Сначала попробуем получить оптимизированную структуру порфирина.
Загрузим модуль pybel и посмотрим, какие форматы он может читать и писать:
import pybel
print pybel.informats
print ""
print pybel.outformats
{'txyz': 'Tinker XYZ format', 'text': 'Read and write raw text', 'alc': 'Alchemy format', 'CONTFF': 'MDFF format', 'castep': 'CASTEP format', 'nwo': 'NWChem output format', 'cdx': 'ChemDraw binary format', 'xml': 'General XML format', 'pwscf': 'PWscf format', 'jin': 'Jaguar input format', 'rsmi': 'Reaction SMILES format', 'xtc': 'XTC format', 'g09': 'Gaussian Output', 'pcm': 'PCModel Format', 'mopin': 'MOPAC Internal', 'dallog': 'DALTON output format', 'mopcrt': 'MOPAC Cartesian format', 't41': 'ADF TAPE41 format', 'fchk': 'Gaussian formatted checkpoint file format', 'g03': 'Gaussian Output', 'cube': 'Gaussian cube format', 'axsf': 'XCrySDen Structure Format', 'mpc': 'MOPAC Cartesian format', 'mpo': 'Molpro output format', 'mop': 'MOPAC Cartesian format', 'pos': 'POS cartesian coordinates format', 'dat': 'Generic Output file format', 'moo': 'MOPAC Output format', 'dx': 'OpenDX cube format for APBS', 'mol': 'MDL MOL format', 'inchi': 'InChI format', 'hin': 'HyperChem HIN format', 'cml': 'Chemical Markup Language', 'outmol': 'DMol3 coordinates format', 'xyz': 'XYZ cartesian coordinates format', 'lpmd': 'LPMD format', 'xsf': 'XCrySDen Structure Format', 'qcout': 'Q-Chem output format', 'output': 'Generic Output file format', 'orca': 'ORCA output format', 'mdl': 'MDL MOL format', 'exyz': 'Extended XYZ cartesian coordinates format', 'dalmol': 'DALTON input format', 'unixyz': 'UniChem XYZ format', 'pdbqt': 'AutoDock PDBQT format', 'gzmat': 'Gaussian Z-Matrix Input', 'arc': 'Accelrys/MSI Biosym/Insight II CAR format', 'pcjson': 'PubChem JSON', 'out': 'Generic Output file format', 'smy': 'SMILES format using Smiley parser', 'c09out': 'Crystal 09 output format', 'feat': 'Feature format', 'crk3d': 'Chemical Resource Kit 3D format', 'got': 'GULP format', 'mopout': 'MOPAC Output format', 'tdd': 'Thermo format', 'mmod': 'MacroModel format', 'siesta': 'SIESTA format', 'bs': 'Ball and Stick format', 'mmd': 'MacroModel format', 'box': 'Dock 3.5 Box format', 'bgf': 'MSI BGF format', 'fa': 'FASTA format', 'POSFF': 'MDFF format', 'vmol': 'ViewMol format', 'acr': 'ACR format', 'pqs': 'Parallel Quantum Solutions format', 'crk2d': 'Chemical Resource Kit diagram(2D)', 'CONFIG': 'DL-POLY CONFIG', 'pdb': 'Protein Data Bank format', 'ck': 'ChemKin format', 'c3d2': 'Chem3D Cartesian 2 format', 'aoforce': 'Turbomole AOFORCE output format', 'c3d1': 'Chem3D Cartesian 1 format', 'CONTCAR': 'VASP format', 'MDFF': 'MDFF format', 'gamout': 'GAMESS Output', 'mmcif': 'Macromolecular Crystallographic Info', 'txt': 'Title format', 'ct': 'ChemDraw Connection Table format', 'therm': 'Thermo format', 'log': 'Generic Output file format', 'pc': 'PubChem format', 'dmol': 'DMol3 coordinates format', 'molden': 'Molden format', 'ml2': 'Sybyl Mol2 format', 'fract': 'Free Form Fractional format', 'msi': 'Accelrys/MSI Cerius II MSI format', 'cdxml': 'ChemDraw CDXML format', 'g98': 'Gaussian Output', 'prep': 'Amber Prep format', 'gpr': 'Ghemical format', 'cub': 'Gaussian cube format', 'gam': 'GAMESS Output', 'gukin': 'GAMESS-UK Input', 'cmlr': 'CML Reaction format', 'abinit': 'ABINIT Output Format', 'POSCAR': 'VASP format', 'ins': 'ShelX format', 'tmol': 'TurboMole Coordinate format', 'png': 'PNG 2D depiction', 'cif': 'Crystallographic Information File', 'gamess': 'GAMESS Output', 'car': 'Accelrys/MSI Biosym/Insight II CAR format', 'mcif': 'Macromolecular Crystallographic Info', 'smi': 'SMILES format', 'can': 'Canonical SMILES format', 'caccrt': 'Cacao Cartesian format', 'fhiaims': 'FHIaims XYZ format', 'inp': 'GAMESS Input', 'gukout': 'GAMESS-UK Output', 'sy2': 'Sybyl Mol2 format', 'fasta': 'FASTA format', 'mpqc': 'MPQC output format', 'mold': 'Molden format', 'molf': 'Molden format', 'jout': 'Jaguar output format', 'yob': 'YASARA.org YOB format', 'mcdl': 'MCDL format', 'ent': 'Protein Data Bank format', 'adfout': 'ADF output format', 'gro': 'GRO format', 'smiles': 'SMILES format', 'fs': 'Fastsearch format', 'mol2': 'Sybyl Mol2 format', 'cdjson': 'ChemDoodle JSON', 'pqr': 'PQR format', 'g94': 'Gaussian Output', 'g92': 'Gaussian Output', 'fch': 'Gaussian formatted checkpoint file format', 'VASP': 'VASP format', 'fck': 'Gaussian formatted checkpoint file format', 'HISTORY': 'DL-POLY HISTORY', 'fsa': 'FASTA format', 'gamin': 'GAMESS Input', 'rxn': 'MDL RXN format', 'mrv': 'Chemical Markup Language', 'sdf': 'MDL MOL format', 'gal': 'Gaussian Output', 'res': 'ShelX format', 'sd': 'MDL MOL format', 'ccc': 'CCC format', 'acesout': 'ACES output format'} {'xed': 'XED format', 'cssr': 'CSD CSSR format', 'txyz': 'Tinker XYZ format', 'text': 'Read and write raw text', 'alc': 'Alchemy format', 'report': 'Open Babel report format', 'CONTFF': 'MDFF format', 'mna': 'Multilevel Neighborhoods of Atoms (MNA)', 'feat': 'Feature format', 'acesin': 'ACES input format', 'jin': 'Jaguar input format', 'fix': 'SMILES FIX format', 'cache': 'CAChe MolStruct format', 'adf': 'ADF cartesian input format', 'pov': 'POV-Ray input format', 'cub': 'Gaussian cube format', 'pcm': 'PCModel Format', 'mopin': 'MOPAC Internal', 'mpqcin': 'MPQC simplified input format', 'mopcrt': 'MOPAC Cartesian format', 'mpd': 'MolPrint2D format', 'cube': 'Gaussian cube format', 'mpc': 'MOPAC Cartesian format', 'nul': 'Outputs nothing', 'mop': 'MOPAC Cartesian format', 'dx': 'OpenDX cube format for APBS', 'mol': 'MDL MOL format', 'inchi': 'InChI format', 'hin': 'HyperChem HIN format', 'cml': 'Chemical Markup Language', 'lpmd': 'LPMD format', 'gjf': 'Gaussian 98/03 Input', 'nw': 'NWChem input format', 'gjc': 'Gaussian 98/03 Input', 'mdl': 'MDL MOL format', 'exyz': 'Extended XYZ cartesian coordinates format', 'dalmol': 'DALTON input format', 'unixyz': 'UniChem XYZ format', 'pdbqt': 'AutoDock PDBQT format', 'gzmat': 'Gaussian Z-Matrix Input', 'pcjson': 'PubChem JSON', 'crk3d': 'Chemical Resource Kit 3D format', 'mp': 'Molpro input format', 'cacint': 'Cacao Internal format', 'tdd': 'Thermo format', 'mmod': 'MacroModel format', 'bs': 'Ball and Stick format', 'mmd': 'MacroModel format', 'box': 'Dock 3.5 Box format', 'bgf': 'MSI BGF format', 'fa': 'FASTA format', 'k': 'Compare molecules using InChI', 'POSFF': 'MDFF format', 'vmol': 'ViewMol format', 'molreport': 'Open Babel molecule report', 'crk2d': 'Chemical Resource Kit diagram(2D)', 'gr96': 'GROMOS96 format', 'CONFIG': 'DL-POLY CONFIG', 'pdb': 'Protein Data Bank format', 'ck': 'ChemKin format', 'rsmi': 'Reaction SMILES format', 'c3d2': 'Chem3D Cartesian 2 format', 'xyz': 'XYZ cartesian coordinates format', 'c3d1': 'Chem3D Cartesian 1 format', 'CONTCAR': 'VASP format', 'MDFF': 'MDFF format', 'mmcif': 'Macromolecular Crystallographic Info', 'txt': 'Title format', 'ct': 'ChemDraw Connection Table format', 'therm': 'Thermo format', 'paint': 'Painter format', 'dmol': 'DMol3 coordinates format', 'molden': 'Molden format', 'ml2': 'Sybyl Mol2 format', 'fract': 'Free Form Fractional format', 'cht': 'Chemtool format', 'zin': 'ZINDO input format', 'cdxml': 'ChemDraw CDXML format', 'gpr': 'Ghemical format', 'gau': 'Gaussian 98/03 Input', 'sdf': 'MDL MOL format', 'gukin': 'GAMESS-UK Input', 'cmlr': 'CML Reaction format', 'POSCAR': 'VASP format', 'copy': 'Copy raw text', 'tmol': 'TurboMole Coordinate format', 'png': 'PNG 2D depiction', 'confabreport': 'Confab report format', 'pointcloud': 'Point cloud on VDW surface', 'cif': 'Crystallographic Information File', 'outmol': 'DMol3 coordinates format', 'stl': 'STL 3D-printing format', 'mcif': 'Macromolecular Crystallographic Info', 'smi': 'SMILES format', 'can': 'Canonical SMILES format', 'svg': 'SVG 2D depiction', 'cac': 'CAChe MolStruct format', 'caccrt': 'Cacao Cartesian format', 'qcin': 'Q-Chem input format', 'fhiaims': 'FHIaims XYZ format', 'inp': 'GAMESS Input', 'gukout': 'GAMESS-UK Output', 'sy2': 'Sybyl Mol2 format', 'fasta': 'FASTA format', 'ascii': 'ASCII format', 'molf': 'Molden format', 'msms': "M.F. Sanner's MSMS input format", 'mold': 'Molden format', 'yob': 'YASARA.org YOB format', 'mcdl': 'MCDL format', 'fpt': 'Fingerprint format', 'ent': 'Protein Data Bank format', 'fps': 'FPS text fingerprint format (Dalke)', 'lmpdat': 'The LAMMPS data format', 'gro': 'GRO format', 'csr': 'Accelrys/MSI Quanta CSR format', 'smiles': 'SMILES format', 'inchikey': 'InChIKey', 'fs': 'Fastsearch format', 'orcainp': 'ORCA input format', 'mol2': 'Sybyl Mol2 format', 'cdjson': 'ChemDoodle JSON', 'pqr': 'PQR format', 'pqs': 'Parallel Quantum Solutions format', 'fh': 'Fenske-Hall Z-Matrix format', 'VASP': 'VASP format', 'fsa': 'FASTA format', 'gamin': 'GAMESS Input', 'rxn': 'MDL RXN format', 'com': 'Gaussian 98/03 Input', 'mrv': 'Chemical Markup Language', 'sd': 'MDL MOL format'}
Возьмем структуру порфирина в формате SMILES, добавим протоны, создадим черновую 3D структуру.
mol=pybel.readstring('smi','C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2')
mol.addh()
mol.make3D(steps=10000) #чтобы получить адекватную оптимизированную структуру
mol
mol.write(format='pdb',filename='start.pdb',overwrite=True)
Эта структура похожа на правильную: она практически плоская и с двумя атомами водорода у центральных атомов азота.
