVRico         .... off

SCF Procedure:
 Maximum # iterations   MaxIter         ....   125
 SCF integral mode      SCFMode         .... Direct
   Integral package                     .... LIBINT
 Reset frequeny         DirectResetFreq ....    20
 Integral Threshold     Thresh          ....  2.500e-11 Eh
 Primitive CutOff       TCut            ....  2.500e-12 Eh

Convergence Tolerance:
 Convergence Check Mode ConvCheckMode   .... Total+1el-Energy
 Energy Change          TolE            ....  1.000e-08 Eh
 1-El. energy change                    ....  1.000e-05 Eh
 Orbital Gradient       TolG            ....  1.000e-05
 Orbital Rotation angle TolX            ....  1.000e-05
 DIIS Error             TolErr          ....  5.000e-07


Diagonalization of the overlap matrix:
Smallest eigenvalue                        ... 4.155e-04
Time for diagonalization                   ...    0.129 sec
Threshold for overlap eigenvalues          ... 1.000e-08
Number of eigenvalues below threshold      ... 0
Time for construction of square roots      ...    0.001 sec
Total time needed                          ...    0.130 sec

-------------------
DFT GRID GENERATION
-------------------

General Integration Accuracy     IntAcc      ...  4.340
Radial Grid Type                 RadialGrid  ... Gauss-Chebyshev
Angular Grid (max. acc.)         AngularGrid ... Lebedev-110
Angular grid pruning method      GridPruning ... 3 (G Style)
Weight generation scheme         WeightScheme... Becke
Basis function cutoff            BFCut       ...    1.0000e-11
Integration weight cutoff        WCut        ...    1.0000e-14
Grids for H and He will be reduced by one unit

# of grid points (after initial pruning)     ...  22912 (   0.0 sec)
# of grid points (after weights+screening)   ...  20986 (   0.1 sec)
nearest neighbour list constructed           ...    0.0 sec
Grid point re-assignment to atoms done       ...    0.0 sec
Grid point division into batches done        ...    0.0 sec
Reduced shell lists constructed in    0.5 sec

Total number of grid points                  ...    20986
Total number of batches                      ...      341
Average number of points per batch           ...       61
Average number of grid points per atom       ...     1166
Average number of shells per batch           ...    46.69 (70.75%)
Average number of basis functions per batch  ...    80.31 (75.77%)
Average number of large shells per batch     ...    35.94 (76.98%)
Average number of large basis fcns per batch ...    63.48 (79.04%)
Maximum spatial batch extension              ...  17.72, 20.37, 25.60 au
Average spatial batch extension              ...   3.36,  3.42,  5.26 au

Time for grid setup =    0.677 sec

------------------------------
INITIAL GUESS: MODEL POTENTIAL
------------------------------
Loading Hartree-Fock densities                     ... done
Calculating cut-offs                               ... done
Setting up the integral package                    ... done
Initializing the effective Hamiltonian             ... done
Starting the Coulomb interaction                   ... done (   0.4 sec)
Reading the grid                                   ... done
Mapping shells                                     ... done
Starting the XC term evaluation                    ... done (   0.4 sec)
Transforming the Hamiltonian                       ... done (   0.0 sec)
Diagonalizing the Hamiltonian                      ... done (   0.0 sec)
Back transforming the eigenvectors                 ... done (   0.0 sec)
Now organizing SCF variables                       ... done
                      ------------------
                      INITIAL GUESS DONE (   1.7 sec)
                      ------------------
--------------
SCF ITERATIONS
--------------
ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
               ***  Starting incremental Fock matrix formation  ***
  0   -382.9203543057   0.000000000000 0.04003836  0.00388864  0.1455957 0.7000
  1   -383.0210441826  -0.100689876914 0.03232926  0.00308139  0.0981123 0.7000
                               ***Turning on DIIS***
  2   -383.0856377804  -0.064593597766 0.08340258  0.00731537  0.0606378 0.0000
  3   -382.7410971506   0.344540629839 0.01375200  0.00139022  0.0192604 0.0000
                      *** Initiating the SOSCF procedure ***
                           *** Shutting down DIIS ***
                      *** Re-Reading the Fockian *** 
                      *** Removing any level shift *** 
ITER      Energy       Delta-E        Grad      Rot      Max-DP    RMS-DP
  4   -383.17767764  -0.4365804937  0.002971  0.002971  0.004609  0.000466
               *** Restarting incremental Fock matrix formation ***
  5   -383.22008075  -0.0424031031  0.001923  0.003816  0.002090  0.000184
  6   -383.22013726  -0.0000565092  0.000949  0.003538  0.002154  0.000127
  7   -383.22015335  -0.0000160928  0.000196  0.000450  0.000354  0.000028
  8   -383.22015415  -0.0000008017  0.000069  0.000095  0.000101  0.000011
  9   -383.22015428  -0.0000001295  0.000017  0.000036  0.000026  0.000003
 10   -383.22015429  -0.0000000099  0.000006  0.000007  0.000006  0.000001
                  ***Gradient check signals convergence***
              ***Rediagonalizing the Fockian in SOSCF/NRSCF***

               *****************************************************
               *                     SUCCESS                       *
               *           SCF CONVERGED AFTER  11 CYCLES          *
               *****************************************************


----------------
TOTAL SCF ENERGY
----------------

Total Energy       :         -383.22015429 Eh          -10427.95055 eV

Components:
Nuclear Repulsion  :          456.55879276 Eh           12423.59635 eV
Electronic Energy  :         -839.77894705 Eh          -22851.54690 eV

One Electron Energy:        -1422.13892753 Eh          -38698.36761 eV
Two Electron Energy:          582.35998048 Eh           15846.82071 eV

Virial components:
Potential Energy   :         -766.43158247 Eh          -20855.66364 eV
Kinetic Energy     :          383.21142818 Eh           10427.71310 eV
Virial Ratio       :            2.00002277


---------------
SCF CONVERGENCE
---------------

  Last Energy change         ...   -9.8316e-10  Tolerance :   1.0000e-08
  Last MAX-Density change    ...    1.2897e-06  Tolerance :   1.0000e-07
  Last RMS-Density change    ...    9.7304e-08  Tolerance :   5.0000e-09
  Last Orbital Gradient      ...    8.0759e-07  Tolerance :   1.0000e-05
  Last Orbital Rotation      ...    7.0233e-07  Tolerance :   1.0000e-05

             **** THE GBW FILE WAS UPDATED (orca.gbw) ****
             **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) ****
             **** ENERGY FILE WAS UPDATED (orca.en.tmp) ****
----------------
ORBITAL ENERGIES
----------------

  NO   OCC          E(Eh)            E(eV) 
   0   2.0000     -11.250569      -306.1436 
   1   2.0000     -11.249542      -306.1156 
   2   2.0000     -11.242548      -305.9253 
   3   2.0000     -11.242504      -305.9241 
   4   2.0000     -11.242365      -305.9203 
   5   2.0000     -11.242294      -305.9184 
   6   2.0000     -11.241118      -305.8864 
   7   2.0000     -11.241096      -305.8858 
   8   2.0000     -11.240334      -305.8650 
   9   2.0000     -11.240323      -305.8647 
  10   2.0000      -1.176140       -32.0044 
  11   2.0000      -1.109640       -30.1948 
  12   2.0000      -1.048144       -28.5215 
  13   2.0000      -1.006949       -27.4005 
  14   2.0000      -0.982326       -26.7305 
  15   2.0000      -0.850100       -23.1324 
  16   2.0000      -0.833177       -22.6719 
  17   2.0000      -0.811822       -22.0908 
  18   2.0000      -0.701155       -19.0794 
  19   2.0000      -0.697564       -18.9817 
  20   2.0000      -0.676653       -18.4127 
  21   2.0000      -0.619752       -16.8643 
  22   2.0000      -0.608967       -16.5708 
  23   2.0000      -0.582026       -15.8377 
  24   2.0000      -0.581880       -15.8338 
  25   2.0000      -0.561812       -15.2877 
  26   2.0000      -0.530363       -14.4319 
  27   2.0000      -0.516635       -14.0583 
  28   2.0000      -0.480634       -13.0787 
  29   2.0000      -0.470657       -12.8072 
  30   2.0000      -0.444516       -12.0959 
  31   2.0000      -0.381394       -10.3783 
  32   2.0000      -0.317174        -8.6307 
  33   2.0000      -0.287347        -7.8191 
  34   0.0000       0.097698         2.6585 
  35   0.0000       0.130076         3.5395 
  36   0.0000       0.186591         5.0774 
  37   0.0000       0.235183         6.3996 
  38   0.0000       0.256759         6.9868 
  39   0.0000       0.261471         7.1150 
  40   0.0000       0.283593         7.7170 
  41   0.0000       0.307666         8.3720 
  42   0.0000       0.314403         8.5554 
  43   0.0000       0.321432         8.7466 
  44   0.0000       0.332737         9.0542 
  45   0.0000       0.354749         9.6532 
  46   0.0000       0.409140        11.1333 
  47   0.0000       0.410254        11.1636 
  48   0.0000       0.463321        12.6076 
  49   0.0000       0.483007        13.1433 
  50   0.0000       0.494903        13.4670 
  51   0.0000       0.498261        13.5584 
  52   0.0000       0.514050        13.9880 
  53   0.0000       0.537861        14.6359 
  54   0.0000       0.698862        19.0170 
  55   0.0000       0.717908        19.5353 
  56   0.0000       0.740382        20.1468 
  57   0.0000       0.744894        20.2696 
  58   0.0000       0.749221        20.3873 
  59   0.0000       0.771269        20.9873 
  60   0.0000       0.779272        21.2051 
  61   0.0000       0.789674        21.4881 
  62   0.0000       0.806732        21.9523 
  63   0.0000       0.811868        22.0921 
  64   0.0000       0.828405        22.5421 
  65   0.0000       0.858552        23.3624 
  66   0.0000       0.859907        23.3993 
  67   0.0000       0.869888        23.6709 
  68   0.0000       0.876571        23.8527 
  69   0.0000       0.880039        23.9471 
  70   0.0000       0.898203        24.4413 
  71   0.0000       0.904985        24.6259 
  72   0.0000       0.910699        24.7814 
  73   0.0000       0.920368        25.0445 
  74   0.0000       0.940582        25.5945 
  75   0.0000       0.941409        25.6170 
  76   0.0000       1.006064        27.3764 
  77   0.0000       1.078147        29.3379 
  78   0.0000       1.112027        30.2598 
  79   0.0000       1.121168        30.5085 
  80   0.0000       1.128962        30.7206 
  81   0.0000       1.129915        30.7465 
  82   0.0000       1.151085        31.3226 
  83   0.0000       1.175704        31.9925 
  84   0.0000       1.179653        32.1000 
  85   0.0000       1.215386        33.0723 
  86   0.0000       1.219943        33.1963 
  87   0.0000       1.236557        33.6484 
  88   0.0000       1.266588        34.4656 
  89   0.0000       1.302839        35.4521 
  90   0.0000       1.307677        35.5837 
  91   0.0000       1.347830        36.6763 
  92   0.0000       1.348665        36.6990 
  93   0.0000       1.358257        36.9600 
  94   0.0000       1.385231        37.6940 
  95   0.0000       1.428565        38.8732 
  96   0.0000       1.494145        40.6577 
  97   0.0000       1.502478        40.8845 
  98   0.0000       1.561977        42.5036 
  99   0.0000       1.622885        44.1609 
 100   0.0000       1.724057        46.9140 
 101   0.0000       1.755980        47.7827 
 102   0.0000       1.784245        48.5518 
 103   0.0000       1.827428        49.7268 
 104   0.0000       2.186521        59.4983 
 105   0.0000       2.187889        59.5355 

                    ********************************
                    * MULLIKEN POPULATION ANALYSIS *
                    ********************************

-----------------------
MULLIKEN ATOMIC CHARGES
-----------------------
   0 C :   -0.210079
   1 C :   -0.209436
   2 C :   -0.165681
   3 C :   -0.073071
   4 C :   -0.165262
   5 C :   -0.209637
   6 C :   -0.209816
   7 C :   -0.165364
   8 C :   -0.073720
   9 C :   -0.164845
  10 H :    0.201290
  11 H :    0.201706
  12 H :    0.210132
  13 H :    0.210139
  14 H :    0.201631
  15 H :    0.201437
  16 H :    0.210198
  17 H :    0.210377
Sum of atomic charges:    0.0000000

--------------------------------
MULLIKEN REDUCED ORBITAL CHARGES
--------------------------------
  0 C s       :     3.187517  s :     3.187517
      pz      :     1.003739  p :     3.022563
      px      :     0.946297
      py      :     1.072526
  1 C s       :     3.187019  s :     3.187019
      pz      :     1.004005  p :     3.022417
      px      :     0.946208
      py      :     1.072204
  2 C s       :     3.137897  s :     3.137897
      pz      :     1.002440  p :     3.027784
      px      :     1.116755
      py      :     0.908589
  3 C s       :     3.136201  s :     3.136201
      pz      :     0.987198  p :     2.936870
      px      :     0.908565
      py      :     1.041107
  4 C s       :     3.137659  s :     3.137659
      pz      :     1.002543  p :     3.027603
      px      :     1.116657
      py      :     0.908403
  5 C s       :     3.187151  s :     3.187151
      pz      :     1.003982  p :     3.022485
      px      :     0.946037
      py      :     1.072466
  6 C s       :     3.187317  s :     3.187317
      pz      :     1.003774  p :     3.022499
      px      :     0.946485
      py      :     1.072240
  7 C s       :     3.137521  s :     3.137521
      pz      :     1.002784  p :     3.027843
      px      :     1.116543
      py      :     0.908516
  8 C s       :     3.136534  s :     3.136534
      pz      :     0.986715  p :     2.937185
      px      :     0.908725
      py      :     1.041745
  9 C s       :     3.137235  s :     3.137235
      pz      :     1.002820  p :     3.027610
      px      :     1.116530
      py      :     0.908259
 10 H s       :     0.798710  s :     0.798710
 11 H s       :     0.798294  s :     0.798294
 12 H s       :     0.789868  s :     0.789868
 13 H s       :     0.789861  s :     0.789861
 14 H s       :     0.798369  s :     0.798369
 15 H s       :     0.798563  s :     0.798563
 16 H s       :     0.789802  s :     0.789802
 17 H s       :     0.789623  s :     0.789623


                     *******************************
                     * LOEWDIN POPULATION ANALYSIS *
                     *******************************

----------------------
LOEWDIN ATOMIC CHARGES
----------------------
   0 C :   -0.124773
   1 C :   -0.124901
   2 C :   -0.111315
   3 C :   -0.023975
   4 C :   -0.111339
   5 C :   -0.124892
   6 C :   -0.124770
   7 C :   -0.111531
   8 C :   -0.023723
   9 C :   -0.111525
  10 H :    0.124067
  11 H :    0.124242
  12 H :    0.123992
  13 H :    0.123994
  14 H :    0.124215
  15 H :    0.124131
  16 H :    0.124011
  17 H :    0.124092