from IPython.display import display,Image
Image(filename='start.png')
Проведём семиэмпирические расчёты в MOPAC методами PM6, PM7 и AM1
mop_pm6=mol.write(format='mopin', filename='pm6.mop', opt={'k':'PM6 CHARGE=%d' % mol.charge}, overwrite=True)
%%bash
less pm6.mop
PM6 CHARGE=0 C 0.000000 1 0.000000 1 0.000000 1 0 0 0 C 1.350270 1 0.000000 1 0.000000 1 1 0 0 C 1.467290 1 109.215179 1 0.000000 1 2 1 0 C 1.340039 1 121.843956 1 180.443862 1 3 2 1 C 1.420694 1 128.551262 1 179.882320 1 4 3 2 C 1.384525 1 129.765328 1 186.934591 1 5 4 3 C 1.413857 1 108.274946 1 180.658993 1 6 5 4 C 1.379310 1 107.578125 1 359.921670 1 7 6 5 N 1.375356 1 123.718103 1 8.380843 1 5 4 3 C 1.420276 1 131.774044 1 180.121433 1 8 7 6 C 1.340672 1 125.494004 1 172.962573 1 10 8 7 C 1.439937 1 124.296014 1 181.009543 1 11 10 8 C 1.332951 1 110.442585 1 178.745946 1 12 11 10 C 1.471382 1 101.517662 1 0.172970 1 13 12 11 N 1.300814 1 114.476087 1 0.218197 1 14 13 12 C 1.480274 1 116.130319 1 180.519896 1 14 13 12 C 1.335580 1 123.436229 1 182.268807 1 16 14 13 C 1.442246 1 125.495231 1 179.666486 1 17 16 14 C 1.335776 1 110.608904 1 180.797820 1 18 17 16 C 1.465683 1 101.120379 1 359.908165 1 19 18 17 N 1.300635 1 114.672191 1 359.824393 1 20 19 18 C 1.474858 1 118.749872 1 179.349157 1 20 19 18 C 1.337749 1 118.889515 1 178.886295 1 22 20 19 N 1.364787 1 104.172858 1 0.164139 1 3 2 1 H 1.077259 1 126.301562 1 179.961124 1 1 2 3 H 1.078200 1 126.047283 1 180.118487 1 2 1 3 H 1.088831 1 116.954961 1 0.537489 1 4 3 2 H 1.082096 1 125.435013 1 0.767765 1 6 5 4 H 1.081744 1 126.558828 1 180.252335 1 7 6 5 H 1.011882 1 127.095668 1 0.117762 1 9 5 4 H 1.086929 1 116.006986 1 354.073375 1 10 8 7 H 1.078929 1 124.048394 1 359.036504 1 12 11 10 H 1.072552 1 129.970540 1 180.163182 1 13 12 11 H 1.083138 1 116.564587 1 2.151126 1 16 14 13 H 1.078994 1 124.132541 1 0.637197 1 18 17 16 H 1.072451 1 130.440776 1 179.891904 1 19 18 17 H 1.080912 1 118.964977 1 357.852446 1 22 20 19 H 1.013898 1 127.420652 1 184.020970 1 24 3 2
mop_pm7=mol.write(format='mopin', filename='pm7.mop', opt={'k':'PM7 CHARGE=%d' % mol.charge}, overwrite=True)
%%bash
less pm7.mop
PM7 CHARGE=0 C 0.000000 1 0.000000 1 0.000000 1 0 0 0 C 1.350270 1 0.000000 1 0.000000 1 1 0 0 C 1.467290 1 109.215179 1 0.000000 1 2 1 0 C 1.340039 1 121.843956 1 180.443862 1 3 2 1 C 1.420694 1 128.551262 1 179.882320 1 4 3 2 C 1.384525 1 129.765328 1 186.934591 1 5 4 3 C 1.413857 1 108.274946 1 180.658993 1 6 5 4 C 1.379310 1 107.578125 1 359.921670 1 7 6 5 N 1.375356 1 123.718103 1 8.380843 1 5 4 3 C 1.420276 1 131.774044 1 180.121433 1 8 7 6 C 1.340672 1 125.494004 1 172.962573 1 10 8 7 C 1.439937 1 124.296014 1 181.009543 1 11 10 8 C 1.332951 1 110.442585 1 178.745946 1 12 11 10 C 1.471382 1 101.517662 1 0.172970 1 13 12 11 N 1.300814 1 114.476087 1 0.218197 1 14 13 12 C 1.480274 1 116.130319 1 180.519896 1 14 13 12 C 1.335580 1 123.436229 1 182.268807 1 16 14 13 C 1.442246 1 125.495231 1 179.666486 1 17 16 14 C 1.335776 1 110.608904 1 180.797820 1 18 17 16 C 1.465683 1 101.120379 1 359.908165 1 19 18 17 N 1.300635 1 114.672191 1 359.824393 1 20 19 18 C 1.474858 1 118.749872 1 179.349157 1 20 19 18 C 1.337749 1 118.889515 1 178.886295 1 22 20 19 N 1.364787 1 104.172858 1 0.164139 1 3 2 1 H 1.077259 1 126.301562 1 179.961124 1 1 2 3 H 1.078200 1 126.047283 1 180.118487 1 2 1 3 H 1.088831 1 116.954961 1 0.537489 1 4 3 2 H 1.082096 1 125.435013 1 0.767765 1 6 5 4 H 1.081744 1 126.558828 1 180.252335 1 7 6 5 H 1.011882 1 127.095668 1 0.117762 1 9 5 4 H 1.086929 1 116.006986 1 354.073375 1 10 8 7 H 1.078929 1 124.048394 1 359.036504 1 12 11 10 H 1.072552 1 129.970540 1 180.163182 1 13 12 11 H 1.083138 1 116.564587 1 2.151126 1 16 14 13 H 1.078994 1 124.132541 1 0.637197 1 18 17 16 H 1.072451 1 130.440776 1 179.891904 1 19 18 17 H 1.080912 1 118.964977 1 357.852446 1 22 20 19 H 1.013898 1 127.420652 1 184.020970 1 24 3 2
mop_am1=mol.write(format='mopin', filename='am1.mop', opt={'k':'AM1 CHARGE=%d' % mol.charge}, overwrite=True)
%%bash
less am1.mop
AM1 CHARGE=0 C 0.000000 1 0.000000 1 0.000000 1 0 0 0 C 1.350270 1 0.000000 1 0.000000 1 1 0 0 C 1.467290 1 109.215179 1 0.000000 1 2 1 0 C 1.340039 1 121.843956 1 180.443862 1 3 2 1 C 1.420694 1 128.551262 1 179.882320 1 4 3 2 C 1.384525 1 129.765328 1 186.934591 1 5 4 3 C 1.413857 1 108.274946 1 180.658993 1 6 5 4 C 1.379310 1 107.578125 1 359.921670 1 7 6 5 N 1.375356 1 123.718103 1 8.380843 1 5 4 3 C 1.420276 1 131.774044 1 180.121433 1 8 7 6 C 1.340672 1 125.494004 1 172.962573 1 10 8 7 C 1.439937 1 124.296014 1 181.009543 1 11 10 8 C 1.332951 1 110.442585 1 178.745946 1 12 11 10 C 1.471382 1 101.517662 1 0.172970 1 13 12 11 N 1.300814 1 114.476087 1 0.218197 1 14 13 12 C 1.480274 1 116.130319 1 180.519896 1 14 13 12 C 1.335580 1 123.436229 1 182.268807 1 16 14 13 C 1.442246 1 125.495231 1 179.666486 1 17 16 14 C 1.335776 1 110.608904 1 180.797820 1 18 17 16 C 1.465683 1 101.120379 1 359.908165 1 19 18 17 N 1.300635 1 114.672191 1 359.824393 1 20 19 18 C 1.474858 1 118.749872 1 179.349157 1 20 19 18 C 1.337749 1 118.889515 1 178.886295 1 22 20 19 N 1.364787 1 104.172858 1 0.164139 1 3 2 1 H 1.077259 1 126.301562 1 179.961124 1 1 2 3 H 1.078200 1 126.047283 1 180.118487 1 2 1 3 H 1.088831 1 116.954961 1 0.537489 1 4 3 2 H 1.082096 1 125.435013 1 0.767765 1 6 5 4 H 1.081744 1 126.558828 1 180.252335 1 7 6 5 H 1.011882 1 127.095668 1 0.117762 1 9 5 4 H 1.086929 1 116.006986 1 354.073375 1 10 8 7 H 1.078929 1 124.048394 1 359.036504 1 12 11 10 H 1.072552 1 129.970540 1 180.163182 1 13 12 11 H 1.083138 1 116.564587 1 2.151126 1 16 14 13 H 1.078994 1 124.132541 1 0.637197 1 18 17 16 H 1.072451 1 130.440776 1 179.891904 1 19 18 17 H 1.080912 1 118.964977 1 357.852446 1 22 20 19 H 1.013898 1 127.420652 1 184.020970 1 24 3 2
Запустим MOPAC, чтобы оптимизировать структуру и получить ее в PDB файле.
import subprocess
def run_mopac(smiles, method, prefix):
mol=pybel.readstring('smi',smiles)
mol.addh()
mol.make3D(steps=10000)
mop=mol.write(format='mopin',filename = prefix+'.mop',opt={'k': method+' CHARGE=%d' % mol.charge},overwrite=True)
mol.write(format='pdb',filename=prefix+'_before.pdb',overwrite=True)
cmd1 = " export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/' "
cmd2 = '/home/preps/golovin/progs/mopac/MOPAC2016.exe '+prefix+'.mop'
subprocess.call(cmd1, shell=True)
subprocess.call(cmd2, shell=True)
opt=pybel.readfile('mopout',prefix+'.out')
for i in opt:
print i
i.write(format='pdb',filename=prefix+'.pdb',overwrite=True)
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','PM6', 'por_pm6')
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','PM7', 'por_pm7')
run_mopac('C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2','AM1', 'por_am1')
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3 por_pm6.out c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3 por_pm7.out c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3 por_am1.out
Сравним полученные структуры
Image(filename='super.png')
Методоми PM6 (атомы углерода показаны голубым) и PM7 (фиолетовый) получился плоский порфирин, а методом AM1 (жёлтый) - нет.
Теперь сравним свободные энергии Гиббса, полученные разными методами:
def mopac_thermo (pdb_f, method, prefix):
mol=pybel.readfile("pdb", pdb_f).next()
thermo_pm6=mol.write(format='mopin', filename= prefix+'.mop', opt={'k': method+' THERMO CHARGE=%d' % mol.charge}, overwrite=True)
cmd1 = " export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/' "
cmd2 = '/home/preps/golovin/progs/mopac/MOPAC2016.exe '+prefix+'.mop'
subprocess.call(cmd1, shell=True)
subprocess.call(cmd2, shell=True)
dG = read_thermo_out(prefix+'.out', 298.0)
print method, dG, 'KCAL/MOL'
def read_thermo_out (f, T):
read = open(f)
thermo = False
temp = False
for lines in read:
line = None
line = lines.strip()
if len(line) == 0:
continue
if thermo == False:
if line == 'CALCULATED THERMODYNAMIC PROPERTIES':
thermo = True
elif thermo == True:
line_list = line.split()
if temp == False:
try:
if float(line_list[0]) == T:
temp = True
except ValueError:
continue
elif temp == True:
if line_list[0] == 'TOT.':
return float(line_list[1]) - T*float(line_list[4])/1000.0
mopac_thermo('por_pm6.pdb', 'PM6', 'thermo_pm6')
mopac_thermo('por_pm7.pdb', 'PM7', 'thermo_pm7')
mopac_thermo('por_am1.pdb', 'AM1', 'thermo_am1')
PM6 151.4358814 KCAL/MOL PM7 159.0162338 KCAL/MOL AM1 211.1215272 KCAL/MOL
Энергии, рассчитанные методами PM6 и PM7, намного меньше, чем методом AM1.
Рассчитаем возбужденные состояния порфирина и спектр поглощения молекулы. Для этого допишем в файлы pm6.mop и pm7.mop (порфирин, PM6 и PM7) по две строчки:
%%bash
cp por_pm6.mop pm6_spectr.mop
echo "" >> pm6_spectr.mop
echo "cis c.i.=4 meci oldgeo" >> pm6_spectr.mop
echo "some description" >> pm6_spectr.mop
%%bash
cp por_pm7.mop pm7_spectr.mop
echo "" >> pm7_spectr.mop
echo "cis c.i.=4 meci oldgeo" >> pm7_spectr.mop
echo "some description" >> pm7_spectr.mop
%%bash
export MOPAC_LICENSE='/home/preps/golovin/progs/mopac/'
/home/preps/golovin/progs/mopac/MOPAC2016.exe pm6_spectr.mop
MOPAC Job: "pm6_spectr.mop" ended normally on May 29, 2017, at 00:04.
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe pm7_spectr.mop
MOPAC Job: "pm7_spectr.mop" ended normally on May 29, 2017, at 00:05.
opt=pybel.readfile('mopout','pm6_spectr.out')
for i in opt:
print i
i.write(format='pdb',filename='pm6_spectr.pdb',overwrite=True)
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3 pm6_spectr.out
opt=pybel.readfile('mopout','pm7_spectr.out')
for i in opt:
print i
i.write(format='pdb',filename='pm7_spectr.pdb',overwrite=True)
c1c/c/2=C/c3cc/c(=C/c4ccc([n]4)/C=C\4/C=CC(=N4)/C=c/1\[nH]2)/[nH]3 pm7_spectr.out
В конце файлов .out приведены значения энергий для электронных переходов. На основании этих значений рассчитаем длину волн, при которых происходят эти переходы.
f = open('pm6_spectr.out', 'r')
lines = f.readlines()[-21:-13]
f.close()
energies_pm6 = [float(line.split()[1]) for line in lines]
print energies_pm6, 'eV'
[1.766599, 2.170697, 2.326212, 2.693203, 3.091099, 3.143718, 3.756557, 3.765182] eV
f = open('pm7_spectr.out', 'r')
lines = f.readlines()[-21:-13]
f.close()
energies_pm7 = [float(line.split()[1]) for line in lines]
print energies_pm7, 'eV'
[1.765982, 2.171785, 2.32922, 2.694986, 3.093183, 3.144863, 3.756235, 3.765077] eV
Получили из файлов значения энергий, теперь рассчитаем соотвутствующие им длины волн и частоты
wavelengths = [1239.84193/e for e in energies_pm6]
frequencies = [e/4.135667516 for e in energies_pm6]
print 'frequncy,THz\t wavelength,nm\tenergy,eV'
for i in range(len(energies_pm6)):
print '%.4f \t %.4f \t %.4f' % (frequencies[i]*1000, wavelengths[i], energies_pm6[i])
frequncy,THz wavelength,nm energy,eV 427.1618 701.8242 1.7666 524.8722 571.1723 2.1707 562.4756 532.9875 2.3262 651.2136 460.3596 2.6932 747.4244 401.1007 3.0911 760.1477 394.3871 3.1437 908.3315 330.0474 3.7566 910.4170 329.2914 3.7652
wavelengths = [1239.84193/e for e in energies_pm7]
frequencies = [e/4.135667516 for e in energies_pm7]
print 'frequncy,THz\t wavelength,nm\tenergy,eV'
for i in range(len(energies_pm7)):
print '%.4f \t %.4f \t %.4f' % (frequencies[i]*1000, wavelengths[i], energies_pm7[i])
frequncy,THz wavelength,nm energy,eV 427.0126 702.0694 1.7660 525.1353 570.8861 2.1718 563.2029 532.2992 2.3292 651.6447 460.0551 2.6950 747.9284 400.8304 3.0932 760.4245 394.2435 3.1449 908.2536 330.0757 3.7562 910.3916 329.3006 3.7651
Более новый метод PM7 даёт чуть большие энергии для молекулы порферина, чем метод PM6.