-------------------------------
LOEWDIN REDUCED ORBITAL CHARGES
-------------------------------
  0 C s       :     2.940758  s :     2.940758
      pz      :     1.003498  p :     3.184015
      px      :     1.077353
      py      :     1.103164
  1 C s       :     2.940814  s :     2.940814
      pz      :     1.003773  p :     3.184087
      px      :     1.077218
      py      :     1.103095
  2 C s       :     2.937356  s :     2.937356
      pz      :     1.004045  p :     3.173959
      px      :     1.101288
      py      :     1.068625
  3 C s       :     2.895924  s :     2.895924
      pz      :     0.984437  p :     3.128051
      px      :     1.073508
      py      :     1.070107
  4 C s       :     2.937396  s :     2.937396
      pz      :     1.004150  p :     3.173943
      px      :     1.101271
      py      :     1.068521
  5 C s       :     2.940804  s :     2.940804
      pz      :     1.003745  p :     3.184088
      px      :     1.077167
      py      :     1.103176
  6 C s       :     2.940767  s :     2.940767
      pz      :     1.003549  p :     3.184003
      px      :     1.077275
      py      :     1.103179
  7 C s       :     2.937265  s :     2.937265
      pz      :     1.004369  p :     3.174266
      px      :     1.101267
      py      :     1.068630
  8 C s       :     2.895998  s :     2.895998
      pz      :     0.984013  p :     3.127725
      px      :     1.073567
      py      :     1.070145
  9 C s       :     2.937292  s :     2.937292
      pz      :     1.004421  p :     3.174233
      px      :     1.101351
      py      :     1.068461
 10 H s       :     0.875933  s :     0.875933
 11 H s       :     0.875758  s :     0.875758
 12 H s       :     0.876008  s :     0.876008
 13 H s       :     0.876006  s :     0.876006
 14 H s       :     0.875785  s :     0.875785
 15 H s       :     0.875869  s :     0.875869
 16 H s       :     0.875989  s :     0.875989
 17 H s       :     0.875908  s :     0.875908


                      *****************************
                      * MAYER POPULATION ANALYSIS *
                      *****************************

  NA   - Mulliken gross atomic population
  ZA   - Total nuclear charge
  QA   - Mulliken gross atomic charge
  VA   - Mayer's total valence
  BVA  - Mayer's bonded valence
  FA   - Mayer's free valence

  ATOM       NA         ZA         QA         VA         BVA        FA
  0 C      6.2101     6.0000    -0.2101     3.8641     3.8641     0.0000
  1 C      6.2094     6.0000    -0.2094     3.8637     3.8637     0.0000
  2 C      6.1657     6.0000    -0.1657     3.8827     3.8827    -0.0000
  3 C      6.0731     6.0000    -0.0731     3.8738     3.8738    -0.0000
  4 C      6.1653     6.0000    -0.1653     3.8826     3.8826     0.0000
  5 C      6.2096     6.0000    -0.2096     3.8639     3.8639    -0.0000
  6 C      6.2098     6.0000    -0.2098     3.8640     3.8640    -0.0000
  7 C      6.1654     6.0000    -0.1654     3.8826     3.8826    -0.0000
  8 C      6.0737     6.0000    -0.0737     3.8742     3.8742     0.0000
  9 C      6.1648     6.0000    -0.1648     3.8825     3.8825     0.0000
 10 H      0.7987     1.0000     0.2013     0.9338     0.9338     0.0000
 11 H      0.7983     1.0000     0.2017     0.9337     0.9337    -0.0000
 12 H      0.7899     1.0000     0.2101     0.9288     0.9288     0.0000
 13 H      0.7899     1.0000     0.2101     0.9288     0.9288     0.0000
 14 H      0.7984     1.0000     0.2016     0.9337     0.9337    -0.0000
 15 H      0.7986     1.0000     0.2014     0.9338     0.9338     0.0000
 16 H      0.7898     1.0000     0.2102     0.9287     0.9287    -0.0000
 17 H      0.7896     1.0000     0.2104     0.9287     0.9287    -0.0000

  Mayer bond orders larger than 0.1
B(  0-C ,  1-C ) :   1.2744 B(  0-C ,  9-C ) :   1.6171 B(  0-C , 10-H ) :   0.9418 
B(  1-C ,  2-C ) :   1.6169 B(  1-C , 11-H ) :   0.9416 B(  2-C ,  3-C ) :   1.2534 
B(  2-C , 12-H ) :   0.9356 B(  3-C ,  4-C ) :   1.2527 B(  3-C ,  8-C ) :   1.3514 
B(  4-C ,  5-C ) :   1.6177 B(  4-C , 13-H ) :   0.9356 B(  5-C ,  6-C ) :   1.2739 
B(  5-C , 14-H ) :   0.9416 B(  6-C ,  7-C ) :   1.6177 B(  6-C , 15-H ) :   0.9417 
B(  7-C ,  8-C ) :   1.2528 B(  7-C , 16-H ) :   0.9356 B(  8-C ,  9-C ) :   1.2532 
B(  9-C , 17-H ) :   0.9355 

-------
TIMINGS
-------

Total SCF time: 0 days 0 hours 1 min 0 sec 

Total time                  ....      60.552 sec
Sum of individual times     ....      62.924 sec  (103.9%)

Fock matrix formation       ....      60.447 sec  ( 99.8%)
Diagonalization             ....       0.022 sec  (  0.0%)
Density matrix formation    ....       0.005 sec  (  0.0%)
Population analysis         ....       0.024 sec  (  0.0%)
Initial guess               ....       1.715 sec  (  2.8%)
Orbital Transformation      ....       0.000 sec  (  0.0%)
Orbital Orthonormalization  ....       0.000 sec  (  0.0%)
DIIS solution               ....       0.007 sec  (  0.0%)
SOSCF solution              ....       0.027 sec  (  0.0%)

-------------------------   --------------------
FINAL SINGLE POINT ENERGY      -383.220154291480
-------------------------   --------------------

------------------------------------------------------------------------------
                         ORCA SCF GRADIENT CALCULATION
------------------------------------------------------------------------------

Gradient of the Hartree-Fock SCF energy:
Hartree-Fock type                ... RHF
Number of operators              ...    1
Number of atoms                  ...   18
Basis set dimensions             ...  106
Integral neglect threshold       ... 2.5e-11
Integral primitive cutoff        ... 2.5e-12

Nuclear repulsion gradient       ... done
One Electron Gradient            ... done
Pre-screening matrix             ... done
Starting the two electron gradient:
Two electron gradient done

------------------
CARTESIAN GRADIENT
------------------

   1   C   :    0.001696057    0.001051372    0.000013410
   2   C   :   -0.001494677   -0.000179347   -0.000032382
   3   C   :    0.001609669    0.002105412    0.000076382
   4   C   :   -0.003008134   -0.000214954   -0.000067622
   5   C   :    0.001530848   -0.001648837    0.000025838
   6   C   :   -0.001278488   -0.000072972   -0.000077788
   7   C   :    0.001376422   -0.000757189    0.000117827
   8   C   :   -0.001565313   -0.001455422   -0.000071984
   9   C   :    0.003244839    0.000066305    0.000033040
  10   C   :   -0.002138441    0.001342431    0.000004720
  11   H   :   -0.004192198   -0.010869527   -0.000017748
  12   H   :    0.004211100   -0.010813166    0.000012928
  13   H   :    0.010964226    0.000741203    0.000021857
  14   H   :    0.011092462   -0.000785664   -0.000087459
  15   H   :    0.004143591    0.010762833    0.000022922
  16   H   :   -0.004202509    0.010799727    0.000058719
  17   H   :   -0.011051061   -0.000886694   -0.000036881
  18   H   :   -0.010938395    0.000814489    0.000004221

Norm of the cartesian gradient     ...    0.032838944
RMS gradient                       ...    0.004468814
MAX gradient                       ...    0.011092462

-------
TIMINGS
-------

Total SCF gradient time            ...       16.891 sec

One electron gradient       ....       0.284 sec  (  1.7%)
Prescreening matrices       ....       0.089 sec  (  0.5%)
Two electron gradient       ....      16.320 sec  ( 96.6%)
------------------------------------------------------------------------------
                         ORCA GEOMETRY RELAXATION STEP
------------------------------------------------------------------------------

Reading the OPT-File                    .... done
Getting information on internals        .... done
Copying old internal coords+grads       .... done
Making the new internal coordinates     .... (new redundants).... done
Validating the new internal coordinates .... (new redundants).... done
Calculating the B-matrix                .... done
Calculating the G,G- and P matrices     .... done
Transforming gradient to internals      .... done
Projecting the internal gradient        .... done
Number of atoms                         ....  18
Number of internal coordinates          ....  93
Current Energy                          ....  -383.220154291 Eh
Current gradient norm                   ....     0.032838944 Eh/bohr
Maximum allowed component of the step   ....  0.300
Current trust radius                    ....  0.300
Evaluating the initial hessian          ....  (Almloef) done
Projecting the Hessian                  .... done
Forming the augmented Hessian           .... done
Diagonalizing the augmented Hessian     .... done
Last element of RFO vector              ....  0.994364937
Lowest eigenvalues of augmented Hessian:
 -0.004965439  0.020033141  0.020274322  0.020341775  0.023076712
Length of the computed step             ....  0.106611956
The final length of the internal step   ....  0.106611956
Converting the step to cartesian space:
 Initial RMS(Int)=    0.0110551449
Transforming coordinates:
 Iter   0:  RMS(Cart)=    0.0243122706 RMS(Int)=    0.6515742969
 Iter   1:  RMS(Cart)=    0.0000513649 RMS(Int)=    0.0000264071
 Iter   2:  RMS(Cart)=    0.0000007586 RMS(Int)=    0.0000004176
 Iter   3:  RMS(Cart)=    0.0000000104 RMS(Int)=    0.0000000059
done
Storing new coordinates                 .... done

                                .--------------------.
          ----------------------|Geometry convergence|---------------------
          Item                value                 Tolerance   Converged
          -----------------------------------------------------------------
          RMS gradient        0.00498796            0.00010000      NO
          MAX gradient        0.01258056            0.00030000      NO
          RMS step            0.01105514            0.00200000      NO
          MAX step            0.03149843            0.00400000      NO
          ....................................................
          Max(Bonds)      0.0167      Max(Angles)    0.31
          Max(Dihed)        0.12      Max(Improp)    0.00
          -----------------------------------------------------------------

The optimization has not yet converged - more geometry cycles are needed


    ---------------------------------------------------------------------------
                         Redundant Internal Coordinates
                            (Angstroem and degrees)

        Definition                    Value    dE/dq     Step     New-Value
    ----------------------------------------------------------------------------
     1. B(C   1,C   0)                1.4259  0.009340 -0.0091    1.4168   
     2. B(C   2,C   1)                1.3723  0.012581 -0.0100    1.3623   
     3. B(C   3,C   2)                1.4310  0.009758 -0.0094    1.4216   
     4. B(C   4,C   3)                1.4315  0.010004 -0.0097    1.4218   
     5. B(C   5,C   4)                1.3720  0.012417 -0.0098    1.3622   
     6. B(C   6,C   5)                1.4262  0.009459 -0.0092    1.4169   
     7. B(C   7,C   6)                1.3717  0.012158 -0.0096    1.3621   
     8. B(C   8,C   7)                1.4312  0.009783 -0.0095    1.4218   
     9. B(C   8,C   3)                1.4195  0.008972 -0.0080    1.4114   
    10. B(C   9,C   8)                1.4314  0.009982 -0.0097    1.4218   
    11. B(C   9,C   0)                1.3718  0.012185 -0.0097    1.3622   
    12. B(H  10,C   0)                1.0888  0.011549 -0.0167    1.0721   
    13. B(H  11,C   1)                1.0886  0.011506 -0.0166    1.0720   
    14. B(H  12,C   2)                1.0887  0.010971 -0.0158    1.0729   
    15. B(H  13,C   4)                1.0889  0.011099 -0.0160    1.0729   
    16. B(H  14,C   5)                1.0886  0.011432 -0.0165    1.0721   
    17. B(H  15,C   6)                1.0887  0.011490 -0.0166    1.0721   
    18. B(H  16,C   7)                1.0888  0.011060 -0.0160    1.0729   
    19. B(H  17,C   9)                1.0886  0.010945 -0.0158    1.0729   
    20. A(C   9,C   0,H  10)          120.88  0.001312   -0.20    120.68   
    21. A(C   1,C   0,H  10)          118.65 -0.001842    0.31    118.96   
    22. A(C   1,C   0,C   9)          120.47  0.000530   -0.11    120.36   
    23. A(C   0,C   1,C   2)          120.34  0.000025   -0.04    120.30   
    24. A(C   2,C   1,H  11)          120.93  0.001535   -0.23    120.70   
    25. A(C   0,C   1,H  11)          118.73 -0.001559    0.27    118.99   
    26. A(C   1,C   2,C   3)          120.46 -0.001108    0.16    120.62   
    27. A(C   1,C   2,H  12)          120.88  0.001210   -0.18    120.69   
    28. A(C   3,C   2,H  12)          118.66 -0.000103    0.02    118.69   
    29. A(C   2,C   3,C   4)          121.69 -0.001776    0.20    121.88   
    30. A(C   2,C   3,C   8)          119.16  0.000904   -0.10    119.06   
    31. A(C   4,C   3,C   8)          119.15  0.000872   -0.10    119.05   
    32. A(C   5,C   4,H  13)          120.90  0.001266   -0.19    120.71   
    33. A(C   3,C   4,H  13)          118.63 -0.000157    0.03    118.66   
    34. A(C   3,C   4,C   5)          120.47 -0.001109    0.16    120.63   
    35. A(C   6,C   5,H  14)          118.71 -0.001605    0.27    118.98   
    36. A(C   4,C   5,H  14)          120.93  0.001529   -0.23    120.71   
    37. A(C   4,C   5,C   6)          120.36  0.000076   -0.04    120.31   
    38. A(C   7,C   6,H  15)          120.90  0.001373   -0.21    120.69   
    39. A(C   5,C   6,H  15)          118.68 -0.001732    0.29    118.97   
    40. A(C   5,C   6,C   7)          120.42  0.000358   -0.08    120.34   
    41. A(C   8,C   7,H  16)          118.61 -0.000234    0.04    118.65   
    42. A(C   6,C   7,H  16)          120.94  0.001358   -0.21    120.73   
    43. A(C   6,C   7,C   8)          120.45 -0.001124    0.17    120.62   
    44. A(C   7,C   8,C   9)          121.66 -0.001937    0.22    121.88   
    45. A(C   3,C   8,C   9)          119.18  0.001010   -0.11    119.06   
    46. A(C   3,C   8,C   7)          119.16  0.000927   -0.10    119.06   
    47. A(C   8,C   9,H  17)          118.66 -0.000062    0.02    118.68   
    48. A(C   0,C   9,H  17)          120.95  0.001424   -0.22    120.73   
    49. A(C   0,C   9,C   8)          120.39 -0.001362    0.20    120.59   
    50. D(H  11,C   1,C   0,H  10)     -0.04 -0.000009    0.02     -0.02   
    51. D(C   2,C   1,C   0,C   9)     -0.03 -0.000007    0.02     -0.01   
    52. D(H  11,C   1,C   0,C   9)    179.96 -0.000012    0.03    179.99   
    53. D(C   2,C   1,C   0,H  10)    179.98 -0.000004    0.01    179.99   
    54. D(C   3,C   2,C   1,C   0)     -0.01 -0.000010    0.02      0.01   
    55. D(H  12,C   2,C   1,H  11)      0.00  0.000001   -0.00     -0.00   
    56. D(C   3,C   2,C   1,H  11)   -180.00 -0.000005    0.01   -179.99   
    57. D(H  12,C   2,C   1,C   0)    179.98 -0.000004    0.01    179.99   
    58. D(C   8,C   3,C   2,H  12)   -179.93  0.000021   -0.05   -179.98   
    59. D(C   4,C   3,C   2,H  12)      0.03  0.000010   -0.02      0.01   
    60. D(C   4,C   3,C   2,C   1)   -179.98  0.000016   -0.03   -180.01   
    61. D(C   8,C   3,C   2,C   1)      0.06  0.000027   -0.06      0.00   
    62. D(H  13,C   4,C   3,C   2)      0.15  0.000045   -0.10      0.05   
    63. D(C   5,C   4,C   3,C   8)      0.09  0.000035   -0.07      0.02   
    64. D(C   5,C   4,C   3,C   2)   -179.87  0.000046   -0.10   -179.97   
    65. D(H  13,C   4,C   3,C   8)   -179.89  0.000034   -0.07   -179.96   
    66. D(H  14,C   5,C   4,H  13)     -0.06 -0.000024    0.04     -0.02   
    67. D(H  14,C   5,C   4,C   3)    179.96 -0.000026    0.04    180.00   
    68. D(C   6,C   5,C   4,H  13)    179.95 -0.000004    0.01    179.97   
    69. D(C   6,C   5,C   4,C   3)     -0.02 -0.000005    0.01     -0.01   
    70. D(H  15,C   6,C   5,H  14)     -0.02  0.000003   -0.00     -0.03   
    71. D(H  15,C   6,C   5,C   4)    179.96 -0.000017    0.03    179.98   
    72. D(C   7,C   6,C   5,H  14)    179.93 -0.000025    0.06    179.99   
    73. D(C   7,C   6,C   5,C   4)     -0.09 -0.000045    0.09     -0.00   
    74. D(H  16,C   7,C   6,H  15)      0.05  0.000010   -0.01      0.04   
    75. D(H  16,C   7,C   6,C   5)   -179.90  0.000040   -0.07   -179.98   
    76. D(C   8,C   7,C   6,H  15)   -179.92  0.000033   -0.06   -179.98   
    77. D(C   8,C   7,C   6,C   5)      0.13  0.000063   -0.12      0.01   
    78. D(C   9,C   8,C   3,C   2)     -0.07 -0.000028    0.06     -0.01   
    79. D(C   7,C   8,C   3,C   4)     -0.05 -0.000017    0.04     -0.02   
    80. D(C   7,C   8,C   3,C   2)    179.91 -0.000029    0.07    179.97   
    81. D(C   9,C   8,C   7,H  16)     -0.05 -0.000011    0.02     -0.03   
    82. D(C   9,C   8,C   7,C   6)    179.93 -0.000033    0.06    179.99   
    83. D(C   3,C   8,C   7,H  16)    179.97 -0.000010    0.01    179.99   
    84. D(C   3,C   8,C   7,C   6)     -0.06 -0.000032    0.06      0.00   
    85. D(C   9,C   8,C   3,C   4)    179.97 -0.000016    0.03    180.00   
    86. D(H  17,C   9,C   8,C   7)      0.05  0.000008   -0.03      0.02   
    87. D(C   0,C   9,C   8,C   7)   -179.95  0.000011   -0.03   -179.98   
    88. D(C   0,C   9,C   8,C   3)      0.03  0.000010   -0.02      0.01   
    89. D(H  17,C   9,C   0,H  10)      0.02  0.000007   -0.01      0.01   
    90. D(H  17,C   9,C   0,C   1)   -179.98  0.000010   -0.02   -180.00   
    91. D(H  17,C   9,C   8,C   3)   -179.97  0.000008   -0.02   -179.99   
    92. D(C   8,C   9,C   0,H  10)   -179.99  0.000004   -0.01   -180.00   
    93. D(C   8,C   9,C   0,C   1)      0.01  0.000007   -0.02     -0.00   
    ----------------------------------------------------------------------------