Теперь рассмотрим тимединовые димеры.
Дан .pdb файл тиминового димера. Известно, что ультрафиолет может превращать тимины в тиминовые димеры, также известно, что ДНК фотолиаза при облучении ультрафиолетом востановливает основания тиминов до нормального. Наша цель - увидеть переход из димера в тимины при возбуждении системы. Так как вычисление возбуждённых состояний в MOPAC затруднены, мы имитируем возбуждение ионизируя оба кольца, т.е. указывая заряд системы +2. И полученое возбуждённое состояние снова оптимизируем при заряде 0.
%%bash
less td.pdb
ATOM 1 N1 DTa 29 27.560 34.690 61.050 1.00 0.00 ATOM 2 C6 DTa 29 28.760 35.270 61.490 1.00 0.00 ATOM 3 H6 DTa 29 28.570 35.980 62.330 1.00 0.00 ATOM 4 C5 DTa 29 30.010 34.300 61.790 1.00 0.00 ATOM 5 C7 DTa 29 30.640 34.610 63.160 1.00 0.00 ATOM 6 H71 DTa 29 30.240 33.810 63.850 1.00 0.00 ATOM 7 H72 DTa 29 31.760 34.510 63.100 1.00 0.00 ATOM 8 H73 DTa 29 30.470 35.710 63.430 1.00 0.00 ATOM 9 C4 DTa 29 29.750 32.820 61.560 1.00 0.00 ATOM 10 O4 DTa 29 30.580 31.980 61.910 1.00 0.00 ATOM 11 N3 DTa 29 28.660 32.440 60.760 1.00 0.00 ATOM 12 H3 DTa 29 28.680 31.500 60.420 1.00 0.00 ATOM 13 C2 DTa 29 27.550 33.300 60.600 1.00 0.00 ATOM 14 O DTa 29 26.490 32.830 60.090 1.00 0.00 ATOM 15 N1 DTb 30 29.300 36.430 59.150 1.00 0.00 ATOM 16 C6 DTb 30 29.710 36.070 60.470 1.00 0.00 ATOM 17 H6 DTb 30 30.030 36.930 61.010 1.00 0.00 ATOM 18 C5 DTb 30 30.790 34.910 60.540 1.00 0.00 ATOM 19 C7 DTb 30 32.210 35.390 60.750 1.00 0.00 ATOM 20 H71 DTb 30 32.910 34.540 60.810 1.00 0.00 ATOM 21 H72 DTb 30 32.420 36.020 59.870 1.00 0.00 ATOM 22 H73 DTb 30 32.310 36.050 61.650 1.00 0.00 ATOM 23 C4 DTb 30 30.660 33.970 59.390 1.00 0.00 ATOM 24 O4 DTb 30 31.300 32.880 59.370 1.00 0.00 ATOM 25 N3 DTb 30 29.920 34.310 58.230 1.00 0.00 ATOM 26 H3 DTb 30 29.700 33.540 57.610 1.00 0.00 ATOM 27 C2 DTb 30 29.080 35.490 58.170 1.00 0.00 ATOM 28 O DTb 30 28.430 35.700 57.120 1.00 0.00 ATOM 29 HA XXX 41 26.670 35.060 61.500 1.00 0.00 ATOM 30 HB XXX 42 28.840 37.390 59.080 1.00 0.00
mol=pybel.readfile("pdb", "td.pdb").next()
mop=mol.write(format='mop',filename='td_pm6.mop',opt={'k':'PM6 CHARGE=%d' % mol.charge},overwrite=True)
mop=mol.write(format='mop',filename='td_pm7.mop',opt={'k':'PM7 CHARGE=%d' % mol.charge},overwrite=True)
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6.mop
MOPAC Job: "td_pm6.mop" ended normally on May 29, 2017, at 00:16.
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7.mop
MOPAC Job: "td_pm7.mop" ended normally on May 29, 2017, at 00:16.
opt=pybel.readfile('mopout','td_pm6.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm6.pdb',overwrite=True)
N1[C@H]2[C@@](C)(C(=O)NC1=O)[C@@]1([C@H]2NC(=O)NC1=O)C td_pm6.out
opt=pybel.readfile('mopout','td_pm7.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm7.pdb',overwrite=True)
N1[C@H]2[C@@](C)(C(=O)NC1=O)[C@@]1([C@H]2NC(=O)NC1=O)C td_pm7.out
Сравним исходную структуру (Розовый) и оптимизированные (PM6 - белый, PM7 - синий):
Image(filename='td1.png')
Структуры отличаются не сильно, особенно рассчётные
Оптимизируем результат при заряде +2 (имитируем возбуждённое состояние):
%%bash
cp td_pm6.mop td_pm6_2.mop
#change line PM6 CHARGE=0 to PM6 CHARGE=+2
%%bash
cp td_pm7.mop td_pm7_2.mop
#change line PM6 CHARGE=0 to PM6 CHARGE=+2
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6_2.mop
MOPAC Job: "td_pm6_2.mop" ended normally on May 29, 2017, at 00:42.
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7_2.mop
MOPAC Job: "td_pm7_2.mop" ended normally on May 29, 2017, at 00:42.
opt=pybel.readfile('mopout','td_pm6_2.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm6_2.pdb',overwrite=True)
N1[CH][C@@](C)(C(=O)NC1=O)[C@@]1([CH]NC(=O)NC1=O)C td_pm6_2.out
opt=pybel.readfile('mopout','td_pm7_2.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm7_2.pdb',overwrite=True)
N1[CH][C@@](C)(C(=O)NC1=O)[C@@]1([CH]NC(=O)NC1=O)C td_pm7_2.out
Посмотрим, что получилось
Image(filename='td2.png')
Теперь возьмем структуру этих полусоединенных тиминов и оптимизируем ее с зарядом системы 0.
mol=pybel.readfile("pdb", "td_pm6_2.pdb").next()
mop=mol.write(format='mop',filename='td_pm6_20.mop',opt={'k':'PM6 CHARGE=%d' % mol.charge},overwrite=True)
mol=pybel.readfile("pdb", "td_pm7_2.pdb").next()
mop=mol.write(format='mop',filename='td_pm7_20.mop',opt={'k':'PM7 CHARGE=%d' % mol.charge},overwrite=True)
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm6_20.mop
MOPAC Job: "td_pm6_20.mop" ended normally on May 29, 2017, at 00:43.
%%bash
/home/preps/golovin/progs/mopac/MOPAC2016.exe td_pm7_20.mop
MOPAC Job: "td_pm7_20.mop" ended normally on May 29, 2017, at 00:43.
opt=pybel.readfile('mopout','td_pm6_20.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm6_20.pdb',overwrite=True)
[nH]1cc(C)c(=O)[nH]c1=O.[nH]1cc(C)c(=O)[nH]c1=O td_pm6_20.out
opt=pybel.readfile('mopout','td_pm7_20.out')
for i in opt:
print i
i.write(format='pdb',filename='td_pm7_20.pdb',overwrite=True)
[nH]1cc(C)c(=O)[nH]c1=O.[nH]1cc(C)c(=O)[nH]c1=O td_pm7_20.out
Получились свободные тимины.
Image(filename='td3.png')
Энергии всех состояний (Модуль THERMO считать отказался: MOPAC считает, что структуры могут быть всё же не оптимизированы):
%%bash
echo dimer
grep 'TOTAL ENERGY' td_pm6.out
echo semi-dimer
grep 'TOTAL ENERGY' td_pm6_2.out
echo two thymins
grep 'TOTAL ENERGY' td_pm6_20.out
dimer TOTAL ENERGY = -3273.57488 EV semi-dimer TOTAL ENERGY = -3253.90524 EV two thymins TOTAL ENERGY = -3273.70216 EV
%%bash
echo dimer
grep 'TOTAL ENERGY' td_pm7.out
echo semi-dimer
grep 'TOTAL ENERGY' td_pm7_2.out
echo two thymins
grep 'TOTAL ENERGY' td_pm7_20.out
dimer TOTAL ENERGY = -3317.89293 EV semi-dimer TOTAL ENERGY = -3298.75116 EV two thymins TOTAL ENERGY = -3318.43190 EV
Как следует из рисунков, при возбуждении системы тиминовый димер разрушился только наполовину. Однако, возбуждённое состояние оказалось переходным, из которого система может свалиться как в тиминовые нуклеотиды, так и обратно в димер. А так как система из двух тиминов оказалась чуть более выгодным, чем система из димера, то она свалилась именно в тимины.
Найдём оптимальную геометрию для нафталена и азулена и рассчитаем теплоты образования этих молекул разными подходами квантовой механики. Для этого нужно:
1) Построить и оптимизировать с помощью MOPAC структуры нафталена и азулена
2) Создать входные файлы для Gamess.
run_mopac('C1=CC=C2C=CC=CC2=C1','PM6','na')
run_mopac('C1=CC=C2C=CC=C2C=C1','PM6','az')
c1ccc2ccccc2c1 na.out c1ccc2ccccc2c1 az.out
В геометрии азулена до и после оптимизации ничего не изменилось. Все тот же нафтален и до, и после оптимизации. Будем работать только с нафталеном. Создадим входные файлы для Gamess. В файле orca.inp добавим заголовок !HF RHF OPT 6-31G - это означает, что работаем ограниченным методом Хартри-Фока в базисе 6-31G. На этих данных запустим ORCA, чтобы оптимизировать геометрию молекулы нафталена.