         *************************************************************
         *                GEOMETRY OPTIMIZATION CYCLE   2            *
         *************************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
  C     -0.052248   -0.020593   -0.036774
  C      1.364531   -0.020013   -0.037548
  C      2.051444    1.156419   -0.037609
  C      1.360089    2.398565   -0.036747
  C      2.049730    3.641896   -0.036664
  C      1.361337    4.817301   -0.035188
  C     -0.055611    4.816192   -0.033990
  C     -0.742619    3.640064   -0.034322
  C     -0.051312    2.397668   -0.035736
  C     -0.741192    1.154503   -0.035896
  H     -0.570976   -0.958895   -0.036949
  H      1.884533   -0.957500   -0.037990
  H      3.124324    1.164178   -0.038074
  H      3.122605    3.635250   -0.038121
  H      1.880082    5.755508   -0.035085
  H     -0.575685    5.753712   -0.032566
  H     -1.815469    3.631809   -0.033767
  H     -1.814024    1.161046   -0.035244

----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
  NO LB      ZA    FRAG    MASS        X           Y           Z
   0 C     6.0000    0    12.011         -0.098733479797658         -0.038915561382531         -0.069491984977217
   1 C     6.0000    0    12.011          2.578589794761612         -0.037819562485171         -0.070955541163103
   2 C     6.0000    0    12.011          3.876668179793008          2.185315761533276         -0.071070611788642
   3 C     6.0000    0    12.011          2.570195670930886          4.532630311872078         -0.069441129151293
   4 C     6.0000    0    12.011          3.873428694815066          6.882186446392776         -0.069284627450152
   5 C     6.0000    0    12.011          2.572553887832906          9.103379044753849         -0.066496265243751
   6 C     6.0000    0    12.011         -0.105089969180226          9.101283093158170         -0.064232648677400
   7 C     6.0000    0    12.011         -1.403345601081815          6.878723958841918         -0.064859726029489
   8 C     6.0000    0    12.011         -0.096965995674478          4.530936542855200         -0.067530881603696
   9 C     6.0000    0    12.011         -1.400650592314727          2.181694383694877         -0.067833870681690
  10 H     1.0000    0     1.008         -1.078987912410004         -1.812048247606288         -0.069822859621986
  11 H     1.0000    0     1.008          3.561250435943879         -1.809411930824439         -0.071791486760127
  12 H     1.0000    0     1.008          5.904117421170696          2.199976666640510         -0.071949481238643
  13 H     1.0000    0     1.008          5.900869005519506          6.869627316098091         -0.072037792821090
  14 H     1.0000    0     1.008          3.552839779345730         10.876333231079032         -0.066300494694851
  15 H     1.0000    0     1.008         -1.087886470840935         10.872939865589062         -0.061540895477189
  16 H     1.0000    0     1.008         -3.430739676828470          6.863125280262270         -0.063810831396376
  17 H     1.0000    0     1.008         -3.428008588414236          2.194059292380719         -0.066601632060434

--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   1.416779     0.000     0.000
 C      2   1   0   1.362294   120.304     0.000
 C      3   2   1   1.421583   120.620     0.000
 C      4   3   2   1.421787   121.885   179.994
 C      5   4   3   1.362154   120.628   180.031
 C      6   5   4   1.416949   120.311     0.000
 C      7   6   5   1.362078   120.335     0.000
 C      4   3   2   1.411402   119.063     0.000
 C      1   2   3   1.362166   120.359     0.000
 H      1   2   3   1.072142   118.959   179.987
 H      2   1   3   1.072046   118.993   179.994
 H      3   2   1   1.072908   120.695   179.993
 H      5   4   3   1.072897   118.661     0.052
 H      6   5   4   1.072067   120.705   179.998
 H      7   6   5   1.072111   118.974   179.983
 H      8   7   6   1.072883   120.731   180.022
 H     10   1   2   1.072852   120.732   180.004

---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   2.677324     0.000     0.000
 C      2   1   0   2.574362   120.304     0.000
 C      3   2   1   2.686403   120.620     0.000
 C      4   3   2   2.686788   121.885   179.994
 C      5   4   3   2.574098   120.628   180.031
 C      6   5   4   2.677646   120.311     0.000
 C      7   6   5   2.573954   120.335     0.000
 C      4   3   2   2.667163   119.063     0.000
 C      1   2   3   2.574121   120.359     0.000
 H      1   2   3   2.026055   118.959   179.987
 H      2   1   3   2.025873   118.993   179.994
 H      3   2   1   2.027502   120.695   179.993
 H      5   4   3   2.027481   118.661     0.052
 H      6   5   4   2.025914   120.705   179.998
 H      7   6   5   2.025997   118.974   179.983
 H      8   7   6   2.027454   120.731   180.022
 H     10   1   2   2.027396   120.732   180.004


Diagonalization of the overlap matrix:
Smallest eigenvalue                        ... 3.796e-04
Time for diagonalization                   ...    0.004 sec
Threshold for overlap eigenvalues          ... 1.000e-08
Number of eigenvalues below threshold      ... 0
Time for construction of square roots      ...    0.001 sec
Total time needed                          ...    0.005 sec

--------------
SCF ITERATIONS
--------------
ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
               ***  Starting incremental Fock matrix formation  ***
  0   -383.2220364057   0.000000000000 0.00150523  0.00014792  0.0063690 0.7000
                      *** Initiating the SOSCF procedure ***
                      *** Re-Reading the Fockian *** 
                      *** Removing any level shift *** 
ITER      Energy       Delta-E        Grad      Rot      Max-DP    RMS-DP
  1   -383.22221558  -0.0001791753  0.000701  0.000701  0.003871  0.000382
               *** Restarting incremental Fock matrix formation ***
  2   -383.22264398  -0.0004283952  0.000892  0.000770  0.000801  0.000085
  3   -383.22266066  -0.0000166843  0.000194  0.000204  0.000318  0.000025
  4   -383.22266209  -0.0000014301  0.000029  0.000049  0.000060  0.000005
  5   -383.22266213  -0.0000000385  0.000016  0.000034  0.000024  0.000002
                 **** Energy Check signals convergence ****
              ***Rediagonalizing the Fockian in SOSCF/NRSCF***

               *****************************************************
               *                     SUCCESS                       *
               *           SCF CONVERGED AFTER   6 CYCLES          *
               *****************************************************

Total Energy       :         -383.22266214 Eh          -10428.01879 eV
  Last Energy change         ...   -7.6094e-09  Tolerance :   1.0000e-08
  Last MAX-Density change    ...    7.1934e-06  Tolerance :   1.0000e-07
             **** THE GBW FILE WAS UPDATED (orca.gbw) ****
             **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) ****
             **** ENERGY FILE WAS UPDATED (orca.en.tmp) ****
Total SCF time: 0 days 0 hours 0 min 35 sec 

-------------------------   --------------------
FINAL SINGLE POINT ENERGY      -383.222662136691
-------------------------   --------------------

------------------------------------------------------------------------------
                         ORCA SCF GRADIENT CALCULATION
------------------------------------------------------------------------------

Gradient of the Hartree-Fock SCF energy:
Hartree-Fock type                ... RHF
Number of operators              ...    1
Number of atoms                  ...   18
Basis set dimensions             ...  106
Integral neglect threshold       ... 2.5e-11
Integral primitive cutoff        ... 2.5e-12

Nuclear repulsion gradient       ... done
One Electron Gradient            ... done
Pre-screening matrix             ... done
Starting the two electron gradient:
Two electron gradient done

------------------
CARTESIAN GRADIENT
------------------

   1   C   :   -0.001254309   -0.000094821    0.000013101
   2   C   :    0.001397106   -0.000600071   -0.000003103
   3   C   :    0.002118992   -0.000459302   -0.000006042
   4   C   :   -0.002257824   -0.000108723   -0.000005348
   5   C   :    0.002115599    0.000676446    0.000025254
   6   C   :    0.001493913    0.000440657    0.000015639
   7   C   :   -0.001427607    0.000204594   -0.000040961
   8   C   :   -0.002185391    0.000789584    0.000043303
   9   C   :    0.002371944   -0.000009489   -0.000020244
  10   C   :   -0.002383734   -0.000770651    0.000001326
  11   H   :    0.001205447    0.000124283   -0.000008473
  12   H   :   -0.001208981    0.000167854    0.000008038
  13   H   :   -0.000756752    0.000402681    0.000009468
  14   H   :   -0.000765985   -0.000447293   -0.000030365
  15   H   :   -0.001214390   -0.000153654   -0.000000396
  16   H   :    0.001200342   -0.000138125    0.000020678
  17   H   :    0.000770849   -0.000486260   -0.000021000
  18   H   :    0.000780781    0.000462288   -0.000000876

Norm of the cartesian gradient     ...    0.007038833
RMS gradient                       ...    0.000957864
MAX gradient                       ...    0.002383734

-------
TIMINGS
-------

Total SCF gradient time            ...       17.325 sec

One electron gradient       ....       0.281 sec  (  1.6%)
Prescreening matrices       ....       0.090 sec  (  0.5%)
Two electron gradient       ....      16.777 sec  ( 96.8%)
------------------------------------------------------------------------------
                         ORCA GEOMETRY RELAXATION STEP
------------------------------------------------------------------------------

Reading the OPT-File                    .... done
Getting information on internals        .... done
Copying old internal coords+grads       .... done
Making the new internal coordinates     .... (new redundants).... done
Validating the new internal coordinates .... (new redundants).... done
Calculating the B-matrix                .... done
Calculating the G,G- and P matrices     .... done
Transforming gradient to internals      .... done
Projecting the internal gradient        .... done
Number of atoms                         ....  18
Number of internal coordinates          ....  93
Current Energy                          ....  -383.222662137 Eh
Current gradient norm                   ....     0.007038833 Eh/bohr
Maximum allowed component of the step   ....  0.300
Current trust radius                    ....  0.300
Updating the Hessian (BFGS)             .... done
Forming the augmented Hessian           .... done
Diagonalizing the augmented Hessian     .... done
Last element of RFO vector              ....  0.999921739
Lowest eigenvalues of augmented Hessian:
 -0.000059361  0.020032933  0.020274325  0.020341474  0.023076530
Length of the computed step             ....  0.012511607
The final length of the internal step   ....  0.012511607
Converting the step to cartesian space:
 Initial RMS(Int)=    0.0012973932
Transforming coordinates:
 Iter   0:  RMS(Cart)=    0.0020133060 RMS(Int)=    0.9213953878
 Iter   1:  RMS(Cart)=    0.0000041406 RMS(Int)=    0.0000024950
 Iter   2:  RMS(Cart)=    0.0000000097 RMS(Int)=    0.0000000058
done
Storing new coordinates                 .... done

                                .--------------------.
          ----------------------|Geometry convergence|---------------------
          Item                value                 Tolerance   Converged
          -----------------------------------------------------------------
          Energy change      -0.00250785            0.00000500      NO
          RMS gradient        0.00050125            0.00010000      NO
          MAX gradient        0.00120124            0.00030000      NO
          RMS step            0.00129739            0.00200000      YES
          MAX step            0.00344136            0.00400000      YES
          ....................................................
          Max(Bonds)      0.0010      Max(Angles)    0.20
          Max(Dihed)        0.04      Max(Improp)    0.00
          -----------------------------------------------------------------

The optimization has not yet converged - more geometry cycles are needed


    ---------------------------------------------------------------------------
                         Redundant Internal Coordinates
                            (Angstroem and degrees)

        Definition                    Value    dE/dq     Step     New-Value
    ----------------------------------------------------------------------------
     1. B(C   1,C   0)                1.4168  0.000632 -0.0007    1.4160   
     2. B(C   2,C   1)                1.3623  0.000482 -0.0005    1.3618   
     3. B(C   3,C   2)                1.4216  0.000757 -0.0009    1.4207   
     4. B(C   4,C   3)                1.4218  0.000850 -0.0009    1.4208   
     5. B(C   5,C   4)                1.3622  0.000413 -0.0005    1.3617   
     6. B(C   6,C   5)                1.4169  0.000704 -0.0008    1.4161   
     7. B(C   7,C   6)                1.3621  0.000347 -0.0004    1.3617   
     8. B(C   8,C   7)                1.4218  0.000829 -0.0009    1.4209   
     9. B(C   8,C   3)                1.4114 -0.000415  0.0003    1.4117   
    10. B(C   9,C   8)                1.4218  0.000855 -0.0010    1.4208   
    11. B(C   9,C   0)                1.3622  0.000385 -0.0004    1.3617   
    12. B(H  10,C   0)                1.0721 -0.000692  0.0008    1.0730   
    13. B(H  11,C   1)                1.0720 -0.000733  0.0009    1.0729   
    14. B(H  12,C   2)                1.0729 -0.000754  0.0009    1.0738   
    15. B(H  13,C   4)                1.0729 -0.000763  0.0009    1.0738   
    16. B(H  14,C   5)                1.0721 -0.000722  0.0009    1.0729   
    17. B(H  15,C   6)                1.0721 -0.000703  0.0008    1.0729   
    18. B(H  16,C   7)                1.0729 -0.000767  0.0009    1.0738   
    19. B(H  17,C   9)                1.0729 -0.000778  0.0009    1.0738   
    20. A(C   9,C   0,H  10)          120.68  0.000814   -0.14    120.54   
    21. A(C   1,C   0,H  10)          118.96 -0.001201    0.20    119.16   
    22. A(C   1,C   0,C   9)          120.36  0.000387   -0.06    120.30   
    23. A(C   0,C   1,C   2)          120.30  0.000161   -0.03    120.28   
    24. A(C   2,C   1,H  11)          120.70  0.000908   -0.15    120.55   
    25. A(C   0,C   1,H  11)          118.99 -0.001069    0.18    119.17   
    26. A(C   1,C   2,C   3)          120.62 -0.000622    0.09    120.71   
    27. A(C   1,C   2,H  12)          120.69  0.000725   -0.11    120.58   
    28. A(C   3,C   2,H  12)          118.69 -0.000103    0.02    118.71   
    29. A(C   2,C   3,C   4)          121.88 -0.000768    0.10    121.99   
    30. A(C   2,C   3,C   8)          119.06  0.000403   -0.05    119.01   
    31. A(C   4,C   3,C   8)          119.05  0.000364   -0.05    119.00   
    32. A(C   5,C   4,H  13)          120.71  0.000759   -0.12    120.59   
    33. A(C   3,C   4,H  13)          118.66 -0.000158    0.03    118.69   
    34. A(C   3,C   4,C   5)          120.63 -0.000601    0.09    120.71   
    35. A(C   6,C   5,H  14)          118.98 -0.001096    0.18    119.17   
    36. A(C   4,C   5,H  14)          120.71  0.000906   -0.15    120.55   
    37. A(C   4,C   5,C   6)          120.31  0.000190   -0.03    120.28   
    38. A(C   7,C   6,H  15)          120.69  0.000848   -0.14    120.55   
    39. A(C   5,C   6,H  15)          118.97 -0.001143    0.19    119.16   
    40. A(C   5,C   6,C   7)          120.34  0.000295   -0.05    120.29   
    41. A(C   8,C   7,H  16)          118.65 -0.000181    0.04    118.69   
    42. A(C   6,C   7,H  16)          120.73  0.000817   -0.13    120.60   
    43. A(C   6,C   7,C   8)          120.62 -0.000636    0.09    120.71   
    44. A(C   7,C   8,C   9)          121.88 -0.000802    0.11    121.99   
    45. A(C   3,C   8,C   9)          119.06  0.000414   -0.06    119.01   
    46. A(C   3,C   8,C   7)          119.06  0.000387   -0.05    119.00   
    47. A(C   8,C   9,H  17)          118.68 -0.000102    0.02    118.70   
    48. A(C   0,C   9,H  17)          120.73  0.000845   -0.13    120.60   
    49. A(C   0,C   9,C   8)          120.59 -0.000743    0.11    120.70   
    50. D(H  11,C   1,C   0,H  10)     -0.02 -0.000006    0.01     -0.00   
    51. D(C   2,C   1,C   0,C   9)     -0.01 -0.000003    0.01     -0.00   
    52. D(H  11,C   1,C   0,C   9)    179.99 -0.000004    0.01    180.00   
    53. D(C   2,C   1,C   0,H  10)    179.99 -0.000004    0.01    180.00   
    54. D(C   3,C   2,C   1,C   0)      0.01  0.000003   -0.01      0.00   
    55. D(H  12,C   2,C   1,H  11)     -0.00 -0.000002    0.00      0.00   
    56. D(C   3,C   2,C   1,H  11)   -179.99  0.000005   -0.01   -180.00   
    57. D(H  12,C   2,C   1,C   0)    179.99 -0.000004    0.01    180.00   
    58. D(C   8,C   3,C   2,H  12)   -179.98  0.000006   -0.02   -180.00   
    59. D(C   4,C   3,C   2,H  12)      0.01  0.000004   -0.01     -0.00   
    60. D(C   4,C   3,C   2,C   1)    179.99 -0.000002    0.01    180.00   
    61. D(C   8,C   3,C   2,C   1)      0.00  0.000000   -0.00      0.00   
    62. D(H  13,C   4,C   3,C   2)      0.05  0.000017   -0.04      0.01   
    63. D(C   5,C   4,C   3,C   8)      0.02  0.000006   -0.02      0.00   
    64. D(C   5,C   4,C   3,C   2)   -179.97  0.000008   -0.03   -179.99   
    65. D(H  13,C   4,C   3,C   8)   -179.96  0.000015   -0.04   -179.99   
    66. D(H  14,C   5,C   4,H  13)     -0.02 -0.000009    0.02     -0.00   
    67. D(H  14,C   5,C   4,C   3)    180.00 -0.000000   -0.00    180.00   
    68. D(C   6,C   5,C   4,H  13)    179.97 -0.000014    0.03    180.00   
    69. D(C   6,C   5,C   4,C   3)     -0.01 -0.000005    0.01     -0.00   
    70. D(H  15,C   6,C   5,H  14)     -0.03 -0.000010    0.02     -0.00   
    71. D(H  15,C   6,C   5,C   4)    179.98 -0.000006    0.01    180.00   
    72. D(C   7,C   6,C   5,H  14)    179.99 -0.000002    0.01    180.00   
    73. D(C   7,C   6,C   5,C   4)     -0.00  0.000003   -0.00     -0.00   
    74. D(H  16,C   7,C   6,H  15)      0.04  0.000015   -0.03      0.01   
    75. D(H  16,C   7,C   6,C   5)   -179.98  0.000006   -0.02   -179.99   
    76. D(C   8,C   7,C   6,H  15)   -179.98  0.000007   -0.02   -179.99   
    77. D(C   8,C   7,C   6,C   5)      0.01 -0.000001    0.00      0.01   
    78. D(C   9,C   8,C   3,C   2)     -0.01 -0.000003    0.01     -0.00   
    79. D(C   7,C   8,C   3,C   4)     -0.02 -0.000005    0.01     -0.00   
    80. D(C   7,C   8,C   3,C   2)    179.97 -0.000007    0.02    180.00   
    81. D(C   9,C   8,C   7,H  16)     -0.03 -0.000009    0.02     -0.00   
    82. D(C   9,C   8,C   7,C   6)    179.99 -0.000001    0.01    179.99   
    83. D(C   3,C   8,C   7,H  16)    179.99 -0.000005    0.01    180.00   
    84. D(C   3,C   8,C   7,C   6)      0.00  0.000002   -0.01     -0.00   
    85. D(C   9,C   8,C   3,C   4)    180.00 -0.000001    0.00    180.00   
    86. D(H  17,C   9,C   8,C   7)      0.02  0.000005   -0.02      0.00   
    87. D(C   0,C   9,C   8,C   7)   -179.98  0.000007   -0.02   -180.00   
    88. D(C   0,C   9,C   8,C   3)      0.01  0.000004   -0.01      0.00   
    89. D(H  17,C   9,C   0,H  10)      0.01  0.000003   -0.01      0.00   
    90. D(H  17,C   9,C   0,C   1)   -180.00  0.000002   -0.00   -180.00   
    91. D(H  17,C   9,C   8,C   3)   -179.99  0.000001   -0.01   -180.00   
    92. D(C   8,C   9,C   0,H  10)   -180.00  0.000001   -0.00   -180.00   
    93. D(C   8,C   9,C   0,C   1)     -0.00 -0.000001    0.00      0.00   
    ----------------------------------------------------------------------------

         *************************************************************
         *                GEOMETRY OPTIMIZATION CYCLE   3            *
         *************************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
  C     -0.051933   -0.020681   -0.036745
  C      1.364112   -0.019872   -0.037728
  C      2.050025    1.156555   -0.037653
  C      1.360253    2.398606   -0.036569
  C      2.048328    3.641719   -0.036456
  C      1.360901    4.817165   -0.035279
  C     -0.055243    4.816175   -0.034180
  C     -0.741206    3.639894   -0.034390
  C     -0.051467    2.397682   -0.035547
  C     -0.739631    1.154652   -0.035681
  H     -0.574129   -0.957983   -0.036860
  H      1.887589   -0.956418   -0.038512
  H      3.123823    1.162883   -0.038418
  H      3.122134    3.636617   -0.037323
  H      1.883111    5.754426   -0.035136
  H     -0.578718    5.752747   -0.033192
  H     -1.814995    3.633266   -0.033663
  H     -1.813415    1.159677   -0.034938

----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
  NO LB      ZA    FRAG    MASS        X           Y           Z
   0 C     6.0000    0    12.011         -0.098138834403975         -0.039081596323870         -0.069437664753803
   1 C     6.0000    0    12.011          2.577798347751496         -0.037553300462906         -0.071295936089279
   2 C     6.0000    0    12.011          3.873986492322457          2.185572454809287         -0.071154079440477
   3 C     6.0000    0    12.011          2.570505769313286          4.532707772080851         -0.069106297553288
   4 C     6.0000    0    12.011          3.870779828893218          6.881852460836398         -0.068891669474341
   5 C     6.0000    0    12.011          2.571730034361045          9.103123402954814         -0.066667202554563
   6 C     6.0000    0    12.011         -0.104394379177570          9.101251323406480         -0.064590485185846
   7 C     6.0000    0    12.011         -1.400676714652142          6.878403520911437         -0.064987388100974
   8 C     6.0000    0    12.011         -0.097258531708792          4.530961524853663         -0.067173607268124
   9 C     6.0000    0    12.011         -1.397699694207893          2.181976027081361         -0.067428187330461
  10 H     1.0000    0     1.008         -1.084946273201015         -1.810325661512986         -0.069655980967035
  11 H     1.0000    0     1.008          3.567025974018720         -1.807368809805743         -0.072777178170537
  12 H     1.0000    0     1.008          5.903170904757275          2.197531022090295         -0.072598591535749
  13 H     1.0000    0     1.008          5.899977766415913          6.872210984789727         -0.070531027663361
  14 H     1.0000    0     1.008          3.558564098316816         10.874288880557028         -0.066397983249609
  15 H     1.0000    0     1.008         -1.093618630784535         10.871115810347092         -0.062723210354081
  16 H     1.0000    0     1.008         -3.429844049928067          6.865877574009038         -0.063612977277826
  17 H     1.0000    0     1.008         -3.426857524515494          2.191472502231433         -0.066023293867776

--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   1.416046     0.000     0.000
 C      2   1   0   1.361785   120.277     0.000
 C      3   2   1   1.420731   120.710     0.000
 C      4   3   2   1.420838   121.989   180.000
 C      5   4   3   1.361702   120.715   180.006
 C      6   5   4   1.416145   120.280     0.000
 C      7   6   5   1.361683   120.289     0.000
 C      4   3   2   1.411721   119.008     0.000
 C      1   2   3   1.361741   120.300     0.000
 H      1   2   3   1.072951   119.156   179.998
 H      2   1   3   1.072915   119.170   179.999
 H      3   2   1   1.073817   120.582   180.001
 H      5   4   3   1.073818   118.693     0.000
 H      6   5   4   1.072921   120.555   179.996
 H      7   6   5   1.072937   119.162   179.996
 H      8   7   6   1.073810   120.603   180.006
 H     10   1   2   1.073796   120.600   180.000

---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   2.675938     0.000     0.000
 C      2   1   0   2.573401   120.277     0.000
 C      3   2   1   2.684792   120.710     0.000
 C      4   3   2   2.684994   121.989   180.000
 C      5   4   3   2.573243   120.715   180.006
 C      6   5   4   2.676126   120.280     0.000
 C      7   6   5   2.573208   120.289     0.000
 C      4   3   2   2.667766   119.008     0.000
 C      1   2   3   2.573317   120.300     0.000
 H      1   2   3   2.027583   119.156   179.998
 H      2   1   3   2.027516   119.170   179.999
 H      3   2   1   2.029220   120.582   180.001
 H      5   4   3   2.029222   118.693     0.000
 H      6   5   4   2.027528   120.555   179.996
 H      7   6   5   2.027557   119.162   179.996
 H      8   7   6   2.029206   120.603   180.006
 H     10   1   2   2.029181   120.600   180.000


Diagonalization of the overlap matrix:
Smallest eigenvalue                        ... 3.773e-04
Time for diagonalization                   ...    0.004 sec
Threshold for overlap eigenvalues          ... 1.000e-08
Number of eigenvalues below threshold      ... 0
Time for construction of square roots      ...    0.001 sec
Total time needed                          ...    0.005 sec

--------------
SCF ITERATIONS
--------------
ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
               ***  Starting incremental Fock matrix formation  ***
                      *** Initiating the SOSCF procedure ***
                      *** Re-Reading the Fockian *** 
                      *** Removing any level shift *** 
ITER      Energy       Delta-E        Grad      Rot      Max-DP    RMS-DP
  0   -383.22269775 -383.2226977506  0.000338  0.000338  0.000556  0.000054
               *** Restarting incremental Fock matrix formation ***
  1   -383.22270374  -0.0000059861  0.000139  0.000146  0.000250  0.000019
  2   -383.22270472  -0.0000009823  0.000059  0.000121  0.000126  0.000010
  3   -383.22270483  -0.0000001132  0.000025  0.000048  0.000028  0.000002
  4   -383.22270484  -0.0000000071  0.000012  0.000013  0.000007  0.000001
  5   -383.22270484  -0.0000000024  0.000003  0.000008  0.000005  0.000000
                  ***Gradient check signals convergence***
              ***Rediagonalizing the Fockian in SOSCF/NRSCF***

               *****************************************************
               *                     SUCCESS                       *
               *           SCF CONVERGED AFTER   6 CYCLES          *
               *****************************************************

Total Energy       :         -383.22270484 Eh          -10428.01995 eV
  Last Energy change         ...   -1.2797e-09  Tolerance :   1.0000e-08
  Last MAX-Density change    ...    2.1926e-06  Tolerance :   1.0000e-07
             **** THE GBW FILE WAS UPDATED (orca.gbw) ****
             **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) ****
             **** ENERGY FILE WAS UPDATED (orca.en.tmp) ****
Total SCF time: 0 days 0 hours 0 min 33 sec 

-------------------------   --------------------
FINAL SINGLE POINT ENERGY      -383.222704843048
-------------------------   --------------------

------------------------------------------------------------------------------
                         ORCA SCF GRADIENT CALCULATION
------------------------------------------------------------------------------

Gradient of the Hartree-Fock SCF energy:
Hartree-Fock type                ... RHF
Number of operators              ...    1
Number of atoms                  ...   18
Basis set dimensions             ...  106
Integral neglect threshold       ... 2.5e-11
Integral primitive cutoff        ... 2.5e-12

Nuclear repulsion gradient       ... done
One Electron Gradient            ... done
Pre-screening matrix             ... done
Starting the two electron gradient:
Two electron gradient done