opt=pybel.readfile('mopout','na.out')
for i in opt:
print i
i.write(format='orcainp',filename='orca.inp',overwrite=True)
c1ccc2ccccc2c1 na.out
%%bash
/srv/databases/orca/orca orca.inp | tee orca-opt.log
***************** * O R C A * ***************** --- An Ab Initio, DFT and Semiempirical electronic structure package --- ####################################################### # -***- # # Department of molecular theory and spectroscopy # # Directorship: Frank Neese # # Max Planck Institute for Chemical Energy Conversion # # D-45470 Muelheim/Ruhr # # Germany # # # # All rights reserved # # -***- # ####################################################### Program Version 3.0.3 - RELEASE - With contributions from (in alphabetic order): Ute Becker : Parallelization Dmytro Bykov : SCF Hessian Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods Dimitrios Liakos : Extrapolation schemes; parallel MDCI Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3 Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density Simone Kossmann : Meta GGA functionals, TD-DFT gradient, OOMP2, MP2 Hessian Taras Petrenko : DFT Hessian,TD-DFT gradient, ASA and ECA modules, normal mode analysis, Resonance Raman, ABS, FL, XAS/XES, NRVS Christoph Reimann : Effective Core Potentials Michael Roemelt : Restricted open shell CIS Christoph Riplinger : Improved optimizer, TS searches, QM/MM, DLPNO-CCSD Barbara Sandhoefer : DKH picture change effects Igor Schapiro : Molecular dynamics Kantharuban Sivalingam : CASSCF convergence, NEVPT2 Boris Wezisla : Elementary symmetry handling Frank Wennmohs : Technical directorship We gratefully acknowledge several colleagues who have allowed us to interface, adapt or use parts of their codes: Stefan Grimme, W. Hujo, H. Kruse, T. Risthaus : VdW corrections, initial TS optimization, DFT functionals, gCP Ed Valeev : LibInt (2-el integral package), F12 methods Garnet Chan, S. Sharma, R. Olivares : DMRG Ulf Ekstrom : XCFun DFT Library Mihaly Kallay : mrcc (arbitrary order and MRCC methods) Andreas Klamt, Michael Diedenhofen : otool_cosmo (COSMO solvation model) Frank Weinhold : gennbo (NPA and NBO analysis) Christopher J. Cramer and Donald G. Truhlar : smd solvation model Your calculation uses the libint2 library for the computation of 2-el integrals For citations please refer to: http://libint.valeyev.net This ORCA versions uses: CBLAS interface : Fast vector & matrix operations LAPACKE interface : Fast linear algebra routines SCALAPACK package : Parallel linear algebra routines Your calculation utilizes the basis: 6-31G Cite in your paper: H - He: W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys. 56, Li - Ne: 2257 (1972). Note: Li and B come from J.D. Dill and J.A. Pople, J. Chem. Phys. 62, 2921 (1975). Na - Ar: M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees and J.A. Pople, J. Chem. Phys. 77, 3654 (1982) K - Zn: V. Rassolov, J.A. Pople, M. Ratner and T.L. Windus, J. Chem. Phys. (accepted, 1998) Note: He and Ne are unpublished basis sets taken from the Gaussian program ================================================================================ WARNINGS Please study these warnings very carefully! ================================================================================ Now building the actual basis set WARNING: Geometry Optimization ===> : Switching off AutoStart For restart on a previous wavefunction, please use MOREAD INFO : the flag for use of LIBINT has been found! ================================================================================ INPUT FILE ================================================================================ NAME = orca.inp | 1> # ORCA input file | 2> # na.out | 3> !HF RHF OPT 6-31G | 4> * xyz 0 1 | 5> C -0.05678 -0.03497 -0.03698 | 6> C 1.36912 -0.03497 -0.03698 | 7> C 2.06233 1.14935 -0.03698 | 8> C 1.36421 2.39853 -0.03729 | 9> C 2.06068 3.64916 -0.03782 | 10> C 1.36601 4.83230 -0.03539 | 11> C -0.06018 4.83073 -0.03283 | 12> C -0.75337 3.64707 -0.03455 | 13> C -0.05524 2.39765 -0.03623 | 14> C -0.75233 1.14744 -0.03646 | 15> H -0.57884 -0.99046 -0.03733 | 16> H 1.89233 -0.98964 -0.03668 | 17> H 3.15102 1.15957 -0.03669 | 18> H 3.14956 3.63994 -0.04052 | 19> H 1.88786 5.78761 -0.03506 | 20> H -0.58375 5.78525 -0.03022 | 21> H -1.84216 3.63593 -0.03418 | 22> H -1.84093 1.15662 -0.03608 | 23> * | 24> | 25> ****END OF INPUT**** ================================================================================ ***************************** * Geometry Optimization Run * ***************************** Geometry optimization settings: Update method Update .... BFGS Choice of coordinates CoordSys .... Redundant Internals Initial Hessian InHess .... Almoef's Model Convergence Tolerances: Energy Change TolE .... 5.0000e-06 Eh Max. Gradient TolMAXG .... 3.0000e-04 Eh/bohr RMS Gradient TolRMSG .... 1.0000e-04 Eh/bohr Max. Displacement TolMAXD .... 4.0000e-03 bohr RMS Displacement TolRMSD .... 2.0000e-03 bohr ------------------------------------------------------------------------------ ORCA OPTIMIZATION COORDINATE SETUP ------------------------------------------------------------------------------ The optimization will be done in new redundant internal coordinates Making redundant internal coordinates ... (new redundants) done Evaluating the initial hessian ... (Almloef) done Evaluating the coordinates ... done Calculating the B-matrix .... done Calculating the G-matrix .... done Diagonalizing the G-matrix .... done The first mode is .... 45 The number of degrees of freedom .... 48 ----------------------------------------------------------------- Redundant Internal Coordinates ----------------------------------------------------------------- Definition Initial Value Approx d2E/dq ----------------------------------------------------------------- 1. B(C 1,C 0) 1.4259 0.547599 2. B(C 2,C 1) 1.3723 0.666820 3. B(C 3,C 2) 1.4310 0.537392 4. B(C 4,C 3) 1.4315 0.536480 5. B(C 5,C 4) 1.3720 0.667500 6. B(C 6,C 5) 1.4262 0.547009 7. B(C 7,C 6) 1.3717 0.668239 8. B(C 8,C 7) 1.4312 0.536967 9. B(C 8,C 3) 1.4195 0.560728 10. B(C 9,C 8) 1.4314 0.536609 11. B(C 9,C 0) 1.3718 0.667955 12. B(H 10,C 0) 1.0888 0.361677 13. B(H 11,C 1) 1.0886 0.361900 14. B(H 12,C 2) 1.0887 0.361773 15. B(H 13,C 4) 1.0889 0.361528 16. B(H 14,C 5) 1.0886 0.362021 17. B(H 15,C 6) 1.0887 0.361840 18. B(H 16,C 7) 1.0888 0.361628 19. B(H 17,C 9) 1.0886 0.361905 20. A(C 9,C 0,H 10) 120.8826 0.357662 21. A(C 1,C 0,H 10) 118.6513 0.345849 22. A(C 1,C 0,C 9) 120.4661 0.430208 23. A(C 0,C 1,C 2) 120.3414 0.430077 24. A(C 2,C 1,H 11) 120.9335 0.357596 25. A(C 0,C 1,H 11) 118.7251 0.345884 26. A(C 1,C 2,C 3) 120.4594 0.428627 27. A(C 1,C 2,H 12) 120.8793 0.357575 28. A(C 3,C 2,H 12) 118.6614 0.344773 29. A(C 2,C 3,C 4) 121.6876 0.412314 30. A(C 2,C 3,C 8) 119.1637 0.415565 31. A(C 4,C 3,C 8) 119.1488 0.415439 32. A(C 5,C 4,H 13) 120.9042 0.357596 33. A(C 3,C 4,H 13) 118.6281 0.344635 34. A(C 3,C 4,C 5) 120.4677 0.428575 35. A(C 6,C 5,H 14) 118.7091 0.345841 36. A(C 4,C 5,H 14) 120.9349 0.357679 37. A(C 4,C 5,C 6) 120.3560 0.430072 38. A(C 7,C 6,H 15) 120.8999 0.357716 39. A(C 5,C 6,H 15) 118.6826 0.345812 40. A(C 5,C 6,C 7) 120.4175 0.430158 41. A(C 8,C 7,H 16) 118.6087 0.344704 42. A(C 6,C 7,H 16) 120.9408 0.357680 43. A(C 6,C 7,C 8) 120.4506 0.428730 44. A(C 7,C 8,C 9) 121.6620 0.412273 45. A(C 3,C 8,C 9) 119.1786 0.415457 46. A(C 3,C 8,C 7) 119.1594 0.415506 47. A(C 8,C 9,H 17) 118.6599 0.344709 48. A(C 0,C 9,H 17) 120.9492 0.357701 49. A(C 0,C 9,C 8) 120.3908 0.428646 50. D(H 11,C 1,C 0,H 10) -0.0390 0.020507 51. D(C 2,C 1,C 0,C 9) -0.0252 0.020507 52. D(H 11,C 1,C 0,C 9) 179.9568 0.020507 53. D(C 2,C 1,C 0,H 10) 179.9790 0.020507 54. D(C 3,C 2,C 1,C 0) -0.0144 0.031075 55. D(H 12,C 2,C 1,H 11) 0.0006 0.031075 56. D(C 3,C 2,C 1,H 11) -179.9960 0.031075 57. D(H 12,C 2,C 1,C 0) 179.9822 0.031075 58. D(C 8,C 3,C 2,H 12) -179.9335 0.019727 59. D(C 4,C 3,C 2,H 12) 0.0279 0.019727 60. D(C 4,C 3,C 2,C 1) -179.9754 0.019727 61. D(C 8,C 3,C 2,C 1) 0.0632 0.019727 62. D(H 13,C 4,C 3,C 2) 0.1518 0.019658 63. D(C 5,C 4,C 3,C 8) 0.0931 0.019658 64. D(C 5,C 4,C 3,C 2) -179.8683 0.019658 65. D(H 13,C 4,C 3,C 8) -179.8869 0.019658 66. D(H 14,C 5,C 4,H 13) -0.0643 0.031143 67. D(H 14,C 5,C 4,C 3) 179.9563 0.031143 68. D(C 6,C 5,C 4,H 13) 179.9549 0.031143 69. D(C 6,C 5,C 4,C 3) -0.0246 0.031143 70. D(H 15,C 6,C 5,H 14) -0.0242 0.020462 71. D(H 15,C 6,C 5,C 4) 179.9571 0.020462 72. D(C 7,C 6,C 5,H 14) 179.9324 0.020462 73. D(C 7,C 6,C 5,C 4) -0.0863 0.020462 74. D(H 16,C 7,C 6,H 15) 0.0513 0.031217 75. D(H 16,C 7,C 6,C 5) -179.9043 0.031217 76. D(C 8,C 7,C 6,H 15) -179.9187 0.031217 77. D(C 8,C 7,C 6,C 5) 0.1257 0.031217 78. D(C 9,C 8,C 3,C 2) -0.0725 0.021539 79. D(C 7,C 8,C 3,C 4) -0.0536 0.021539 80. D(C 7,C 8,C 3,C 2) 179.9088 0.021539 81. D(C 9,C 8,C 7,H 16) -0.0452 0.019695 82. D(C 9,C 8,C 7,C 6) 179.9255 0.019695 83. D(C 3,C 8,C 7,H 16) 179.9740 0.019695 84. D(C 3,C 8,C 7,C 6) -0.0553 0.019695 85. D(C 9,C 8,C 3,C 4) 179.9651 0.021539 86. D(H 17,C 9,C 8,C 7) 0.0455 0.019668 87. D(C 0,C 9,C 8,C 7) -179.9464 0.019668 88. D(C 0,C 9,C 8,C 3) 0.0344 0.019668 89. D(H 17,C 9,C 0,H 10) 0.0188 0.031189 90. D(H 17,C 9,C 0,C 1) -179.9769 0.031189 91. D(H 17,C 9,C 8,C 3) -179.9737 0.019668 92. D(C 8,C 9,C 0,H 10) -179.9895 0.031189 93. D(C 8,C 9,C 0,C 1) 0.0148 0.031189 ----------------------------------------------------------------- Number of atoms .... 18 Number of degrees of freedom .... 