------------------
CARTESIAN GRADIENT
------------------

   1   C   :   -0.000661473    0.000655344    0.000001436
   2   C   :    0.000725864    0.000457032   -0.000002000
   3   C   :    0.000396062   -0.000520895    0.000002372
   4   C   :   -0.001290978   -0.000055484    0.000000144
   5   C   :    0.000379599    0.000639539    0.000001785
   6   C   :    0.000785873   -0.000535392   -0.000007361
   7   C   :   -0.000748356   -0.000614870    0.000004678
   8   C   :   -0.000425839    0.000698166   -0.000002730
   9   C   :    0.001337115   -0.000021464    0.000000931
  10   C   :   -0.000504099   -0.000656501    0.000002634
  11   H   :    0.000575936   -0.000255693   -0.000001974
  12   H   :   -0.000574906   -0.000240142    0.000002406
  13   H   :   -0.000111660    0.000262973   -0.000000712
  14   H   :   -0.000111796   -0.000291390   -0.000002861
  15   H   :   -0.000579633    0.000244873    0.000002265
  16   H   :    0.000573587    0.000249456    0.000003797
  17   H   :    0.000115062   -0.000311965   -0.000003985
  18   H   :    0.000119640    0.000296414   -0.000000825

Norm of the cartesian gradient     ...    0.003347045
RMS gradient                       ...    0.000455475
MAX gradient                       ...    0.001337115

-------
TIMINGS
-------

Total SCF gradient time            ...       17.262 sec

One electron gradient       ....       0.281 sec  (  1.6%)
Prescreening matrices       ....       0.090 sec  (  0.5%)
Two electron gradient       ....      16.713 sec  ( 96.8%)
------------------------------------------------------------------------------
                         ORCA GEOMETRY RELAXATION STEP
------------------------------------------------------------------------------

Reading the OPT-File                    .... done
Getting information on internals        .... done
Copying old internal coords+grads       .... done
Making the new internal coordinates     .... (new redundants).... done
Validating the new internal coordinates .... (new redundants).... done
Calculating the B-matrix                .... done
Calculating the G,G- and P matrices     .... done
Transforming gradient to internals      .... done
Projecting the internal gradient        .... done
Number of atoms                         ....  18
Number of internal coordinates          ....  93
Current Energy                          ....  -383.222704843 Eh
Current gradient norm                   ....     0.003347045 Eh/bohr
Maximum allowed component of the step   ....  0.300
Current trust radius                    ....  0.300
Updating the Hessian (BFGS)             .... done
Forming the augmented Hessian           .... done
Diagonalizing the augmented Hessian     .... done
Last element of RFO vector              ....  0.999898360
Lowest eigenvalues of augmented Hessian:
 -0.000034186  0.020032551  0.020274366  0.020341666  0.023075424
Length of the computed step             ....  0.014258725
The final length of the internal step   ....  0.014258725
Converting the step to cartesian space:
 Initial RMS(Int)=    0.0014785609
Transforming coordinates:
 Iter   0:  RMS(Cart)=    0.0025556847 RMS(Int)=    2.8399108116
 Iter   1:  RMS(Cart)=    0.0000059841 RMS(Int)=    0.0000040576
 Iter   2:  RMS(Cart)=    0.0000000224 RMS(Int)=    0.0000000120
done
Storing new coordinates                 .... done

                                .--------------------.
          ----------------------|Geometry convergence|---------------------
          Item                value                 Tolerance   Converged
          -----------------------------------------------------------------
          Energy change      -0.00004271            0.00000500      NO
          RMS gradient        0.00025553            0.00010000      NO
          MAX gradient        0.00073019            0.00030000      NO
          RMS step            0.00147856            0.00200000      YES
          MAX step            0.00451141            0.00400000      NO
          ....................................................
          Max(Bonds)      0.0011      Max(Angles)    0.26
          Max(Dihed)        0.02      Max(Improp)    0.00
          -----------------------------------------------------------------

The optimization has not yet converged - more geometry cycles are needed


    ---------------------------------------------------------------------------
                         Redundant Internal Coordinates
                            (Angstroem and degrees)

        Definition                    Value    dE/dq     Step     New-Value
    ----------------------------------------------------------------------------
     1. B(C   1,C   0)                1.4160  0.000107 -0.0004    1.4156   
     2. B(C   2,C   1)                1.3618 -0.000257  0.0002    1.3619   
     3. B(C   3,C   2)                1.4207  0.000147 -0.0005    1.4202   
     4. B(C   4,C   3)                1.4208  0.000190 -0.0006    1.4202   
     5. B(C   5,C   4)                1.3617 -0.000297  0.0002    1.3619   
     6. B(C   6,C   5)                1.4161  0.000149 -0.0005    1.4156   
     7. B(C   7,C   6)                1.3617 -0.000311  0.0003    1.3619   
     8. B(C   8,C   7)                1.4209  0.000199 -0.0007    1.4202   
     9. B(C   8,C   3)                1.4117 -0.000638  0.0011    1.4128   
    10. B(C   9,C   8)                1.4208  0.000189 -0.0006    1.4202   
    11. B(C   9,C   0)                1.3617 -0.000286  0.0002    1.3620   
    12. B(H  10,C   0)                1.0730 -0.000057  0.0002    1.0731   
    13. B(H  11,C   1)                1.0729 -0.000071  0.0002    1.0731   
    14. B(H  12,C   2)                1.0738 -0.000110  0.0004    1.0742   
    15. B(H  13,C   4)                1.0738 -0.000110  0.0004    1.0742   
    16. B(H  14,C   5)                1.0729 -0.000068  0.0002    1.0731   
    17. B(H  15,C   6)                1.0729 -0.000062  0.0002    1.0731   
    18. B(H  16,C   7)                1.0738 -0.000113  0.0004    1.0742   
    19. B(H  17,C   9)                1.0738 -0.000118  0.0004    1.0742   
    20. A(C   9,C   0,H  10)          120.54  0.000542   -0.19    120.35   
    21. A(C   1,C   0,H  10)          119.16 -0.000730    0.26    119.41   
    22. A(C   1,C   0,C   9)          120.30  0.000188   -0.06    120.24   
    23. A(C   0,C   1,C   2)          120.28  0.000095   -0.03    120.24   
    24. A(C   2,C   1,H  11)          120.55  0.000580   -0.21    120.35   
    25. A(C   0,C   1,H  11)          119.17 -0.000675    0.24    119.41   
    26. A(C   1,C   2,C   3)          120.71 -0.000316    0.10    120.81   
    27. A(C   1,C   2,H  12)          120.58  0.000425   -0.14    120.44   
    28. A(C   3,C   2,H  12)          118.71 -0.000110    0.04    118.75   
    29. A(C   2,C   3,C   4)          121.99 -0.000381    0.12    122.11   
    30. A(C   2,C   3,C   8)          119.01  0.000201   -0.06    118.95   
    31. A(C   4,C   3,C   8)          119.00  0.000180   -0.06    118.95   
    32. A(C   5,C   4,H  13)          120.59  0.000446   -0.15    120.44   
    33. A(C   3,C   4,H  13)          118.69 -0.000146    0.06    118.75   
    34. A(C   3,C   4,C   5)          120.71 -0.000301    0.10    120.81   
    35. A(C   6,C   5,H  14)          119.17 -0.000689    0.24    119.41   
    36. A(C   4,C   5,H  14)          120.55  0.000580   -0.21    120.35   
    37. A(C   4,C   5,C   6)          120.28  0.000109   -0.04    120.24   
    38. A(C   7,C   6,H  15)          120.55  0.000557   -0.20    120.35   
    39. A(C   5,C   6,H  15)          119.16 -0.000705    0.25    119.41   
    40. A(C   5,C   6,C   7)          120.29  0.000147   -0.05    120.24   
    41. A(C   8,C   7,H  16)          118.69 -0.000156    0.06    118.75   
    42. A(C   6,C   7,H  16)          120.60  0.000478   -0.16    120.44   
    43. A(C   6,C   7,C   8)          120.71 -0.000322    0.10    120.81   
    44. A(C   7,C   8,C   9)          121.99 -0.000385    0.12    122.11   
    45. A(C   3,C   8,C   9)          119.01  0.000198   -0.06    118.94   
    46. A(C   3,C   8,C   7)          119.00  0.000186   -0.06    118.94   
    47. A(C   8,C   9,H  17)          118.70 -0.000118    0.05    118.75   
    48. A(C   0,C   9,H  17)          120.60  0.000484   -0.17    120.43   
    49. A(C   0,C   9,C   8)          120.70 -0.000366    0.12    120.82   
    50. D(H  11,C   1,C   0,H  10)     -0.00 -0.000001    0.01      0.01   
    51. D(C   2,C   1,C   0,C   9)     -0.00 -0.000001    0.00      0.00   
    52. D(H  11,C   1,C   0,C   9)    180.00 -0.000001    0.01    180.00   
    53. D(C   2,C   1,C   0,H  10)    180.00 -0.000001    0.01    180.00   
    54. D(C   3,C   2,C   1,C   0)      0.00  0.000000   -0.00     -0.00   
    55. D(H  12,C   2,C   1,H  11)      0.00  0.000001   -0.00     -0.00   
    56. D(C   3,C   2,C   1,H  11)   -180.00  0.000001   -0.00   -180.00   
    57. D(H  12,C   2,C   1,C   0)   -180.00  0.000001   -0.00   -180.00   
    58. D(C   8,C   3,C   2,H  12)   -180.00  0.000000   -0.01   -180.00   
    59. D(C   4,C   3,C   2,H  12)     -0.00 -0.000000   -0.00     -0.00   
    60. D(C   4,C   3,C   2,C   1)    180.00  0.000000    0.00    180.00   
    61. D(C   8,C   3,C   2,C   1)      0.00  0.000000   -0.00     -0.00   
    62. D(H  13,C   4,C   3,C   2)      0.01  0.000002   -0.02     -0.01   
    63. D(C   5,C   4,C   3,C   8)      0.00  0.000002   -0.01     -0.01   
    64. D(C   5,C   4,C   3,C   2)   -179.99  0.000002   -0.02   -180.01   
    65. D(H  13,C   4,C   3,C   8)   -179.99  0.000002   -0.02   -180.01   
    66. D(H  14,C   5,C   4,H  13)     -0.00 -0.000002    0.01      0.01   
    67. D(H  14,C   5,C   4,C   3)    180.00 -0.000002    0.01    180.00   
    68. D(C   6,C   5,C   4,H  13)    180.00  0.000000    0.01    180.01   
    69. D(C   6,C   5,C   4,C   3)     -0.00 -0.000000    0.00      0.00   
    70. D(H  15,C   6,C   5,H  14)     -0.00 -0.000000    0.01      0.00   
    71. D(H  15,C   6,C   5,C   4)    180.00 -0.000002    0.01    180.01   
    72. D(C   7,C   6,C   5,H  14)    180.00 -0.000001    0.01    180.00   
    73. D(C   7,C   6,C   5,C   4)     -0.00 -0.000003    0.01      0.01   
    74. D(H  16,C   7,C   6,H  15)      0.01  0.000002   -0.01     -0.01   
    75. D(H  16,C   7,C   6,C   5)   -179.99  0.000003   -0.01   -180.01   
    76. D(C   8,C   7,C   6,H  15)   -179.99  0.000003   -0.02   -180.01   
    77. D(C   8,C   7,C   6,C   5)      0.01  0.000004   -0.02     -0.01   
    78. D(C   9,C   8,C   3,C   2)     -0.00 -0.000001    0.01      0.00   
    79. D(C   7,C   8,C   3,C   4)     -0.00 -0.000001    0.01      0.00   
    80. D(C   7,C   8,C   3,C   2)    180.00 -0.000001    0.01    180.01   
    81. D(C   9,C   8,C   7,H  16)     -0.00 -0.000001    0.01      0.01   
    82. D(C   9,C   8,C   7,C   6)    179.99 -0.000002    0.01    180.01   
    83. D(C   3,C   8,C   7,H  16)    180.00 -0.000001    0.01    180.00   
    84. D(C   3,C   8,C   7,C   6)     -0.00 -0.000002    0.01      0.00   
    85. D(C   9,C   8,C   3,C   4)    180.00 -0.000001    0.00    180.00   
    86. D(H  17,C   9,C   8,C   7)      0.00  0.000001   -0.01     -0.01   
    87. D(C   0,C   9,C   8,C   7)   -180.00  0.000000   -0.01   -180.01   
    88. D(C   0,C   9,C   8,C   3)      0.00  0.000000   -0.00     -0.00   
    89. D(H  17,C   9,C   0,H  10)      0.00  0.000000   -0.00     -0.00   
    90. D(H  17,C   9,C   0,C   1)    180.00 -0.000000   -0.00    180.00   
    91. D(H  17,C   9,C   8,C   3)   -180.00  0.000001   -0.01   -180.00   
    92. D(C   8,C   9,C   0,H  10)   -180.00  0.000000   -0.00   -180.00   
    93. D(C   8,C   9,C   0,C   1)      0.00  0.000000   -0.00     -0.00   
    ----------------------------------------------------------------------------

         *************************************************************
         *                GEOMETRY OPTIMIZATION CYCLE   4            *
         *************************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
  C     -0.051777   -0.021721   -0.036746
  C      1.363826   -0.020708   -0.037858
  C      2.048984    1.156334   -0.037706
  C      1.360815    2.398652   -0.036465
  C      2.047322    3.641894   -0.036269
  C      1.360598    4.818009   -0.035273
  C     -0.055015    4.817097   -0.034357
  C     -0.740148    3.640035   -0.034343
  C     -0.051979    2.397698   -0.035437
  C     -0.738442    1.154464   -0.035581
  H     -0.578150   -0.956893   -0.036819
  H      1.891455   -0.955189   -0.038843
  H      3.123144    1.160705   -0.038568
  H      3.121490    3.638911   -0.036873
  H      1.886952    5.753206   -0.035193
  H     -0.582608    5.751587   -0.033671
  H     -1.814312    3.635604   -0.033516
  H     -1.812616    1.157426   -0.034752

----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
  NO LB      ZA    FRAG    MASS        X           Y           Z
   0 C     6.0000    0    12.011         -0.097844022431691         -0.041047330950119         -0.069440348621850
   1 C     6.0000    0    12.011          2.577256971936359         -0.039132604936795         -0.071541970772828
   2 C     6.0000    0    12.011          3.872018382065127          2.185154854023675         -0.071254904384660
   3 C     6.0000    0    12.011          2.571568220418011          4.532795331275765         -0.068908319080375
   4 C     6.0000    0    12.011          3.868878708541504          6.882182996549052         -0.068538789836113
   5 C     6.0000    0    12.011          2.571157854497377          9.104717457106130         -0.066657044128210
   6 C     6.0000    0    12.011         -0.103963750853965          9.102994519708451         -0.064924378286378
   7 C     6.0000    0    12.011         -1.398677098774683          6.878669230292600         -0.064898334747571
   8 C     6.0000    0    12.011         -0.098225483892877          4.530992471347884         -0.066965573045401
   9 C     6.0000    0    12.011         -1.395453120900061          2.181620490698656         -0.067238186658736
  10 H     1.0000    0     1.008         -1.092545631723032         -1.808266627481927         -0.069577532168519
  11 H     1.0000    0     1.008          3.574331882176200         -1.805046059178450         -0.073402371014929
  12 H     1.0000    0     1.008          5.901887212282105          2.193414973662710         -0.072882058340843
  13 H     1.0000    0     1.008          5.898761909846634          6.876545090892422         -0.069680375178595
  14 H     1.0000    0     1.008          3.565822165378183         10.871983773640437         -0.066505999369572
  15 H     1.0000    0     1.008         -1.100969271733728         10.868923906040729         -0.063628344794953
  16 H     1.0000    0     1.008         -3.428552631155109          6.870295243926275         -0.063335754461140
  17 H     1.0000    0     1.008         -3.425347712105613          2.187218176235902         -0.065672475946457

--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   1.415603     0.000     0.000
 C      2   1   0   1.361936   120.245     0.000
 C      3   2   1   1.420187   120.812     0.000
 C      4   3   2   1.420191   122.109   180.000
 C      5   4   3   1.361924   120.813   179.990
 C      6   5   4   1.415614   120.243     0.000
 C      7   6   5   1.361941   120.239     0.000
 C      4   3   2   1.412795   118.945     0.000
 C      1   2   3   1.361955   120.236     0.000
 H      1   2   3   1.073134   119.415   180.004
 H      2   1   3   1.073149   119.409   180.001
 H      3   2   1   1.074170   120.437   180.001
 H      5   4   3   1.074172   118.748     0.000
 H      6   5   4   1.073146   120.348   180.004
 H      7   6   5   1.073138   119.411   180.006
 H      8   7   6   1.074173   120.439   179.992
 H     10   1   2   1.074178   120.435   179.999

---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   2.675103     0.000     0.000
 C      2   1   0   2.573686   120.245     0.000
 C      3   2   1   2.683765   120.812     0.000
 C      4   3   2   2.683773   122.109   180.000
 C      5   4   3   2.573663   120.813   179.990
 C      6   5   4   2.675123   120.243     0.000
 C      7   6   5   2.573695   120.239     0.000
 C      4   3   2   2.669795   118.945     0.000
 C      1   2   3   2.573722   120.236     0.000
 H      1   2   3   2.027929   119.415   180.004
 H      2   1   3   2.027958   119.409   180.001
 H      3   2   1   2.029886   120.437   180.001
 H      5   4   3   2.029891   118.748     0.000
 H      6   5   4   2.027952   120.348   180.004
 H      7   6   5   2.027937   119.411   180.006
 H      8   7   6   2.029893   120.439   179.992
 H     10   1   2   2.029903   120.435   179.999


Diagonalization of the overlap matrix:
Smallest eigenvalue                        ... 3.762e-04
Time for diagonalization                   ...    0.004 sec
Threshold for overlap eigenvalues          ... 1.000e-08
Number of eigenvalues below threshold      ... 0
Time for construction of square roots      ...    0.002 sec
Total time needed                          ...    0.005 sec

--------------
SCF ITERATIONS
--------------
ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
               ***  Starting incremental Fock matrix formation  ***
                      *** Initiating the SOSCF procedure ***
                      *** Re-Reading the Fockian *** 
                      *** Removing any level shift *** 
ITER      Energy       Delta-E        Grad      Rot      Max-DP    RMS-DP
  0   -383.22271627 -383.2227162677  0.000398  0.000398  0.000593  0.000047
               *** Restarting incremental Fock matrix formation ***
  1   -383.22272274  -0.0000064770  0.000177  0.000191  0.000268  0.000021
  2   -383.22272393  -0.0000011810  0.000063  0.000154  0.000140  0.000013
  3   -383.22272409  -0.0000001657  0.000019  0.000042  0.000020  0.000001
  4   -383.22272410  -0.0000000047  0.000010  0.000030  0.000016  0.000001
                  ***Gradient check signals convergence***
              ***Rediagonalizing the Fockian in SOSCF/NRSCF***

               *****************************************************
               *                     SUCCESS                       *
               *           SCF CONVERGED AFTER   5 CYCLES          *
               *****************************************************

Total Energy       :         -383.22272410 Eh          -10428.02047 eV
  Last Energy change         ...   -1.7708e-09  Tolerance :   1.0000e-08
  Last MAX-Density change    ...    3.7487e-06  Tolerance :   1.0000e-07
             **** THE GBW FILE WAS UPDATED (orca.gbw) ****
             **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) ****
             **** ENERGY FILE WAS UPDATED (orca.en.tmp) ****
Total SCF time: 0 days 0 hours 0 min 29 sec 

-------------------------   --------------------
FINAL SINGLE POINT ENERGY      -383.222724097876
-------------------------   --------------------

------------------------------------------------------------------------------
                         ORCA SCF GRADIENT CALCULATION
------------------------------------------------------------------------------

Gradient of the Hartree-Fock SCF energy:
Hartree-Fock type                ... RHF
Number of operators              ...    1
Number of atoms                  ...   18
Basis set dimensions             ...  106
Integral neglect threshold       ... 2.5e-11
Integral primitive cutoff        ... 2.5e-12

Nuclear repulsion gradient       ... done
One Electron Gradient            ... done
Pre-screening matrix             ... done
Starting the two electron gradient:
Two electron gradient done

------------------
CARTESIAN GRADIENT
------------------

   1   C   :   -0.000246790    0.000351719   -0.000001371
   2   C   :    0.000226127    0.000432441    0.000000849
   3   C   :   -0.000413385   -0.000283441   -0.000000808
   4   C   :    0.000024468    0.000002305    0.000001218
   5   C   :   -0.000423948    0.000289643   -0.000004048
   6   C   :    0.000233908   -0.000423526    0.000004729
   7   C   :   -0.000237642   -0.000378759   -0.000002395
   8   C   :    0.000427593    0.000283314    0.000001265
   9   C   :   -0.000048299   -0.000015806   -0.000000142
  10   C   :    0.000459220   -0.000248994   -0.000002667
  11   H   :    0.000061779   -0.000159463    0.000002227
  12   H   :   -0.000060808   -0.000166476   -0.000002000
  13   H   :    0.000113794    0.000069823   -0.000001946
  14   H   :    0.000115593   -0.000075429    0.000006532
  15   H   :   -0.000062115    0.000165299   -0.000001353
  16   H   :    0.000063078    0.000162103   -0.000005513
  17   H   :   -0.000115283   -0.000074935    0.000004807
  18   H   :   -0.000117291    0.000070180    0.000000615

Norm of the cartesian gradient     ...    0.001451730
RMS gradient                       ...    0.000197555
MAX gradient                       ...    0.000459220

-------
TIMINGS
-------

Total SCF gradient time            ...       17.285 sec

One electron gradient       ....       0.281 sec  (  1.6%)
Prescreening matrices       ....       0.090 sec  (  0.5%)
Two electron gradient       ....      16.737 sec  ( 96.8%)
------------------------------------------------------------------------------
                         ORCA GEOMETRY RELAXATION STEP
------------------------------------------------------------------------------

Reading the OPT-File                    .... done
Getting information on internals        .... done
Copying old internal coords+grads       .... done
Making the new internal coordinates     .... (new redundants).... done
Validating the new internal coordinates .... (new redundants).... done
Calculating the B-matrix                .... done
Calculating the G,G- and P matrices     .... done
Transforming gradient to internals      .... done
Projecting the internal gradient        .... done
Number of atoms                         ....  18
Number of internal coordinates          ....  93
Current Energy                          ....  -383.222724098 Eh
Current gradient norm                   ....     0.001451730 Eh/bohr
Maximum allowed component of the step   ....  0.300
Current trust radius                    ....  0.300
Updating the Hessian (BFGS)             .... done
Forming the augmented Hessian           .... done
Diagonalizing the augmented Hessian     .... done
Last element of RFO vector              ....  0.999995619
Lowest eigenvalues of augmented Hessian:
 -0.000001956  0.020034786  0.020274388  0.020344596  0.023078294
Length of the computed step             ....  0.002960180
The final length of the internal step   ....  0.002960180
Converting the step to cartesian space:
 Initial RMS(Int)=    0.0003069564
Transforming coordinates:
 Iter   0:  RMS(Cart)=    0.0005021216 RMS(Int)=    1.1284847608
 Iter   1:  RMS(Cart)=    0.0000002176 RMS(Int)=    0.0000001632
 Iter   2:  RMS(Cart)=    0.0000000002 RMS(Int)=    0.0000000001
done
Storing new coordinates                 .... done

                                .--------------------.
          ----------------------|Geometry convergence|---------------------
          Item                value                 Tolerance   Converged
          -----------------------------------------------------------------
          Energy change      -0.00001925            0.00000500      NO
          RMS gradient        0.00008993            0.00010000      YES
          MAX gradient        0.00031453            0.00030000      NO
          RMS step            0.00030696            0.00200000      YES
          MAX step            0.00086231            0.00400000      YES
          ....................................................
          Max(Bonds)      0.0003      Max(Angles)    0.05
          Max(Dihed)        0.01      Max(Improp)    0.00
          -----------------------------------------------------------------

       The step convergence is overachieved with 
       reasonable convergence on the gradient
       Convergence will therefore be signaled now


                    ***********************HURRAY********************
                    ***        THE OPTIMIZATION HAS CONVERGED     ***
                    *************************************************


    ---------------------------------------------------------------------------
                         Redundant Internal Coordinates

                          --- Optimized Parameters ---  
                            (Angstroem and degrees)

        Definition                    OldVal   dE/dq     Step     FinalVal
    ----------------------------------------------------------------------------
     1. B(C   1,C   0)                1.4156 -0.000030 -0.0000    1.4156   
     2. B(C   2,C   1)                1.3619 -0.000310  0.0002    1.3622   
     3. B(C   3,C   2)                1.4202 -0.000077 -0.0000    1.4202   
     4. B(C   4,C   3)                1.4202 -0.000081 -0.0000    1.4202   
     5. B(C   5,C   4)                1.3619 -0.000315  0.0003    1.3622   
     6. B(C   6,C   5)                1.4156 -0.000028 -0.0001    1.4156   
     7. B(C   7,C   6)                1.3619 -0.000299  0.0002    1.3622   
     8. B(C   8,C   7)                1.4202 -0.000070 -0.0000    1.4202   
     9. B(C   8,C   3)                1.4128 -0.000188  0.0003    1.4131   
    10. B(C   9,C   8)                1.4202 -0.000092 -0.0000    1.4202   
    11. B(C   9,C   0)                1.3620 -0.000293  0.0002    1.3622   
    12. B(H  10,C   0)                1.0731  0.000109 -0.0001    1.0730   
    13. B(H  11,C   1)                1.0731  0.000115 -0.0001    1.0730   
    14. B(H  12,C   2)                1.0742  0.000114 -0.0001    1.0741   
    15. B(H  13,C   4)                1.0742  0.000116 -0.0001    1.0741   
    16. B(H  14,C   5)                1.0731  0.000114 -0.0001    1.0730   
    17. B(H  15,C   6)                1.0731  0.000110 -0.0001    1.0730   
    18. B(H  16,C   7)                1.0742  0.000116 -0.0001    1.0741   
    19. B(H  17,C   9)                1.0742  0.000117 -0.0001    1.0741   
    20. A(C   9,C   0,H  10)          120.35  0.000151   -0.05    120.30   
    21. A(C   1,C   0,H  10)          119.41 -0.000116    0.05    119.46   
    22. A(C   1,C   0,C   9)          120.24 -0.000035   -0.00    120.23   
    23. A(C   0,C   1,C   2)          120.24  0.000001   -0.00    120.24   
    24. A(C   2,C   1,H  11)          120.35  0.000136   -0.05    120.30   
    25. A(C   0,C   1,H  11)          119.41 -0.000137    0.05    119.46   
    26. A(C   1,C   2,C   3)          120.81  0.000036    0.01    120.82   
    27. A(C   1,C   2,H  12)          120.44  0.000052   -0.03    120.41   
    28. A(C   3,C   2,H  12)          118.75 -0.000089    0.02    118.77   
    29. A(C   2,C   3,C   4)          122.11  0.000052    0.01    122.12   
    30. A(C   2,C   3,C   8)          118.95 -0.000027   -0.00    118.94   
    31. A(C   4,C   3,C   8)          118.95 -0.000025   -0.00    118.94   
    32. A(C   5,C   4,H  13)          120.44  0.000057   -0.03    120.41   
    33. A(C   3,C   4,H  13)          118.75 -0.000096    0.02    118.77   
    34. A(C   3,C   4,C   5)          120.81  0.000039    0.00    120.82   
    35. A(C   6,C   5,H  14)          119.41 -0.000136    0.05    119.46   
    36. A(C   4,C   5,H  14)          120.35  0.000139   -0.05    120.30   
    37. A(C   4,C   5,C   6)          120.24 -0.000003   -0.00    120.24   
    38. A(C   7,C   6,H  15)          120.35  0.000147   -0.05    120.30   
    39. A(C   5,C   6,H  15)          119.41 -0.000126    0.05    119.46   
    40. A(C   5,C   6,C   7)          120.24 -0.000022   -0.00    120.24   
    41. A(C   8,C   7,H  16)          118.75 -0.000097    0.02    118.77   
    42. A(C   6,C   7,H  16)          120.44  0.000055   -0.03    120.41   
    43. A(C   6,C   7,C   8)          120.81  0.000042    0.00    120.82   
    44. A(C   7,C   8,C   9)          122.11  0.000063    0.01    122.12   
    45. A(C   3,C   8,C   9)          118.94 -0.000032   -0.00    118.94   
    46. A(C   3,C   8,C   7)          118.94 -0.000031   -0.00    118.94   
    47. A(C   8,C   9,H  17)          118.75 -0.000099    0.02    118.77   
    48. A(C   0,C   9,H  17)          120.43  0.000042   -0.03    120.41   
    49. A(C   0,C   9,C   8)          120.82  0.000057    0.00    120.82   
    50. D(H  11,C   1,C   0,H  10)      0.01  0.000002   -0.00      0.00   
    51. D(C   2,C   1,C   0,C   9)      0.00  0.000001   -0.00      0.00   
    52. D(H  11,C   1,C   0,C   9)   -180.00  0.000001   -0.00   -180.00   
    53. D(C   2,C   1,C   0,H  10)   -180.00  0.000001   -0.00   -180.00   
    54. D(C   3,C   2,C   1,C   0)     -0.00 -0.000000    0.00     -0.00   
    55. D(H  12,C   2,C   1,H  11)     -0.00  0.000000   -0.00     -0.00   
    56. D(C   3,C   2,C   1,H  11)    180.00 -0.000001    0.00    180.00   
    57. D(H  12,C   2,C   1,C   0)   -180.00  0.000000   -0.00   -180.00   
    58. D(C   8,C   3,C   2,H  12)    180.00 -0.000002    0.00    180.00   
    59. D(C   4,C   3,C   2,H  12)     -0.00 -0.000001    0.00     -0.00   
    60. D(C   4,C   3,C   2,C   1)    180.00 -0.000000    0.00    180.00   
    61. D(C   8,C   3,C   2,C   1)     -0.00 -0.000001    0.00     -0.00   
    62. D(H  13,C   4,C   3,C   2)     -0.01 -0.000004    0.01     -0.01   
    63. D(C   5,C   4,C   3,C   8)     -0.01 -0.000003    0.01     -0.00   
    64. D(C   5,C   4,C   3,C   2)    179.99 -0.000003    0.01    180.00   
    65. D(H  13,C   4,C   3,C   8)    179.99 -0.000004    0.01    180.00   
    66. D(H  14,C   5,C   4,H  13)      0.01  0.000003   -0.00      0.00   
    67. D(H  14,C   5,C   4,C   3)   -180.00  0.000002   -0.00   -180.00   
    68. D(C   6,C   5,C   4,H  13)   -179.99  0.000001   -0.00   -180.00   
    69. D(C   6,C   5,C   4,C   3)      0.00  0.000001   -0.00      0.00   
    70. D(H  15,C   6,C   5,H  14)      0.00  0.000001   -0.00      0.00   
    71. D(H  15,C   6,C   5,C   4)   -179.99  0.000002   -0.00   -180.00   
    72. D(C   7,C   6,C   5,H  14)   -180.00  0.000001   -0.00   -180.00   
    73. D(C   7,C   6,C   5,C   4)      0.01  0.000003   -0.01     -0.00   
    74. D(H  16,C   7,C   6,H  15)     -0.01 -0.000003    0.00     -0.01   
    75. D(H  16,C   7,C   6,C   5)    179.99 -0.000003    0.01    180.00   
    76. D(C   8,C   7,C   6,H  15)    179.99 -0.000004    0.01    180.00   
    77. D(C   8,C   7,C   6,C   5)     -0.01 -0.000004    0.01      0.00   
    78. D(C   9,C   8,C   3,C   2)      0.00  0.000001   -0.00      0.00   
    79. D(C   7,C   8,C   3,C   4)      0.00  0.000001   -0.00      0.00   
    80. D(C   7,C   8,C   3,C   2)   -179.99  0.000002   -0.00   -180.00   
    81. D(C   9,C   8,C   7,H  16)      0.01  0.000001   -0.00      0.00   
    82. D(C   9,C   8,C   7,C   6)   -179.99  0.000003   -0.01   -180.00   
    83. D(C   3,C   8,C   7,H  16)   -180.00  0.000001   -0.00   -180.00   
    84. D(C   3,C   8,C   7,C   6)      0.00  0.000002   -0.01     -0.00   
    85. D(C   9,C   8,C   3,C   4)   -180.00  0.000001   -0.00   -180.00   
    86. D(H  17,C   9,C   8,C   7)     -0.01 -0.000001    0.00     -0.00   
    87. D(C   0,C   9,C   8,C   7)    179.99 -0.000001    0.00    180.00   
    88. D(C   0,C   9,C   8,C   3)     -0.00 -0.000001    0.00     -0.00   
    89. D(H  17,C   9,C   0,H  10)     -0.00 -0.000001    0.00     -0.00   
    90. D(H  17,C   9,C   0,C   1)    180.00 -0.000000    0.00    180.00   
    91. D(H  17,C   9,C   8,C   3)    180.00 -0.000001    0.00    180.00   
    92. D(C   8,C   9,C   0,H  10)    180.00 -0.000001    0.00    180.00   
    93. D(C   8,C   9,C   0,C   1)     -0.00 -0.000001    0.00      0.00   
    ----------------------------------------------------------------------------
                 *******************************************************
                 *** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***
                 ***               (AFTER    4 CYCLES)               ***
                 *******************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
  C     -0.051758   -0.021974   -0.036755
  C      1.363805   -0.020980   -0.037802
  C      2.049045    1.156301   -0.037669
  C      1.360952    2.398653   -0.036503
  C      2.047390    3.641918   -0.036362
  C      1.360573    4.818278   -0.035293
  C     -0.054989    4.817349   -0.034265
  C     -0.740204    3.640045   -0.034374
  C     -0.052103    2.397700   -0.035479
  C     -0.738510    1.154439   -0.035621
  H     -0.578876   -0.956605   -0.036852
  H      1.892170   -0.954919   -0.038715
  H      3.123106    1.160238   -0.038471
  H      3.121457    3.639406   -0.037071
  H      1.887668    5.752933   -0.035187
  H     -0.583333    5.751291   -0.033457
  H     -1.814269    3.636093   -0.033564
  H     -1.812583    1.156945   -0.034830