93 ************************************************************* * GEOMETRY OPTIMIZATION CYCLE 1 * ************************************************************* --------------------------------- CARTESIAN COORDINATES (ANGSTROEM) --------------------------------- C -0.056780 -0.034970 -0.036980 C 1.369120 -0.034970 -0.036980 C 2.062330 1.149350 -0.036980 C 1.364210 2.398530 -0.037290 C 2.060680 3.649160 -0.037820 C 1.366010 4.832300 -0.035390 C -0.060180 4.830730 -0.032830 C -0.753370 3.647070 -0.034550 C -0.055240 2.397650 -0.036230 C -0.752330 1.147440 -0.036460 H -0.578840 -0.990460 -0.037330 H 1.892330 -0.989640 -0.036680 H 3.151020 1.159570 -0.036690 H 3.149560 3.639940 -0.040520 H 1.887860 5.787610 -0.035060 H -0.583750 5.785250 -0.030220 H -1.842160 3.635930 -0.034180 H -1.840930 1.156620 -0.036080 ---------------------------- CARTESIAN COORDINATES (A.U.) ---------------------------- NO LB ZA FRAG MASS X Y Z 0 C 6.0000 0 12.011 -0.107298649884049 -0.066083722903226 -0.069882072432408 1 C 6.0000 0 12.011 2.587261844474264 -0.066083722903226 -0.069882072432408 2 C 6.0000 0 12.011 3.897238897769815 2.171956732022391 -0.069882072432408 3 C 6.0000 0 12.011 2.577983289156711 4.532564823994139 -0.070467887533923 4 C 6.0000 0 12.011 3.894120849648845 6.895913018860075 -0.071469442384902 5 C 6.0000 0 12.011 2.581384796197769 9.131723596947664 -0.066877407879473 6 C 6.0000 0 12.011 -0.113723718739381 9.128756726917407 -0.062039708976635 7 C 6.0000 0 12.011 -1.423662977512253 6.891963491240179 -0.065290037926979 8 C 6.0000 0 12.011 -0.104388471637810 4.530901864996289 -0.068464777831967 9 C 6.0000 0 12.011 -1.421697662332975 2.168347355106601 -0.068899414842769 10 H 1.0000 0 1.008 -1.093849075358977 -1.871698146603643 -0.070543476579280 11 H 1.0000 0 1.008 3.575985455003202 -1.870148571173827 -0.069315154592232 12 H 1.0000 0 1.008 5.954564842508542 2.191269733111066 -0.069334051853571 13 H 1.0000 0 1.008 5.951805842353018 6.878489743905321 -0.076571702946489 14 H 1.0000 0 1.008 3.567538379184574 10.936997869943974 -0.066253798255279 15 H 1.0000 0 1.008 -1.103127630676531 10.932538116267921 -0.057107523767100 16 H 1.0000 0 1.008 -3.481177894864373 6.870911942108297 -0.064590839257428 17 H 1.0000 0 1.008 -3.478853531719650 2.185695041015998 -0.068181318911879 -------------------------------- INTERNAL COORDINATES (ANGSTROEM) -------------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 1.425900 0.000 0.000 C 2 1 0 1.372281 120.341 0.000 C 3 2 1 1.431021 120.459 0.000 C 4 3 2 1.431484 121.688 180.025 C 5 4 3 1.372003 120.468 180.132 C 6 5 4 1.426193 120.356 359.975 C 7 6 5 1.371702 120.417 359.914 C 4 3 2 1.419451 119.164 0.063 C 1 2 3 1.371818 120.466 359.975 H 1 2 3 1.088810 118.651 179.979 H 2 1 3 1.088643 118.725 179.982 H 3 2 1 1.088738 120.879 179.982 H 5 4 3 1.088922 118.628 0.152 H 6 5 4 1.088552 120.935 179.956 H 7 6 5 1.088688 118.683 179.957 H 8 7 6 1.088847 120.941 180.096 H 10 1 2 1.088639 120.949 180.023 --------------------------- INTERNAL COORDINATES (A.U.) --------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 2.694560 0.000 0.000 C 2 1 0 2.593234 120.341 0.000 C 3 2 1 2.704239 120.459 0.000 C 4 3 2 2.705113 121.688 180.025 C 5 4 3 2.592710 120.468 180.132 C 6 5 4 2.695114 120.356 359.975 C 7 6 5 2.592141 120.417 359.914 C 4 3 2 2.682373 119.164 0.063 C 1 2 3 2.592360 120.466 359.975 H 1 2 3 2.057553 118.651 179.979 H 2 1 3 2.057237 118.725 179.982 H 3 2 1 2.057417 120.879 179.982 H 5 4 3 2.057765 118.628 0.152 H 6 5 4 2.057065 120.935 179.956 H 7 6 5 2.057321 118.683 179.957 H 8 7 6 2.057623 120.941 180.096 H 10 1 2 2.057229 120.949 180.023 --------------------- BASIS SET INFORMATION --------------------- There are 2 groups of distinct atoms Group 1 Type C : 10s4p contracted to 3s2p pattern {631/31} Group 2 Type H : 4s contracted to 2s pattern {31} Atom 0C basis set group => 1 Atom 1C basis set group => 1 Atom 2C basis set group => 1 Atom 3C basis set group => 1 Atom 4C basis set group => 1 Atom 5C basis set group => 1 Atom 6C basis set group => 1 Atom 7C basis set group => 1 Atom 8C basis set group => 1 Atom 9C basis set group => 1 Atom 10H basis set group => 2 Atom 11H basis set group => 2 Atom 12H basis set group => 2 Atom 13H basis set group => 2 Atom 14H basis set group => 2 Atom 15H basis set group => 2 Atom 16H basis set group => 2 Atom 17H basis set group => 2 ------------------------------------------------------------------------------ ORCA GTO INTEGRAL CALCULATION ------------------------------------------------------------------------------ BASIS SET STATISTICS AND STARTUP INFO # of primitive gaussian shells ... 172 # of primitive gaussian functions ... 252 # of contracted shell ... 66 # of contracted basis functions ... 106 Highest angular momentum ... 1 Maximum contraction depth ... 6 Integral package used ... LIBINT Integral threshhold Thresh ... 2.500e-11 Primitive cut-off TCut ... 2.500e-12 INTEGRAL EVALUATION One electron integrals ... done Pre-screening matrix ... done Shell pair data ... done ( 0.003 sec) ------------------------------------------------------------------------------- ORCA SCF ------------------------------------------------------------------------------- ------------ SCF SETTINGS ------------ Hamiltonian: Ab initio Hamiltonian Method .... Hartree-Fock(GTOs) General Settings: Integral files IntName .... orca Hartree-Fock type HFTyp .... RHF Total Charge Charge .... 0 Multiplicity Mult .... 1 Number of Electrons NEL .... 68 Basis Dimension Dim .... 106 Nuclear Repulsion ENuc .... 456.5587927602 Eh Convergence Acceleration: DIIS CNVDIIS .... on Start iteration DIISMaxIt .... 12 Startup error DIISStart .... 0.200000 # of expansion vecs DIISMaxEq .... 5 Bias factor DIISBfac .... 1.050 Max. coefficient DIISMaxC .... 10.000 Newton-Raphson CNVNR .... off SOSCF CNVSOSCF .... on Start iteration SOSCFMaxIt .... 150 Startup grad/error SOSCFStart .... 0.003300 Level Shifting CNVShift .... on Level shift para. LevelShift .... 0.2500 Turn off err/grad. ShiftErr .... 0.0010 Zerner damping CNVZerner .... off Static damping CNVDamp .... on Fraction old density DampFac .... 0.7000 Max. Damping (<1) DampMax .... 0.9800 Min. Damping (>=0) DampMin .... 0.0000 Turn off err/grad. DampErr .... 0.1000 Fernandez-Rico CNVRico .... off SCF Procedure: Maximum # iterations MaxIter .... 125 SCF integral mode SCFMode .... Direct Integral package .... LIBINT Reset frequeny DirectResetFreq .... 20 Integral Threshold Thresh .... 2.500e-11 Eh Primitive CutOff TCut .... 2.500e-12 Eh Convergence Tolerance: Convergence Check Mode ConvCheckMode .... Total+1el-Energy Energy Change TolE .... 1.000e-08 Eh 1-El. energy change .... 1.000e-05 Eh Orbital Gradient TolG .... 1.000e-05 Orbital Rotation angle TolX .... 1.000e-05 DIIS Error TolErr .... 5.000e-07 Diagonalization of the overlap matrix: Smallest eigenvalue ... 4.155e-04 Time for diagonalization ... 0.129 sec Threshold for overlap eigenvalues ... 1.000e-08 Number of eigenvalues below threshold ... 0 Time for construction of square roots ... 0.001 sec Total time needed ... 0.130 sec ------------------- DFT GRID GENERATION ------------------- General Integration Accuracy IntAcc ... 4.340 Radial Grid Type RadialGrid ... Gauss-Chebyshev Angular Grid (max. acc.) AngularGrid ... Lebedev-110 Angular grid pruning method GridPruning ... 3 (G Style) Weight generation scheme WeightScheme... Becke Basis function cutoff BFCut ... 1.0000e-11 Integration weight cutoff WCut ... 1.0000e-14 Grids for H and He will be reduced by one unit # of grid points (after initial pruning) ... 22912 ( 0.0 sec) # of grid points (after weights+screening) ... 20986 ( 0.1 sec) nearest neighbour list constructed ... 0.0 sec Grid point re-assignment to atoms done ... 0.0 sec Grid point division into batches done ... 0.0 sec Reduced shell lists constructed in 0.5 sec Total number of grid points ... 20986 Total number of batches ... 341 Average number of points per batch ... 61 Average number of grid points per atom ... 1166 Average number of shells per batch ... 46.69 (70.75%) Average number of basis functions per batch ... 80.31 (75.77%) Average number of large shells per batch ... 35.94 (76.98%) Average number of large basis fcns per batch ... 63.48 (79.04%) Maximum spatial batch extension ... 17.72, 20.37, 25.60 au Average spatial batch extension ... 3.36, 3.42, 5.26 au Time for grid setup = 0.677 sec ------------------------------ INITIAL GUESS: MODEL POTENTIAL ------------------------------ Loading Hartree-Fock densities ... done Calculating cut-offs ... done Setting up the integral package ... done Initializing the effective Hamiltonian ... done Starting the Coulomb interaction ... done ( 0.4 sec) Reading the grid ... done Mapping shells ... done Starting the XC term evaluation ... done ( 0.4 sec) Transforming the Hamiltonian ... done ( 0.0 sec) Diagonalizing the Hamiltonian ... done ( 0.0 sec) Back transforming the eigenvectors ... done ( 0.0 sec) Now organizing SCF variables ... done ------------------ INITIAL GUESS DONE ( 1.7 sec) ------------------ -------------- SCF ITERATIONS -------------- ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp *** Starting incremental Fock matrix formation *** 0 -382.9203543057 0.000000000000 0.04003836 0.00388864 0.1455957 0.7000 1 -383.0210441826 -0.100689876914 0.03232926 0.00308139 0.0981123 0.7000 ***Turning on DIIS*** 2 -383.0856377804 -0.064593597766 0.08340258 0.00731537 0.0606378 0.0000 3 -382.7410971506 0.344540629839 0.01375200 0.00139022 0.0192604 0.0000 *** Initiating the SOSCF procedure *** *** Shutting down DIIS *** *** Re-Reading the Fockian *** *** Removing any level shift *** ITER Energy Delta-E Grad Rot Max-DP RMS-DP 4 -383.17767764 -0.4365804937 0.002971 0.002971 0.004609 0.000466 *** Restarting incremental Fock matrix formation *** 5 -383.22008075 -0.0424031031 0.001923 0.003816 0.002090 0.000184 6 -383.22013726 -0.0000565092 0.000949 0.003538 0.002154 0.000127 7 -383.22015335 -0.0000160928 0.000196 0.000450 0.000354 0.000028 8 -383.22015415 -0.0000008017 0.000069 0.000095 0.000101 0.000011 9 -383.22015428 -0.0000001295 0.000017 0.000036 0.000026 0.000003 10 -383.22015429 -0.0000000099 0.000006 0.000007 0.000006 0.000001 ***Gradient check signals convergence*** ***Rediagonalizing the Fockian in SOSCF/NRSCF*** ***************************************************** * SUCCESS * * SCF CONVERGED AFTER 11 CYCLES * ***************************************************** ---------------- TOTAL SCF ENERGY ---------------- Total Energy : -383.22015429 Eh -10427.95055 eV Components: Nuclear Repulsion : 456.55879276 Eh 12423.59635 eV Electronic Energy : -839.77894705 Eh -22851.54690 eV One Electron Energy: -1422.13892753 Eh -38698.36761 eV Two Electron Energy: 582.35998048 Eh 15846.82071 eV Virial components: Potential Energy : -766.43158247 Eh -20855.66364 eV Kinetic Energy : 383.21142818 Eh 10427.71310 eV Virial Ratio : 2.00002277 --------------- SCF CONVERGENCE --------------- Last Energy change ... -9.8316e-10 Tolerance : 1.0000e-08 Last MAX-Density change ... 1.2897e-06 Tolerance : 1.0000e-07 Last RMS-Density change ... 9.7304e-08 Tolerance : 5.0000e-09 Last Orbital Gradient ... 8.0759e-07 Tolerance : 1.0000e-05 Last Orbital Rotation ... 