----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
  NO LB      ZA    FRAG    MASS        X           Y           Z
   0 C     6.0000    0    12.011         -0.097808587366012         -0.041525614253398         -0.069457457688540
   1 C     6.0000    0    12.011          2.577218085771947         -0.039646514820953         -0.071434675601637
   2 C     6.0000    0    12.011          3.872133279582767          2.185092203262714         -0.071183826914644
   3 C     6.0000    0    12.011          2.571827500871817          4.532797680644739         -0.068980566205794
   4 C     6.0000    0    12.011          3.869007161483661          6.882227230101384         -0.068714970388639
   5 C     6.0000    0    12.011          2.571110660629270          9.105226205078942         -0.066693753684580
   6 C     6.0000    0    12.011         -0.103914805453304          9.103469379884936         -0.064751984013582
   7 C     6.0000    0    12.011         -1.398783382343948          6.878688135605014         -0.064956610437512
   8 C     6.0000    0    12.011         -0.098460029094429          4.530997026388878         -0.067046298322635
   9 C     6.0000    0    12.011         -1.395582400998665          2.181573383428006         -0.067314806789926
  10 H     1.0000    0     1.008         -1.093917854675867         -1.807720719900320         -0.069639815922130
  11 H     1.0000    0     1.008          3.575683466556944         -1.804535173509403         -0.073160468241592
  12 H     1.0000    0     1.008          5.901815125138685          2.192532166106772         -0.072700342028320
  13 H     1.0000    0     1.008          5.898698648625760          6.877479686261953         -0.070053154297940
  14 H     1.0000    0     1.008          3.567174734295732         10.871466983046263         -0.066493637588352
  15 H     1.0000    0     1.008         -1.102339932631247         10.868364388411189         -0.063224244387263
  16 H     1.0000    0     1.008         -3.428470979737443          6.871219971011075         -0.063427029755755
  17 H     1.0000    0     1.008         -3.425286107084926          2.186309476105605         -0.065819118568289

--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   1.415564     0.000     0.000
 C      2   1   0   1.362184   120.242     0.000
 C      3   2   1   1.420180   120.818     0.000
 C      4   3   2   1.420177   122.115   180.001
 C      5   4   3   1.362183   120.817   179.997
 C      6   5   4   1.415563   120.241     0.000
 C      7   6   5   1.362191   120.238     0.000
 C      4   3   2   1.413056   118.942     0.000
 C      1   2   3   1.362196   120.235     0.000
 H      1   2   3   1.073027   119.463   180.001
 H      2   1   3   1.073039   119.458   180.001
 H      3   2   1   1.074069   120.412   180.001
 H      5   4   3   1.074070   118.770     0.000
 H      6   5   4   1.073036   120.301   180.000
 H      7   6   5   1.073031   119.460   180.002
 H      8   7   6   1.074072   120.411   179.998
 H     10   1   2   1.074076   120.409   180.000

---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
 C      0   0   0   0.000000     0.000     0.000
 C      1   0   0   2.675028     0.000     0.000
 C      2   1   0   2.574154   120.242     0.000
 C      3   2   1   2.683751   120.818     0.000
 C      4   3   2   2.683746   122.115   180.001
 C      5   4   3   2.574153   120.817   179.997
 C      6   5   4   2.675027   120.241     0.000
 C      7   6   5   2.574167   120.238     0.000
 C      4   3   2   2.670289   118.942     0.000
 C      1   2   3   2.574178   120.235     0.000
 H      1   2   3   2.027728   119.463   180.001
 H      2   1   3   2.027750   119.458   180.001
 H      3   2   1   2.029696   120.412   180.001
 H      5   4   3   2.029697   118.770     0.000
 H      6   5   4   2.027745   120.301   180.000
 H      7   6   5   2.027735   119.460   180.002
 H      8   7   6   2.029702   120.411   179.998
 H     10   1   2   2.029710   120.409   180.000

---------------------
BASIS SET INFORMATION
---------------------
There are 2 groups of distinct atoms

 Group   1 Type C   : 10s4p contracted to 3s2p pattern {631/31}
 Group   2 Type H   : 4s contracted to 2s pattern {31}

Atom   0C    basis set group =>   1
Atom   1C    basis set group =>   1
Atom   2C    basis set group =>   1
Atom   3C    basis set group =>   1
Atom   4C    basis set group =>   1
Atom   5C    basis set group =>   1
Atom   6C    basis set group =>   1
Atom   7C    basis set group =>   1
Atom   8C    basis set group =>   1
Atom   9C    basis set group =>   1
Atom  10H    basis set group =>   2
Atom  11H    basis set group =>   2
Atom  12H    basis set group =>   2
Atom  13H    basis set group =>   2
Atom  14H    basis set group =>   2
Atom  15H    basis set group =>   2
Atom  16H    basis set group =>   2
Atom  17H    basis set group =>   2
------------------------------------------------------------------------------
                           ORCA GTO INTEGRAL CALCULATION
------------------------------------------------------------------------------

                         BASIS SET STATISTICS AND STARTUP INFO

 # of primitive gaussian shells          ...  172
 # of primitive gaussian functions       ...  252
 # of contracted shell                   ...   66
 # of contracted basis functions         ...  106
 Highest angular momentum                ...    1
 Maximum contraction depth               ...    6
 Integral package used                   ... LIBINT
 Integral threshhold            Thresh   ...  2.500e-11
 Primitive cut-off              TCut     ...  2.500e-12


                              INTEGRAL EVALUATION

 One electron integrals                  ... done
 Pre-screening matrix                    ... done
 Shell pair data                         ... done (   0.003 sec)

-------------------------------------------------------------------------------
                                 ORCA SCF
-------------------------------------------------------------------------------

------------
SCF SETTINGS
------------
Hamiltonian:
 Ab initio Hamiltonian  Method          .... Hartree-Fock(GTOs)


General Settings:
 Integral files         IntName         .... orca
 Hartree-Fock type      HFTyp           .... RHF
 Total Charge           Charge          ....    0
 Multiplicity           Mult            ....    1
 Number of Electrons    NEL             ....   68
 Basis Dimension        Dim             ....  106
 Nuclear Repulsion      ENuc            ....    460.0270955572 Eh

Convergence Acceleration:
 DIIS                   CNVDIIS         .... on
   Start iteration      DIISMaxIt       ....    12
   Startup error        DIISStart       ....  0.200000
   # of expansion vecs  DIISMaxEq       ....     5
   Bias factor          DIISBfac        ....   1.050
   Max. coefficient     DIISMaxC        ....  10.000
 Newton-Raphson         CNVNR           .... off
 SOSCF                  CNVSOSCF        .... on
   Start iteration      SOSCFMaxIt      ....   150
   Startup grad/error   SOSCFStart      ....  0.003300
 Level Shifting         CNVShift        .... on
   Level shift para.    LevelShift      ....    0.2500
   Turn off err/grad.   ShiftErr        ....    0.0010
 Zerner damping         CNVZerner       .... off
 Static damping         CNVDamp         .... on
   Fraction old density DampFac         ....    0.7000
   Max. Damping (<1)    DampMax         ....    0.9800
   Min. Damping (>=0)   DampMin         ....    0.0000
   Turn off err/grad.   DampErr         ....    0.1000
 Fernandez-Rico         CNVRico         .... off

SCF Procedure:
 Maximum # iterations   MaxIter         ....   125
 SCF integral mode      SCFMode         .... Direct
   Integral package                     .... LIBINT
 Reset frequeny         DirectResetFreq ....    20
 Integral Threshold     Thresh          ....  2.500e-11 Eh
 Primitive CutOff       TCut            ....  2.500e-12 Eh

Convergence Tolerance:
 Convergence Check Mode ConvCheckMode   .... Total+1el-Energy
 Energy Change          TolE            ....  1.000e-08 Eh
 1-El. energy change                    ....  1.000e-05 Eh
 Orbital Gradient       TolG            ....  1.000e-05
 Orbital Rotation angle TolX            ....  1.000e-05
 DIIS Error             TolErr          ....  5.000e-07


Diagonalization of the overlap matrix:
Smallest eigenvalue                        ... 3.765e-04
Time for diagonalization                   ...    0.004 sec
Threshold for overlap eigenvalues          ... 1.000e-08
Number of eigenvalues below threshold      ... 0
Time for construction of square roots      ...    0.002 sec
Total time needed                          ...    0.005 sec

---------------------
INITIAL GUESS: MOREAD
---------------------
Guess MOs are being read from file: orca.gbw
Input Geometry matches current geometry (good)
Input basis set matches current basis set (good)
MOs were renormalized
MOs were reorthogonalized (Schmidt)
                      ------------------
                      INITIAL GUESS DONE (   0.0 sec)
                      ------------------
--------------
SCF ITERATIONS
--------------
ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
               ***  Starting incremental Fock matrix formation  ***
                      *** Initiating the SOSCF procedure ***
                      *** Re-Reading the Fockian *** 
                      *** Removing any level shift *** 
ITER      Energy       Delta-E        Grad      Rot      Max-DP    RMS-DP
  0   -383.22272495 -383.2227249517  0.000073  0.000073  0.000109  0.000010
               *** Restarting incremental Fock matrix formation ***
  1   -383.22272523  -0.0000002828  0.000029  0.000055  0.000053  0.000004
  2   -383.22272529  -0.0000000526  0.000015  0.000047  0.000025  0.000003
  3   -383.22272530  -0.0000000095  0.000006  0.000013  0.000007  0.000000
  4   -383.22272530  -0.0000000011  0.000003  0.000007  0.000003  0.000000
                  ***Gradient check signals convergence***
              ***Rediagonalizing the Fockian in SOSCF/NRSCF***

               *****************************************************
               *                     SUCCESS                       *
               *           SCF CONVERGED AFTER   5 CYCLES          *
               *****************************************************


----------------
TOTAL SCF ENERGY
----------------

Total Energy       :         -383.22272530 Eh          -10428.02051 eV

Components:
Nuclear Repulsion  :          460.02709556 Eh           12517.97367 eV
Electronic Energy  :         -843.24982085 Eh          -22945.99418 eV

One Electron Energy:        -1429.01997970 Eh          -38885.61055 eV
Two Electron Energy:          585.77015885 Eh           15939.61638 eV

Virial components:
Potential Energy   :         -766.91689377 Eh          -20868.86963 eV
Kinetic Energy     :          383.69416848 Eh           10440.84913 eV
Virial Ratio       :            1.99877130


---------------
SCF CONVERGENCE
---------------

  Last Energy change         ...    3.2355e-10  Tolerance :   1.0000e-08
  Last MAX-Density change    ...    6.8461e-07  Tolerance :   1.0000e-07
  Last RMS-Density change    ...    6.6836e-08  Tolerance :   5.0000e-09
  Last Orbital Gradient      ...    3.1870e-07  Tolerance :   1.0000e-05
  Last Orbital Rotation      ...    4.1292e-07  Tolerance :   1.0000e-05

             **** THE GBW FILE WAS UPDATED (orca.gbw) ****
             **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) ****
             **** ENERGY FILE WAS UPDATED (orca.en.tmp) ****
----------------
ORBITAL ENERGIES
----------------