7.0233e-07 Tolerance : 1.0000e-05 **** THE GBW FILE WAS UPDATED (orca.gbw) **** **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) **** **** ENERGY FILE WAS UPDATED (orca.en.tmp) **** ---------------- ORBITAL ENERGIES ---------------- NO OCC E(Eh) E(eV) 0 2.0000 -11.250569 -306.1436 1 2.0000 -11.249542 -306.1156 2 2.0000 -11.242548 -305.9253 3 2.0000 -11.242504 -305.9241 4 2.0000 -11.242365 -305.9203 5 2.0000 -11.242294 -305.9184 6 2.0000 -11.241118 -305.8864 7 2.0000 -11.241096 -305.8858 8 2.0000 -11.240334 -305.8650 9 2.0000 -11.240323 -305.8647 10 2.0000 -1.176140 -32.0044 11 2.0000 -1.109640 -30.1948 12 2.0000 -1.048144 -28.5215 13 2.0000 -1.006949 -27.4005 14 2.0000 -0.982326 -26.7305 15 2.0000 -0.850100 -23.1324 16 2.0000 -0.833177 -22.6719 17 2.0000 -0.811822 -22.0908 18 2.0000 -0.701155 -19.0794 19 2.0000 -0.697564 -18.9817 20 2.0000 -0.676653 -18.4127 21 2.0000 -0.619752 -16.8643 22 2.0000 -0.608967 -16.5708 23 2.0000 -0.582026 -15.8377 24 2.0000 -0.581880 -15.8338 25 2.0000 -0.561812 -15.2877 26 2.0000 -0.530363 -14.4319 27 2.0000 -0.516635 -14.0583 28 2.0000 -0.480634 -13.0787 29 2.0000 -0.470657 -12.8072 30 2.0000 -0.444516 -12.0959 31 2.0000 -0.381394 -10.3783 32 2.0000 -0.317174 -8.6307 33 2.0000 -0.287347 -7.8191 34 0.0000 0.097698 2.6585 35 0.0000 0.130076 3.5395 36 0.0000 0.186591 5.0774 37 0.0000 0.235183 6.3996 38 0.0000 0.256759 6.9868 39 0.0000 0.261471 7.1150 40 0.0000 0.283593 7.7170 41 0.0000 0.307666 8.3720 42 0.0000 0.314403 8.5554 43 0.0000 0.321432 8.7466 44 0.0000 0.332737 9.0542 45 0.0000 0.354749 9.6532 46 0.0000 0.409140 11.1333 47 0.0000 0.410254 11.1636 48 0.0000 0.463321 12.6076 49 0.0000 0.483007 13.1433 50 0.0000 0.494903 13.4670 51 0.0000 0.498261 13.5584 52 0.0000 0.514050 13.9880 53 0.0000 0.537861 14.6359 54 0.0000 0.698862 19.0170 55 0.0000 0.717908 19.5353 56 0.0000 0.740382 20.1468 57 0.0000 0.744894 20.2696 58 0.0000 0.749221 20.3873 59 0.0000 0.771269 20.9873 60 0.0000 0.779272 21.2051 61 0.0000 0.789674 21.4881 62 0.0000 0.806732 21.9523 63 0.0000 0.811868 22.0921 64 0.0000 0.828405 22.5421 65 0.0000 0.858552 23.3624 66 0.0000 0.859907 23.3993 67 0.0000 0.869888 23.6709 68 0.0000 0.876571 23.8527 69 0.0000 0.880039 23.9471 70 0.0000 0.898203 24.4413 71 0.0000 0.904985 24.6259 72 0.0000 0.910699 24.7814 73 0.0000 0.920368 25.0445 74 0.0000 0.940582 25.5945 75 0.0000 0.941409 25.6170 76 0.0000 1.006064 27.3764 77 0.0000 1.078147 29.3379 78 0.0000 1.112027 30.2598 79 0.0000 1.121168 30.5085 80 0.0000 1.128962 30.7206 81 0.0000 1.129915 30.7465 82 0.0000 1.151085 31.3226 83 0.0000 1.175704 31.9925 84 0.0000 1.179653 32.1000 85 0.0000 1.215386 33.0723 86 0.0000 1.219943 33.1963 87 0.0000 1.236557 33.6484 88 0.0000 1.266588 34.4656 89 0.0000 1.302839 35.4521 90 0.0000 1.307677 35.5837 91 0.0000 1.347830 36.6763 92 0.0000 1.348665 36.6990 93 0.0000 1.358257 36.9600 94 0.0000 1.385231 37.6940 95 0.0000 1.428565 38.8732 96 0.0000 1.494145 40.6577 97 0.0000 1.502478 40.8845 98 0.0000 1.561977 42.5036 99 0.0000 1.622885 44.1609 100 0.0000 1.724057 46.9140 101 0.0000 1.755980 47.7827 102 0.0000 1.784245 48.5518 103 0.0000 1.827428 49.7268 104 0.0000 2.186521 59.4983 105 0.0000 2.187889 59.5355 ******************************** * MULLIKEN POPULATION ANALYSIS * ******************************** ----------------------- MULLIKEN ATOMIC CHARGES ----------------------- 0 C : -0.210079 1 C : -0.209436 2 C : -0.165681 3 C : -0.073071 4 C : -0.165262 5 C : -0.209637 6 C : -0.209816 7 C : -0.165364 8 C : -0.073720 9 C : -0.164845 10 H : 0.201290 11 H : 0.201706 12 H : 0.210132 13 H : 0.210139 14 H : 0.201631 15 H : 0.201437 16 H : 0.210198 17 H : 0.210377 Sum of atomic charges: 0.0000000 -------------------------------- MULLIKEN REDUCED ORBITAL CHARGES -------------------------------- 0 C s : 3.187517 s : 3.187517 pz : 1.003739 p : 3.022563 px : 0.946297 py : 1.072526 1 C s : 3.187019 s : 3.187019 pz : 1.004005 p : 3.022417 px : 0.946208 py : 1.072204 2 C s : 3.137897 s : 3.137897 pz : 1.002440 p : 3.027784 px : 1.116755 py : 0.908589 3 C s : 3.136201 s : 3.136201 pz : 0.987198 p : 2.936870 px : 0.908565 py : 1.041107 4 C s : 3.137659 s : 3.137659 pz : 1.002543 p : 3.027603 px : 1.116657 py : 0.908403 5 C s : 3.187151 s : 3.187151 pz : 1.003982 p : 3.022485 px : 0.946037 py : 1.072466 6 C s : 3.187317 s : 3.187317 pz : 1.003774 p : 3.022499 px : 0.946485 py : 1.072240 7 C s : 3.137521 s : 3.137521 pz : 1.002784 p : 3.027843 px : 1.116543 py : 0.908516 8 C s : 3.136534 s : 3.136534 pz : 0.986715 p : 2.937185 px : 0.908725 py : 1.041745 9 C s : 3.137235 s : 3.137235 pz : 1.002820 p : 3.027610 px : 1.116530 py : 0.908259 10 H s : 0.798710 s : 0.798710 11 H s : 0.798294 s : 0.798294 12 H s : 0.789868 s : 0.789868 13 H s : 0.789861 s : 0.789861 14 H s : 0.798369 s : 0.798369 15 H s : 0.798563 s : 0.798563 16 H s : 0.789802 s : 0.789802 17 H s : 0.789623 s : 0.789623 ******************************* * LOEWDIN POPULATION ANALYSIS * ******************************* ---------------------- LOEWDIN ATOMIC CHARGES ---------------------- 0 C : -0.124773 1 C : -0.124901 2 C : -0.111315 3 C : -0.023975 4 C : -0.111339 5 C : -0.124892 6 C : -0.124770 7 C : -0.111531 8 C : -0.023723 9 C : -0.111525 10 H : 0.124067 11 H : 0.124242 12 H : 0.123992 13 H : 0.123994 14 H : 0.124215 15 H : 0.124131 16 H : 0.124011 17 H : 0.124092 ------------------------------- LOEWDIN REDUCED ORBITAL CHARGES ------------------------------- 0 C s : 2.940758 s : 2.940758 pz : 1.003498 p : 3.184015 px : 1.077353 py : 1.103164 1 C s : 2.940814 s : 2.940814 pz : 1.003773 p : 3.184087 px : 1.077218 py : 1.103095 2 C s : 2.937356 s : 2.937356 pz : 1.004045 p : 3.173959 px : 1.101288 py : 1.068625 3 C s : 2.895924 s : 2.895924 pz : 0.984437 p : 3.128051 px : 1.073508 py : 1.070107 4 C s : 2.937396 s : 2.937396 pz : 1.004150 p : 3.173943 px : 1.101271 py : 1.068521 5 C s : 2.940804 s : 2.940804 pz : 1.003745 p : 3.184088 px : 1.077167 py : 1.103176 6 C s : 2.940767 s : 2.940767 pz : 1.003549 p : 3.184003 px : 1.077275 py : 1.103179 7 C s : 2.937265 s : 2.937265 pz : 1.004369 p : 3.174266 px : 1.101267 py : 1.068630 8 C s : 2.895998 s : 2.895998 pz : 0.984013 p : 3.127725 px : 1.073567 py : 1.070145 9 C s : 2.937292 s : 2.937292 pz : 1.004421 p : 3.174233 px : 1.101351 py : 1.068461 10 H s : 0.875933 s : 0.875933 11 H s : 0.875758 s : 0.875758 12 H s : 0.876008 s : 0.876008 13 H s : 0.876006 s : 0.876006 14 H s : 0.875785 s : 0.875785 15 H s : 0.875869 s : 0.875869 16 H s : 0.875989 s : 0.875989 17 H s : 0.875908 s : 0.875908 ***************************** * MAYER POPULATION ANALYSIS * ***************************** NA - Mulliken gross atomic population ZA - Total nuclear charge QA - Mulliken gross atomic charge VA - Mayer's total valence BVA - Mayer's bonded valence FA - Mayer's free valence ATOM NA ZA QA VA BVA FA 0 C 6.2101 6.0000 -0.2101 3.8641 3.8641 0.0000 1 C 6.2094 6.0000 -0.2094 3.8637 3.8637 0.0000 2 C 6.1657 6.0000 -0.1657 3.8827 3.8827 -0.0000 3 C 6.0731 6.0000 -0.0731 3.8738 3.8738 -0.0000 4 C 6.1653 6.0000 -0.1653 3.8826 3.8826 0.0000 5 C 6.2096 6.0000 -0.2096 3.8639 3.8639 -0.0000 6 C 6.2098 6.0000 -0.2098 3.8640 3.8640 -0.0000 7 C 6.1654 6.0000 -0.1654 3.8826 3.8826 -0.0000 8 C 6.0737 6.0000 -0.0737 3.8742 3.8742 0.0000 9 C 6.1648 6.0000 -0.1648 3.8825 3.8825 0.0000 10 H 0.7987 1.0000 0.2013 0.9338 0.9338 0.0000 11 H 0.7983 1.0000 0.2017 0.9337 0.9337 -0.0000 12 H 0.7899 1.0000 0.2101 0.9288 0.9288 0.0000 13 H 0.7899 1.0000 0.2101 0.9288 0.9288 0.0000 14 H 0.7984 1.0000 0.2016 0.9337 0.9337 -0.0000 15 H 0.7986 1.0000 0.2014 0.9338 0.9338 0.0000 16 H 0.7898 1.0000 0.2102 0.9287 0.9287 -0.0000 17 H 0.7896 1.0000 0.2104 0.9287 0.9287 -0.0000 Mayer bond orders larger than 0.1 B( 0-C , 1-C ) : 1.2744 B( 0-C , 9-C ) : 1.6171 B( 0-C , 10-H ) : 0.9418 B( 1-C , 2-C ) : 1.6169 B( 1-C , 11-H ) : 0.9416 B( 2-C , 3-C ) : 1.2534 B( 2-C , 12-H ) : 0.9356 B( 3-C , 4-C ) : 1.2527 B( 3-C , 8-C ) : 1.3514 B( 4-C , 5-C ) : 1.6177 B( 4-C , 13-H ) : 0.9356 B( 5-C , 6-C ) : 1.2739 B( 5-C , 14-H ) : 0.9416 B( 6-C , 7-C ) : 1.6177 B( 6-C , 15-H ) : 0.9417 B( 7-C , 8-C ) : 1.2528 B( 7-C , 16-H ) : 0.9356 B( 8-C , 9-C ) : 1.2532 B( 9-C , 17-H ) : 0.9355 ------- TIMINGS ------- Total SCF time: 0 days 0 hours 1 min 0 sec Total time .... 60.552 sec Sum of individual times .... 62.924 sec (103.9%) Fock matrix formation .... 60.447 sec ( 99.8%) Diagonalization .... 0.022 sec ( 0.0%) Density matrix formation .... 0.005 sec ( 0.0%) Population analysis .... 0.024 sec ( 0.0%) Initial guess .... 1.715 sec ( 2.8%) Orbital Transformation .... 0.000 sec ( 0.0%) Orbital Orthonormalization .... 0.000 sec ( 0.0%) DIIS solution .... 0.007 sec ( 0.0%) SOSCF solution .... 0.027 sec ( 0.0%) ------------------------- -------------------- FINAL SINGLE POINT ENERGY -383.220154291480 ------------------------- -------------------- ------------------------------------------------------------------------------ ORCA SCF GRADIENT CALCULATION ------------------------------------------------------------------------------ Gradient of the Hartree-Fock SCF energy: Hartree-Fock type ... RHF Number of operators ... 1 Number of atoms ... 18 Basis set dimensions ... 106 Integral neglect threshold ... 2.5e-11 Integral primitive cutoff ... 2.5e-12 Nuclear repulsion gradient ... done One Electron Gradient ... done Pre-screening matrix ... done Starting the two electron gradient: Two electron gradient done ------------------ CARTESIAN GRADIENT ------------------ 1 C : 0.001696057 0.001051372 0.000013410 2 C : -0.001494677 -0.000179347 -0.000032382 3 C : 0.001609669 0.002105412 0.000076382 4 C : -0.003008134 -0.000214954 -0.000067622 5 C : 0.001530848 -0.001648837 0.000025838 6 C : -0.001278488 -0.000072972 -0.000077788 7 C : 0.001376422 -0.000757189 0.000117827 8 C : -0.001565313 -0.001455422 -0.000071984 9 C : 0.003244839 0.000066305 0.000033040 10 C : -0.002138441 0.001342431 0.000004720 11 H : -0.004192198 -0.010869527 -0.000017748 12 H : 0.004211100 -0.010813166 0.000012928 13 H : 0.010964226 0.000741203 0.000021857 14 H : 0.011092462 -0.000785664 -0.000087459 15 H : 0.004143591 0.010762833 0.000022922 16 H : -0.004202509 0.010799727 0.000058719 17 H : -0.011051061 -0.000886694 -0.000036881 18 H : -0.010938395 0.000814489 0.000004221 Norm of the cartesian gradient ... 0.032838944 RMS gradient ... 0.004468814 MAX gradient ... 0.011092462 ------- TIMINGS ------- Total SCF gradient time ... 16.891 sec One electron gradient .... 0.284 sec ( 1.7%) Prescreening matrices .... 0.089 sec ( 0.5%) Two electron gradient .... 16.320 sec ( 96.6%) ------------------------------------------------------------------------------ ORCA GEOMETRY RELAXATION STEP ------------------------------------------------------------------------------ Reading the OPT-File .... done Getting information on internals .... done Copying old internal coords+grads .... done Making the new internal coordinates .... (new redundants).... done Validating the new internal coordinates .... (new redundants).... done Calculating the B-matrix .... done Calculating the G,G- and P matrices .... done Transforming gradient to internals .... done Projecting the internal gradient .... done Number of atoms .... 18 Number of internal coordinates .... 93 Current Energy .... -383.220154291 Eh Current gradient norm .... 0.032838944 Eh/bohr Maximum allowed component of the step .... 0.300 Current trust radius .... 0.300 Evaluating the initial hessian .... (Almloef) done Projecting the Hessian .... done Forming the augmented Hessian .... done Diagonalizing the augmented Hessian .... done Last element of RFO vector .... 0.994364937 Lowest eigenvalues of augmented Hessian: -0.004965439 0.020033141 0.020274322 0.020341775 0.023076712 Length of the computed step .... 0.106611956 The final length of the internal step .... 0.106611956 Converting the step to cartesian space: Initial RMS(Int)= 0.0110551449 Transforming coordinates: Iter 0: RMS(Cart)= 0.0243122706 RMS(Int)= 0.6515742969 Iter 1: RMS(Cart)= 0.0000513649 RMS(Int)= 0.0000264071 Iter 2: RMS(Cart)= 0.0000007586 RMS(Int)= 0.0000004176 Iter 3: RMS(Cart)= 0.0000000104 RMS(Int)= 0.0000000059 done Storing new coordinates .... done .--------------------. ----------------------|Geometry convergence|--------------------- Item value Tolerance Converged ----------------------------------------------------------------- RMS gradient 0.00498796 0.00010000 NO MAX gradient 0.01258056 0.00030000 NO RMS step 0.01105514 0.00200000 NO MAX step 0.03149843 0.00400000 NO .................................................... Max(Bonds) 0.0167 Max(Angles) 0.31 Max(Dihed) 0.12 Max(Improp) 0.00 ----------------------------------------------------------------- The optimization has not yet converged - more geometry cycles are needed --------------------------------------------------------------------------- Redundant Internal Coordinates (Angstroem and degrees) Definition Value dE/dq Step New-Value ---------------------------------------------------------------------------- 1. B(C 1,C 0) 1.4259 0.009340 -0.0091 1.4168 2. B(C 2,C 1) 1.3723 0.012581 -0.0100 1.3623 3. B(C 3,C 2) 1.4310 0.009758 -0.0094 1.4216 4. B(C 4,C 3) 1.4315 0.010004 -0.0097 1.4218 5. B(C 5,C 4) 1.3720 0.012417 -0.0098 1.3622 6. B(C 6,C 5) 1.4262 0.009459 -0.0092 1.4169 7. B(C 7,C 6) 1.3717 0.012158 -0.0096 1.3621 8. B(C 8,C 7) 1.4312 0.009783 -0.0095 1.4218 9. B(C 8,C 3) 1.4195 0.008972 -0.0080 1.4114 10. B(C 9,C 8) 1.4314 0.009982 -0.0097 1.4218 11. B(C 9,C 0) 1.3718 0.012185 -0.0097 1.3622 12. B(H 10,C 0) 1.0888 0.011549 -0.0167 1.0721 13. B(H 11,C 1) 1.0886 0.011506 -0.0166 1.0720 14. B(H 12,C 2) 1.0887 0.010971 -0.0158 1.0729 15. B(H 13,C 4) 1.0889 0.011099 -0.0160 1.0729 16. B(H 14,C 5) 1.0886 0.011432 -0.0165 1.0721 17. B(H 15,C 6) 1.0887 0.011490 -0.0166 1.0721 18. B(H 16,C 7) 1.0888 0.011060 -0.0160 1.0729 19. B(H 17,C 9) 1.0886 0.010945 -0.0158 1.0729 20. A(C 9,C 0,H 10) 120.88 0.001312 -0.20 120.68 21. A(C 1,C 0,H 10) 118.65 -0.001842 0.31 118.96 22. A(C 1,C 0,C 9) 120.47 0.000530 -0.11 120.36 23. A(C 0,C 1,C 2) 120.34 0.000025 -0.04 120.30 24. A(C 2,C 1,H 11) 120.93 0.001535 -0.23 120.70 25. A(C 0,C 1,H 11) 118.73 -0.001559 0.27 118.99 26. A(C 1,C 2,C 3) 120.46 -0.001108 0.16 120.62 27. A(C 1,C 2,H 12) 120.88 0.001210 -0.18 120.69 28. A(C 3,C 2,H 12) 118.66 -0.000103 0.02 118.69 29. A(C 2,C 3,C 4) 121.69 -0.001776 0.20 121.88 30. A(C 2,C 3,C 8) 119.16 0.000904 -0.10 119.06 31. A(C 4,C 3,C 8) 119.15 0.000872 -0.10 119.05 32. A(C 5,C 4,H 13) 120.90 0.001266 -0.19 120.71 33. A(C 3,C 4,H 13) 118.63 -0.000157 0.03 118.66 34. A(C 3,C 4,C 5) 120.47 -0.001109 0.16 120.63 35. A(C 6,C 5,H 14) 118.71 -0.001605 0.27 118.98 36. A(C 4,C 5,H 14) 120.93 0.001529 -0.23 120.71 37. A(C 4,C 5,C 6) 120.36 0.000076 -0.04 120.31 38. A(C 7,C 6,H 15) 120.90 0.001373 -0.21 120.69 39. A(C 5,C 6,H 15) 118.68 -0.001732 0.29 118.97 40. A(C 5,C 6,C 7) 120.42 0.000358 -0.08 120.34 41. A(C 8,C 7,H 16) 118.61 -0.000234 0.04 118.65 42. A(C 6,C 7,H 16) 120.94 0.001358 -0.21 120.73 43. A(C 6,C 7,C 8) 120.45 -0.001124 0.17 120.62 44. A(C 7,C 8,C 9) 121.66 -0.001937 0.22 121.88 45. A(C 3,C 8,C 9) 119.18 0.001010 -0.11 119.06 46. A(C 3,C 8,C 7) 119.16 0.000927 -0.10 119.06 47. A(C 8,C 9,H 17) 118.66 -0.000062 0.02 118.68 48. A(C 0,C 9,H 17) 120.95 0.001424 -0.22 120.73 49. A(C 0,C 9,C 8) 120.39 -0.001362 0.20 120.59 50. D(H 11,C 1,C 0,H 10) -0.04 -0.000009 0.02 -0.02 51. D(C 2,C 1,C 0,C 9) -0.03 -0.000007 0.02 -0.01 52. D(H 11,C 1,C 0,C 9) 179.96 -0.000012 0.03 179.99 53. D(C 2,C 1,C 0,H 10) 179.98 -0.000004 0.01 179.99 54. D(C 3,C 2,C 1,C 0) -0.01 -0.000010 0.02 0.01 55. D(H 12,C 2,C 1,H 11) 0.00 0.000001 -0.00 -0.00 56. D(C 3,C 2,C 1,H 11) -180.00 -0.000005 0.01 -179.99 57. D(H 12,C 2,C 1,C 0) 179.98 -0.000004 0.01 179.99 58. D(C 8,C 3,C 2,H 12) -179.93 0.000021 -0.05 -179.98 59. D(C 4,C 3,C 2,H 12) 0.03 0.000010 -0.02 0.01 60. D(C 4,C 3,C 2,C 1) -179.98 0.000016 -0.03 -180.01 61. D(C 8,C 3,C 2,C 1) 0.06 0.000027 -0.06 0.00 62. D(H 13,C 4,C 3,C 2) 0.15 0.000045 -0.10 0.05 63. D(C 5,C 4,C 3,C 8) 0.09 0.000035 -0.07 0.02 64. D(C 5,C 4,C 3,C 2) -179.87 0.000046 -0.10 -179.97 65. D(H 13,C 4,C 3,C 8) -179.89 0.000034 -0.07 -179.96 66. D(H 14,C 5,C 4,H 13) -0.06 -0.000024 0.04 -0.02 67. D(H 14,C 5,C 4,C 3) 179.96 -0.000026 0.04 180.00 68. D(C 6,C 5,C 4,H 13) 179.95 -0.000004 0.01 179.97 69. D(C 6,C 5,C 4,C 3) -0.02 -0.000005 0.01 -0.01 70. D(H 15,C 6,C 5,H 14) -0.02 0.000003 -0.00 -0.03 71. D(H 15,C 6,C 5,C 4) 179.96 -0.000017 0.03 179.98 72. D(C 7,C 6,C 5,H 14) 179.93 -0.000025 0.06 179.99 73. D(C 7,C 6,C 5,C 4) -0.09 -0.000045 0.09 -0.00 74. D(H 16,C 7,C 6,H 15) 0.05 0.000010 -0.01 0.04 75. D(H 16,C 7,C 6,C 5) -179.90 0.000040 -0.07 -179.98 76. D(C 8,C 7,C 6,H 15) -179.92 0.000033 -0.06 -179.98 77. D(C 8,C 7,C 6,C 5) 0.13 0.000063 -0.12 0.01 78. D(C 9,C 8,C 3,C 2) -0.07 -0.000028 0.06 -0.01 79. D(C 7,C 8,C 3,C 4) -0.05 -0.000017 0.04 -0.02 80. D(C 7,C 8,C 3,C 2) 179.91 -0.000029 0.07 179.97 81. D(C 9,C 8,C 7,H 16) -0.05 -0.000011 0.02 -0.03 82. D(C 9,C 8,C 7,C 6) 179.93 -0.000033 0.06 179.99 83. D(C 3,C 8,C 7,H 16) 179.97 -0.000010 0.01 179.99 84. D(C 3,C 8,C 7,C 6) -0.06 -0.000032 0.06 0.00 85. D(C 9,C 8,C 3,C 4) 179.97 -0.000016 0.03 180.00 86. D(H 17,C 9,C 8,C 7) 0.05 0.000008 -0.03 0.02 87. D(C 0,C 9,C 8,C 7) -179.95 0.000011 -0.03 -179.98 88. D(C 0,C 9,C 8,C 3) 0.03 0.000010 -0.02 0.01 89. D(H 17,C 9,C 0,H 10) 0.02 0.000007 -0.01 0.01 90. D(H 17,C 9,C 0,C 1) -179.98 0.000010 -0.02 -180.00 91. D(H 17,C 9,C 8,C 3) -179.97 0.000008 -0.02 -179.99 92. D(C 8,C 9,C 0,H 10) -179.99 0.000004 -0.01 -180.00 93. D(C 8,C 9,C 0,C 1) 0.01 0.000007 -0.02 -0.00 ---------------------------------------------------------------------------- ************************************************************* * GEOMETRY OPTIMIZATION CYCLE 2 * ************************************************************* --------------------------------- CARTESIAN COORDINATES (ANGSTROEM) --------------------------------- C -0.052248 -0.020593 -0.036774 C 1.364531 -0.020013 -0.037548 C 2.051444 1.156419 -0.037609 C 1.360089 2.398565 -0.036747 C 2.049730 3.641896 -0.036664 C 1.361337 4.817301 -0.035188 C -0.055611 4.816192 -0.033990 C -0.742619 3.640064 -0.034322 C -0.051312 2.397668 -0.035736 C -0.741192 1.154503 -0.035896 H -0.570976 -0.958895 -0.036949 H 1.884533 -0.957500 -0.037990 H 3.124324 1.164178 -0.038074 H 3.122605 3.635250 -0.038121 H 1.880082 5.755508 -0.035085 H -0.575685 5.753712 -0.032566 H -1.815469 3.631809 -0.033767 H -1.814024 1.161046 -0.035244 ---------------------------- CARTESIAN COORDINATES (A.U.) ---------------------------- NO LB ZA FRAG MASS X Y Z 0 C 6.0000 0 12.011 -0.098733479797658 -0.038915561382531 -0.069491984977217 1 C 6.0000 0 12.011 2.578589794761612 -0.037819562485171 -0.070955541163103 2 C 6.0000 0 12.011 3.876668179793008 2.185315761533276 -0.071070611788642 3 C 6.0000 0 12.011 2.570195670930886 4.532630311872078 -0.069441129151293 4 C 6.0000 0 12.011 3.873428694815066 6.882186446392776 -0.069284627450152 5 C 6.0000 0 12.011 2.572553887832906 9.103379044753849 -0.066496265243751 6 C 6.0000 0 12.011 -0.105089969180226 9.101283093158170 -0.064232648677400 7 C 6.0000 0 12.011 -1.403345601081815 6.878723958841918 -0.064859726029489 8 C 6.0000 0 12.011 -0.096965995674478 4.530936542855200 -0.067530881603696 9 C 6.0000 0 12.011 -1.400650592314727 2.181694383694877 -0.067833870681690 10 H 1.0000 0 1.008 -1.078987912410004 -1.812048247606288 -0.069822859621986 11 H 1.0000 0 1.008 3.561250435943879 -1.809411930824439 -0.071791486760127 12 H 1.0000 0 1.008 5.904117421170696 2.199976666640510 -0.071949481238643 13 H 1.0000 0 1.008 5.900869005519506 6.869627316098091 -0.072037792821090 14 H 1.0000 0 1.008 3.552839779345730 10.876333231079032 -0.066300494694851 15 H 1.0000 0 1.008 -1.087886470840935 10.872939865589062 -0.061540895477189 16 H 1.0000 0 1.008 -3.430739676828470 6.863125280262270 -0.063810831396376 17 H 1.0000 0 1.008 -3.428008588414236 2.194059292380719 -0.066601632060434 -------------------------------- INTERNAL COORDINATES (ANGSTROEM) -------------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 1.416779 0.000 0.000 C 2 1 0 1.362294 120.304 0.000 C 3 2 1 1.421583 120.620 0.000 C 4 3 2 1.421787 121.885 179.994 C 5 4 3 1.362154 120.628 180.031 C 6 5 4 1.416949 120.311 0.000 C 7 6 5 1.362078 120.335 0.000 C 4 3 2 1.411402 119.063 0.000 C 1 2 3 1.362166 120.359 0.000 H 1 2 3 1.072142 118.959 179.987 H 2 1 3 1.072046 118.993 179.994 H 3 2 1 1.072908 120.695 179.993 H 5 4 3 1.072897 118.661 0.052 H 6 5 4 1.072067 120.705 179.998 H 7 6 5 1.072111 118.974 179.983 H 8 7 6 1.072883 120.731 180.022 H 10 1 2 1.072852 120.732 180.004 --------------------------- INTERNAL COORDINATES (A.U.) --------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 2.677324 0.000 0.000 C 2 1 0 2.574362 120.304 0.000 C 3 2 1 2.686403 120.620 0.000 C 4 3 2 2.686788 121.885 179.994 C 5 4 3 2.574098 120.628 180.031 C 6 5 4 2.677646 120.311 0.000 C 7 6 5 2.573954 120.335 0.000 C 4 3 2 2.667163 119.063 0.000 C 1 2 3 2.574121 120.359 0.000 H 1 2 3 2.026055 118.959 179.987 H 2 1 3 2.025873 118.993 179.994 H 3 2 1 2.027502 120.695 179.993 H 5 4 3 2.027481 118.661 0.052 H 6 5 4 2.025914 120.705 179.998 H 7 6 5 2.025997 118.974 179.983 H 8 7 6 2.027454 120.731 180.022 H 10 1 2 2.027396 120.732 180.004 Diagonalization of the overlap matrix: Smallest eigenvalue ... 3.796e-04 Time for diagonalization ... 0.004 sec Threshold for overlap eigenvalues ... 1.000e-08 Number of eigenvalues below threshold ... 0 Time for construction of square roots ... 0.001 sec Total time needed ... 0.005 sec -------------- SCF ITERATIONS -------------- ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp *** Starting incremental Fock matrix formation *** 0 -383.2220364057 0.000000000000 0.00150523 0.00014792 0.0063690 0.7000 *** Initiating the SOSCF procedure *** *** Re-Reading the Fockian *** *** Removing any level shift *** ITER Energy Delta-E Grad Rot Max-DP RMS-DP 1 -383.22221558 -0.0001791753 0.000701 0.000701 0.003871 0.000382 *** Restarting incremental Fock matrix formation *** 2 -383.22264398 -0.0004283952 0.000892 0.000770 0.000801 0.000085 3 -383.22266066 -0.0000166843 0.000194 0.000204 0.000318 0.000025 4 -383.22266209 -0.0000014301 0.000029 0.000049 0.000060 0.000005 5 -383.22266213 -0.0000000385 0.000016 0.000034 0.000024 0.000002 **** Energy Check signals convergence **** ***Rediagonalizing the Fockian in SOSCF/NRSCF*** ***************************************************** * SUCCESS * * SCF CONVERGED AFTER 6 CYCLES * ***************************************************** Total Energy : -383.22266214 Eh -10428.01879 eV Last Energy change ... -7.6094e-09 Tolerance : 1.0000e-08 Last MAX-Density change ... 