  NO   OCC          E(Eh)            E(eV) 
   0   2.0000     -11.245805      -306.0139 
   1   2.0000     -11.244744      -305.9850 
   2   2.0000     -11.237119      -305.7775 
   3   2.0000     -11.237084      -305.7766 
   4   2.0000     -11.236859      -305.7705 
   5   2.0000     -11.236791      -305.7686 
   6   2.0000     -11.235719      -305.7395 
   7   2.0000     -11.235691      -305.7387 
   8   2.0000     -11.234979      -305.7193 
   9   2.0000     -11.234965      -305.7190 
  10   2.0000      -1.182174       -32.1686 
  11   2.0000      -1.115516       -30.3547 
  12   2.0000      -1.052496       -28.6399 
  13   2.0000      -1.011010       -27.5110 
  14   2.0000      -0.986654       -26.8482 
  15   2.0000      -0.853601       -23.2277 
  16   2.0000      -0.837889       -22.8001 
  17   2.0000      -0.815433       -22.1891 
  18   2.0000      -0.705109       -19.1870 
  19   2.0000      -0.704583       -19.1727 
  20   2.0000      -0.680670       -18.5220 
  21   2.0000      -0.622059       -16.9271 
  22   2.0000      -0.613450       -16.6928 
  23   2.0000      -0.585182       -15.9236 
  24   2.0000      -0.585134       -15.9223 
  25   2.0000      -0.564469       -15.3600 
  26   2.0000      -0.534287       -14.5387 
  27   2.0000      -0.519868       -14.1463 
  28   2.0000      -0.482877       -13.1397 
  29   2.0000      -0.470790       -12.8108 
  30   2.0000      -0.447454       -12.1759 
  31   2.0000      -0.383405       -10.4330 
  32   2.0000      -0.318172        -8.6579 
  33   2.0000      -0.287780        -7.8309 
  34   0.0000       0.100061         2.7228 
  35   0.0000       0.132478         3.6049 
  36   0.0000       0.191045         5.1986 
  37   0.0000       0.239286         6.5113 
  38   0.0000       0.260699         7.0940 
  39   0.0000       0.265143         7.2149 
  40   0.0000       0.288299         7.8450 
  41   0.0000       0.312104         8.4928 
  42   0.0000       0.316351         8.6084 
  43   0.0000       0.325076         8.8458 
  44   0.0000       0.338925         9.2226 
  45   0.0000       0.360395         9.8069 
  46   0.0000       0.416259        11.3270 
  47   0.0000       0.416844        11.3429 
  48   0.0000       0.468271        12.7423 
  49   0.0000       0.490268        13.3409 
  50   0.0000       0.499135        13.5822 
  51   0.0000       0.503688        13.7060 
  52   0.0000       0.516577        14.0568 
  53   0.0000       0.546220        14.8634 
  54   0.0000       0.697831        18.9890 
  55   0.0000       0.732970        19.9451 
  56   0.0000       0.739531        20.1237 
  57   0.0000       0.750749        20.4289 
  58   0.0000       0.761619        20.7247 
  59   0.0000       0.774746        21.0819 
  60   0.0000       0.778919        21.1955 
  61   0.0000       0.788282        21.4502 
  62   0.0000       0.811585        22.0844 
  63   0.0000       0.817251        22.2385 
  64   0.0000       0.829457        22.5707 
  65   0.0000       0.859497        23.3881 
  66   0.0000       0.865523        23.5521 
  67   0.0000       0.870225        23.6800 
  68   0.0000       0.884116        24.0580 
  69   0.0000       0.884677        24.0733 
  70   0.0000       0.902987        24.5715 
  71   0.0000       0.909176        24.7399 
  72   0.0000       0.912796        24.8384 
  73   0.0000       0.922725        25.1086 
  74   0.0000       0.943138        25.6641 
  75   0.0000       0.943970        25.6867 
  76   0.0000       1.010185        27.4885 
  77   0.0000       1.081938        29.4410 
  78   0.0000       1.122330        30.5401 
  79   0.0000       1.132257        30.8103 
  80   0.0000       1.138328        30.9755 
  81   0.0000       1.139049        30.9951 
  82   0.0000       1.162339        31.6289 
  83   0.0000       1.187740        32.3200 
  84   0.0000       1.190081        32.3838 
  85   0.0000       1.227049        33.3897 
  86   0.0000       1.227969        33.4147 
  87   0.0000       1.249736        34.0070 
  88   0.0000       1.276921        34.7468 
  89   0.0000       1.309249        35.6265 
  90   0.0000       1.310819        35.6692 
  91   0.0000       1.349103        36.7110 
  92   0.0000       1.356951        36.9245 
  93   0.0000       1.367311        37.2064 
  94   0.0000       1.392599        37.8946 
  95   0.0000       1.439614        39.1739 
  96   0.0000       1.501010        40.8446 
  97   0.0000       1.513174        41.1756 
  98   0.0000       1.573588        42.8195 
  99   0.0000       1.631488        44.3950 
 100   0.0000       1.739820        47.3429 
 101   0.0000       1.770121        48.1674 
 102   0.0000       1.793079        48.7921 
 103   0.0000       1.840400        50.0798 
 104   0.0000       2.207664        60.0736 
 105   0.0000       2.209546        60.1248 

                    ********************************
                    * MULLIKEN POPULATION ANALYSIS *
                    ********************************

-----------------------
MULLIKEN ATOMIC CHARGES
-----------------------
   0 C :   -0.207180
   1 C :   -0.207219
   2 C :   -0.163595
   3 C :   -0.074353
   4 C :   -0.163596
   5 C :   -0.207210
   6 C :   -0.207198
   7 C :   -0.163601
   8 C :   -0.074320
   9 C :   -0.163639
  10 H :    0.200129
  11 H :    0.200106
  12 H :    0.207865
  13 H :    0.207867
  14 H :    0.200110
  15 H :    0.200120
  16 H :    0.207863
  17 H :    0.207853
Sum of atomic charges:   -0.0000000

--------------------------------
MULLIKEN REDUCED ORBITAL CHARGES
--------------------------------
  0 C s       :     3.179235  s :     3.179235
      pz      :     1.003762  p :     3.027945
      px      :     0.951072
      py      :     1.073111
  1 C s       :     3.179267  s :     3.179267
      pz      :     1.003748  p :     3.027952
      px      :     0.951317
      py      :     1.072887
  2 C s       :     3.127751  s :     3.127751
      pz      :     1.003029  p :     3.035843
      px      :     1.117892
      py      :     0.914922
  3 C s       :     3.127432  s :     3.127432
      pz      :     0.986444  p :     2.946922
      px      :     0.913614
      py      :     1.046864
  4 C s       :     3.127752  s :     3.127752
      pz      :     1.003022  p :     3.035843
      px      :     1.117968
      py      :     0.914853
  5 C s       :     3.179262  s :     3.179262
      pz      :     1.003749  p :     3.027948
      px      :     0.951078
      py      :     1.073121
  6 C s       :     3.179249  s :     3.179249
      pz      :     1.003762  p :     3.027950
      px      :     0.951301
      py      :     1.072887
  7 C s       :     3.127762  s :     3.127762
      pz      :     1.003007  p :     3.035839
      px      :     1.117902
      py      :     0.914929
  8 C s       :     3.127414  s :     3.127414
      pz      :     0.986469  p :     2.946906
      px      :     0.913609
      py      :     1.046827
  9 C s       :     3.127782  s :     3.127782
      pz      :     1.003008  p :     3.035856
      px      :     1.117979
      py      :     0.914869
 10 H s       :     0.799871  s :     0.799871
 11 H s       :     0.799894  s :     0.799894
 12 H s       :     0.792135  s :     0.792135
 13 H s       :     0.792133  s :     0.792133
 14 H s       :     0.799890  s :     0.799890
 15 H s       :     0.799880  s :     0.799880
 16 H s       :     0.792137  s :     0.792137
 17 H s       :     0.792147  s :     0.792147


                     *******************************
                     * LOEWDIN POPULATION ANALYSIS *
                     *******************************

----------------------
LOEWDIN ATOMIC CHARGES
----------------------
   0 C :   -0.123353
   1 C :   -0.123345
   2 C :   -0.110816
   3 C :   -0.023221
   4 C :   -0.110812
   5 C :   -0.123346
   6 C :   -0.123353
   7 C :   -0.110801
   8 C :   -0.023236
   9 C :   -0.110804
  10 H :    0.123232
  11 H :    0.123223
  12 H :    0.122546
  13 H :    0.122546
  14 H :    0.123225
  15 H :    0.123229
  16 H :    0.122545
  17 H :    0.122541

-------------------------------
LOEWDIN REDUCED ORBITAL CHARGES
-------------------------------
  0 C s       :     2.933862  s :     2.933862
      pz      :     1.003568  p :     3.189491
      px      :     1.080682
      py      :     1.105242
  1 C s       :     2.933861  s :     2.933861
      pz      :     1.003554  p :     3.189484
      px      :     1.080706
      py      :     1.105224
  2 C s       :     2.930545  s :     2.930545
      pz      :     1.004635  p :     3.180271
      px      :     1.103146
      py      :     1.072491
  3 C s       :     2.890334  s :     2.890334
      pz      :     0.983621  p :     3.132887
      px      :     1.075934
      py      :     1.073332
  4 C s       :     2.930545  s :     2.930545
      pz      :     1.004629  p :     3.180267
      px      :     1.103180
      py      :     1.072458
  5 C s       :     2.933861  s :     2.933861
      pz      :     1.003555  p :     3.189485
      px      :     1.080686
      py      :     1.105244
  6 C s       :     2.933861  s :     2.933861
      pz      :     1.003567  p :     3.189493
      px      :     1.080701
      py      :     1.105224
  7 C s       :     2.930548  s :     2.930548
      pz      :     1.004615  p :     3.180253
      px      :     1.103145
      py      :     1.072493
  8 C s       :     2.890329  s :     2.890329
      pz      :     0.983643  p :     3.132907
      px      :     1.075932
      py      :     1.073332
  9 C s       :     2.930547  s :     2.930547
      pz      :     1.004614  p :     3.180257
      px      :     1.103177
      py      :     1.072466
 10 H s       :     0.876768  s :     0.876768
 11 H s       :     0.876777  s :     0.876777
 12 H s       :     0.877454  s :     0.877454
 13 H s       :     0.877454  s :     0.877454
 14 H s       :     0.876775  s :     0.876775
 15 H s       :     0.876771  s :     0.876771
 16 H s       :     0.877455  s :     0.877455
 17 H s       :     0.877459  s :     0.877459


                      *****************************
                      * MAYER POPULATION ANALYSIS *
                      *****************************

  NA   - Mulliken gross atomic population
  ZA   - Total nuclear charge
  QA   - Mulliken gross atomic charge
  VA   - Mayer's total valence
  BVA  - Mayer's bonded valence
  FA   - Mayer's free valence

  ATOM       NA         ZA         QA         VA         BVA        FA
  0 C      6.2072     6.0000    -0.2072     3.8691     3.8691     0.0000
  1 C      6.2072     6.0000    -0.2072     3.8691     3.8691    -0.0000
  2 C      6.1636     6.0000    -0.1636     3.8874     3.8874     0.0000
  3 C      6.0744     6.0000    -0.0744     3.8867     3.8867    -0.0000
  4 C      6.1636     6.0000    -0.1636     3.8874     3.8874    -0.0000
  5 C      6.2072     6.0000    -0.2072     3.8691     3.8691     0.0000
  6 C      6.2072     6.0000    -0.2072     3.8691     3.8691    -0.0000
  7 C      6.1636     6.0000    -0.1636     3.8874     3.8874    -0.0000
  8 C      6.0743     6.0000    -0.0743     3.8867     3.8867    -0.0000
  9 C      6.1636     6.0000    -0.1636     3.8874     3.8874     0.0000
 10 H      0.7999     1.0000     0.2001     0.9334     0.9334     0.0000
 11 H      0.7999     1.0000     0.2001     0.9334     0.9334    -0.0000
 12 H      0.7921     1.0000     0.2079     0.9285     0.9285    -0.0000
 13 H      0.7921     1.0000     0.2079     0.9285     0.9285    -0.0000
 14 H      0.7999     1.0000     0.2001     0.9334     0.9334     0.0000
 15 H      0.7999     1.0000     0.2001     0.9334     0.9334    -0.0000
 16 H      0.7921     1.0000     0.2079     0.9285     0.9285    -0.0000
 17 H      0.7921     1.0000     0.2079     0.9285     0.9285     0.0000

  Mayer bond orders larger than 0.1
B(  0-C ,  1-C ) :   1.2802 B(  0-C ,  9-C ) :   1.6169 B(  0-C , 10-H ) :   0.9411 
B(  1-C ,  2-C ) :   1.6169 B(  1-C , 11-H ) :   0.9411 B(  2-C ,  3-C ) :   1.2592 
B(  2-C , 12-H ) :   0.9353 B(  3-C ,  4-C ) :   1.2592 B(  3-C ,  8-C ) :   1.3498 
B(  4-C ,  5-C ) :   1.6169 B(  4-C , 13-H ) :   0.9353 B(  5-C ,  6-C ) :   1.2801 
B(  5-C , 14-H ) :   0.9411 B(  6-C ,  7-C ) :   1.6169 B(  6-C , 15-H ) :   0.9411 
B(  7-C ,  8-C ) :   1.2592 B(  7-C , 16-H ) :   0.9353 B(  8-C ,  9-C ) :   1.2592 
B(  9-C , 17-H ) :   0.9353 

-------
TIMINGS
-------

Total SCF time: 0 days 0 hours 0 min 27 sec 

Total time                  ....      27.828 sec
Sum of individual times     ....      27.820 sec  (100.0%)

Fock matrix formation       ....      27.775 sec  ( 99.8%)
Diagonalization             ....       0.005 sec  (  0.0%)
Density matrix formation    ....       0.002 sec  (  0.0%)
Population analysis         ....       0.007 sec  (  0.0%)
Initial guess               ....       0.011 sec  (  0.0%)
Orbital Transformation      ....       0.000 sec  (  0.0%)
Orbital Orthonormalization  ....       0.010 sec  (  0.0%)
DIIS solution               ....       0.001 sec  (  0.0%)
SOSCF solution              ....       0.018 sec  (  0.1%)

-------------------------   --------------------
FINAL SINGLE POINT ENERGY      -383.222725297383
-------------------------   --------------------

                                *** OPTIMIZATION RUN DONE ***

                            ***************************************
                            *     ORCA property calculations      *
                            ***************************************

                                    ---------------------
                                    Active property flags
                                    ---------------------
   (+) Dipole Moment


------------------------------------------------------------------------------
                       ORCA ELECTRIC PROPERTIES CALCULATION
------------------------------------------------------------------------------

Dipole Moment Calculation                       ... on
Quadrupole Moment Calculation                   ... off
Polarizability Calculation                      ... off
GBWName                                         ... orca.gbw
Electron density file                           ... orca.scfp.tmp

-------------
DIPOLE MOMENT
-------------
                                X             Y             Z
Electronic contribution:     -0.00000       0.00001       0.00004
Nuclear contribution   :     -0.00002      -0.00000      -0.00004
                        -----------------------------------------
Total Dipole Moment    :     -0.00002       0.00001       0.00000
                        -----------------------------------------
Magnitude (a.u.)       :      0.00002
Magnitude (Debye)      :      0.00006


Timings for individual modules:

Sum of individual times         ...      269.589 sec (=   4.493 min)
GTO integral calculation        ...        4.765 sec (=   0.079 min)   1.8 %
SCF iterations                  ...      190.585 sec (=   3.176 min)  70.7 %
SCF Gradient evaluation         ...       71.250 sec (=   1.188 min)  26.4 %
Geometry relaxation             ...        2.989 sec (=   0.050 min)   1.1 %
                             ****ORCA TERMINATED NORMALLY****
TOTAL RUN TIME: 0 days 0 hours 4 minutes 32 seconds 252 msec

На основе полученных координат составим новые входные файлы и рассчитаем энергию (FINAL SINGLE POINT ENERGY) методом Хартри-Фока и используя метод функционала плотности (заголовок !DFT RHF 6-31G):

In [135]:
%%bash
/srv/databases/orca/orca orca.inp > orca_HF.txt
In [136]:
%%bash
/srv/databases/orca/orca orca.inp > orca_DFT.txt

Algorithm

E Naphthalene

Hartree-Fock

-383.223

DFT

-382.253

Энергии, полученные двумя разными методами, различаются на 0,97 Hartree, или на 608.68 kcal/mol. К сожалению, для азулена получить значения энергии не получилось, а на основе этих данных нельзя заключить, какой метод лучше.