7.1934e-06 Tolerance : 1.0000e-07 **** THE GBW FILE WAS UPDATED (orca.gbw) **** **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) **** **** ENERGY FILE WAS UPDATED (orca.en.tmp) **** Total SCF time: 0 days 0 hours 0 min 35 sec ------------------------- -------------------- FINAL SINGLE POINT ENERGY -383.222662136691 ------------------------- -------------------- ------------------------------------------------------------------------------ ORCA SCF GRADIENT CALCULATION ------------------------------------------------------------------------------ Gradient of the Hartree-Fock SCF energy: Hartree-Fock type ... RHF Number of operators ... 1 Number of atoms ... 18 Basis set dimensions ... 106 Integral neglect threshold ... 2.5e-11 Integral primitive cutoff ... 2.5e-12 Nuclear repulsion gradient ... done One Electron Gradient ... done Pre-screening matrix ... done Starting the two electron gradient: Two electron gradient done ------------------ CARTESIAN GRADIENT ------------------ 1 C : -0.001254309 -0.000094821 0.000013101 2 C : 0.001397106 -0.000600071 -0.000003103 3 C : 0.002118992 -0.000459302 -0.000006042 4 C : -0.002257824 -0.000108723 -0.000005348 5 C : 0.002115599 0.000676446 0.000025254 6 C : 0.001493913 0.000440657 0.000015639 7 C : -0.001427607 0.000204594 -0.000040961 8 C : -0.002185391 0.000789584 0.000043303 9 C : 0.002371944 -0.000009489 -0.000020244 10 C : -0.002383734 -0.000770651 0.000001326 11 H : 0.001205447 0.000124283 -0.000008473 12 H : -0.001208981 0.000167854 0.000008038 13 H : -0.000756752 0.000402681 0.000009468 14 H : -0.000765985 -0.000447293 -0.000030365 15 H : -0.001214390 -0.000153654 -0.000000396 16 H : 0.001200342 -0.000138125 0.000020678 17 H : 0.000770849 -0.000486260 -0.000021000 18 H : 0.000780781 0.000462288 -0.000000876 Norm of the cartesian gradient ... 0.007038833 RMS gradient ... 0.000957864 MAX gradient ... 0.002383734 ------- TIMINGS ------- Total SCF gradient time ... 17.325 sec One electron gradient .... 0.281 sec ( 1.6%) Prescreening matrices .... 0.090 sec ( 0.5%) Two electron gradient .... 16.777 sec ( 96.8%) ------------------------------------------------------------------------------ ORCA GEOMETRY RELAXATION STEP ------------------------------------------------------------------------------ Reading the OPT-File .... done Getting information on internals .... done Copying old internal coords+grads .... done Making the new internal coordinates .... (new redundants).... done Validating the new internal coordinates .... (new redundants).... done Calculating the B-matrix .... done Calculating the G,G- and P matrices .... done Transforming gradient to internals .... done Projecting the internal gradient .... done Number of atoms .... 18 Number of internal coordinates .... 93 Current Energy .... -383.222662137 Eh Current gradient norm .... 0.007038833 Eh/bohr Maximum allowed component of the step .... 0.300 Current trust radius .... 0.300 Updating the Hessian (BFGS) .... done Forming the augmented Hessian .... done Diagonalizing the augmented Hessian .... done Last element of RFO vector .... 0.999921739 Lowest eigenvalues of augmented Hessian: -0.000059361 0.020032933 0.020274325 0.020341474 0.023076530 Length of the computed step .... 0.012511607 The final length of the internal step .... 0.012511607 Converting the step to cartesian space: Initial RMS(Int)= 0.0012973932 Transforming coordinates: Iter 0: RMS(Cart)= 0.0020133060 RMS(Int)= 0.9213953878 Iter 1: RMS(Cart)= 0.0000041406 RMS(Int)= 0.0000024950 Iter 2: RMS(Cart)= 0.0000000097 RMS(Int)= 0.0000000058 done Storing new coordinates .... done .--------------------. ----------------------|Geometry convergence|--------------------- Item value Tolerance Converged ----------------------------------------------------------------- Energy change -0.00250785 0.00000500 NO RMS gradient 0.00050125 0.00010000 NO MAX gradient 0.00120124 0.00030000 NO RMS step 0.00129739 0.00200000 YES MAX step 0.00344136 0.00400000 YES .................................................... Max(Bonds) 0.0010 Max(Angles) 0.20 Max(Dihed) 0.04 Max(Improp) 0.00 ----------------------------------------------------------------- The optimization has not yet converged - more geometry cycles are needed --------------------------------------------------------------------------- Redundant Internal Coordinates (Angstroem and degrees) Definition Value dE/dq Step New-Value ---------------------------------------------------------------------------- 1. B(C 1,C 0) 1.4168 0.000632 -0.0007 1.4160 2. B(C 2,C 1) 1.3623 0.000482 -0.0005 1.3618 3. B(C 3,C 2) 1.4216 0.000757 -0.0009 1.4207 4. B(C 4,C 3) 1.4218 0.000850 -0.0009 1.4208 5. B(C 5,C 4) 1.3622 0.000413 -0.0005 1.3617 6. B(C 6,C 5) 1.4169 0.000704 -0.0008 1.4161 7. B(C 7,C 6) 1.3621 0.000347 -0.0004 1.3617 8. B(C 8,C 7) 1.4218 0.000829 -0.0009 1.4209 9. B(C 8,C 3) 1.4114 -0.000415 0.0003 1.4117 10. B(C 9,C 8) 1.4218 0.000855 -0.0010 1.4208 11. B(C 9,C 0) 1.3622 0.000385 -0.0004 1.3617 12. B(H 10,C 0) 1.0721 -0.000692 0.0008 1.0730 13. B(H 11,C 1) 1.0720 -0.000733 0.0009 1.0729 14. B(H 12,C 2) 1.0729 -0.000754 0.0009 1.0738 15. B(H 13,C 4) 1.0729 -0.000763 0.0009 1.0738 16. B(H 14,C 5) 1.0721 -0.000722 0.0009 1.0729 17. B(H 15,C 6) 1.0721 -0.000703 0.0008 1.0729 18. B(H 16,C 7) 1.0729 -0.000767 0.0009 1.0738 19. B(H 17,C 9) 1.0729 -0.000778 0.0009 1.0738 20. A(C 9,C 0,H 10) 120.68 0.000814 -0.14 120.54 21. A(C 1,C 0,H 10) 118.96 -0.001201 0.20 119.16 22. A(C 1,C 0,C 9) 120.36 0.000387 -0.06 120.30 23. A(C 0,C 1,C 2) 120.30 0.000161 -0.03 120.28 24. A(C 2,C 1,H 11) 120.70 0.000908 -0.15 120.55 25. A(C 0,C 1,H 11) 118.99 -0.001069 0.18 119.17 26. A(C 1,C 2,C 3) 120.62 -0.000622 0.09 120.71 27. A(C 1,C 2,H 12) 120.69 0.000725 -0.11 120.58 28. A(C 3,C 2,H 12) 118.69 -0.000103 0.02 118.71 29. A(C 2,C 3,C 4) 121.88 -0.000768 0.10 121.99 30. A(C 2,C 3,C 8) 119.06 0.000403 -0.05 119.01 31. A(C 4,C 3,C 8) 119.05 0.000364 -0.05 119.00 32. A(C 5,C 4,H 13) 120.71 0.000759 -0.12 120.59 33. A(C 3,C 4,H 13) 118.66 -0.000158 0.03 118.69 34. A(C 3,C 4,C 5) 120.63 -0.000601 0.09 120.71 35. A(C 6,C 5,H 14) 118.98 -0.001096 0.18 119.17 36. A(C 4,C 5,H 14) 120.71 0.000906 -0.15 120.55 37. A(C 4,C 5,C 6) 120.31 0.000190 -0.03 120.28 38. A(C 7,C 6,H 15) 120.69 0.000848 -0.14 120.55 39. A(C 5,C 6,H 15) 118.97 -0.001143 0.19 119.16 40. A(C 5,C 6,C 7) 120.34 0.000295 -0.05 120.29 41. A(C 8,C 7,H 16) 118.65 -0.000181 0.04 118.69 42. A(C 6,C 7,H 16) 120.73 0.000817 -0.13 120.60 43. A(C 6,C 7,C 8) 120.62 -0.000636 0.09 120.71 44. A(C 7,C 8,C 9) 121.88 -0.000802 0.11 121.99 45. A(C 3,C 8,C 9) 119.06 0.000414 -0.06 119.01 46. A(C 3,C 8,C 7) 119.06 0.000387 -0.05 119.00 47. A(C 8,C 9,H 17) 118.68 -0.000102 0.02 118.70 48. A(C 0,C 9,H 17) 120.73 0.000845 -0.13 120.60 49. A(C 0,C 9,C 8) 120.59 -0.000743 0.11 120.70 50. D(H 11,C 1,C 0,H 10) -0.02 -0.000006 0.01 -0.00 51. D(C 2,C 1,C 0,C 9) -0.01 -0.000003 0.01 -0.00 52. D(H 11,C 1,C 0,C 9) 179.99 -0.000004 0.01 180.00 53. D(C 2,C 1,C 0,H 10) 179.99 -0.000004 0.01 180.00 54. D(C 3,C 2,C 1,C 0) 0.01 0.000003 -0.01 0.00 55. D(H 12,C 2,C 1,H 11) -0.00 -0.000002 0.00 0.00 56. D(C 3,C 2,C 1,H 11) -179.99 0.000005 -0.01 -180.00 57. D(H 12,C 2,C 1,C 0) 179.99 -0.000004 0.01 180.00 58. D(C 8,C 3,C 2,H 12) -179.98 0.000006 -0.02 -180.00 59. D(C 4,C 3,C 2,H 12) 0.01 0.000004 -0.01 -0.00 60. D(C 4,C 3,C 2,C 1) 179.99 -0.000002 0.01 180.00 61. D(C 8,C 3,C 2,C 1) 0.00 0.000000 -0.00 0.00 62. D(H 13,C 4,C 3,C 2) 0.05 0.000017 -0.04 0.01 63. D(C 5,C 4,C 3,C 8) 0.02 0.000006 -0.02 0.00 64. D(C 5,C 4,C 3,C 2) -179.97 0.000008 -0.03 -179.99 65. D(H 13,C 4,C 3,C 8) -179.96 0.000015 -0.04 -179.99 66. D(H 14,C 5,C 4,H 13) -0.02 -0.000009 0.02 -0.00 67. D(H 14,C 5,C 4,C 3) 180.00 -0.000000 -0.00 180.00 68. D(C 6,C 5,C 4,H 13) 179.97 -0.000014 0.03 180.00 69. D(C 6,C 5,C 4,C 3) -0.01 -0.000005 0.01 -0.00 70. D(H 15,C 6,C 5,H 14) -0.03 -0.000010 0.02 -0.00 71. D(H 15,C 6,C 5,C 4) 179.98 -0.000006 0.01 180.00 72. D(C 7,C 6,C 5,H 14) 179.99 -0.000002 0.01 180.00 73. D(C 7,C 6,C 5,C 4) -0.00 0.000003 -0.00 -0.00 74. D(H 16,C 7,C 6,H 15) 0.04 0.000015 -0.03 0.01 75. D(H 16,C 7,C 6,C 5) -179.98 0.000006 -0.02 -179.99 76. D(C 8,C 7,C 6,H 15) -179.98 0.000007 -0.02 -179.99 77. D(C 8,C 7,C 6,C 5) 0.01 -0.000001 0.00 0.01 78. D(C 9,C 8,C 3,C 2) -0.01 -0.000003 0.01 -0.00 79. D(C 7,C 8,C 3,C 4) -0.02 -0.000005 0.01 -0.00 80. D(C 7,C 8,C 3,C 2) 179.97 -0.000007 0.02 180.00 81. D(C 9,C 8,C 7,H 16) -0.03 -0.000009 0.02 -0.00 82. D(C 9,C 8,C 7,C 6) 179.99 -0.000001 0.01 179.99 83. D(C 3,C 8,C 7,H 16) 179.99 -0.000005 0.01 180.00 84. D(C 3,C 8,C 7,C 6) 0.00 0.000002 -0.01 -0.00 85. D(C 9,C 8,C 3,C 4) 180.00 -0.000001 0.00 180.00 86. D(H 17,C 9,C 8,C 7) 0.02 0.000005 -0.02 0.00 87. D(C 0,C 9,C 8,C 7) -179.98 0.000007 -0.02 -180.00 88. D(C 0,C 9,C 8,C 3) 0.01 0.000004 -0.01 0.00 89. D(H 17,C 9,C 0,H 10) 0.01 0.000003 -0.01 0.00 90. D(H 17,C 9,C 0,C 1) -180.00 0.000002 -0.00 -180.00 91. D(H 17,C 9,C 8,C 3) -179.99 0.000001 -0.01 -180.00 92. D(C 8,C 9,C 0,H 10) -180.00 0.000001 -0.00 -180.00 93. D(C 8,C 9,C 0,C 1) -0.00 -0.000001 0.00 0.00 ---------------------------------------------------------------------------- ************************************************************* * GEOMETRY OPTIMIZATION CYCLE 3 * ************************************************************* --------------------------------- CARTESIAN COORDINATES (ANGSTROEM) --------------------------------- C -0.051933 -0.020681 -0.036745 C 1.364112 -0.019872 -0.037728 C 2.050025 1.156555 -0.037653 C 1.360253 2.398606 -0.036569 C 2.048328 3.641719 -0.036456 C 1.360901 4.817165 -0.035279 C -0.055243 4.816175 -0.034180 C -0.741206 3.639894 -0.034390 C -0.051467 2.397682 -0.035547 C -0.739631 1.154652 -0.035681 H -0.574129 -0.957983 -0.036860 H 1.887589 -0.956418 -0.038512 H 3.123823 1.162883 -0.038418 H 3.122134 3.636617 -0.037323 H 1.883111 5.754426 -0.035136 H -0.578718 5.752747 -0.033192 H -1.814995 3.633266 -0.033663 H -1.813415 1.159677 -0.034938 ---------------------------- CARTESIAN COORDINATES (A.U.) ---------------------------- NO LB ZA FRAG MASS X Y Z 0 C 6.0000 0 12.011 -0.098138834403975 -0.039081596323870 -0.069437664753803 1 C 6.0000 0 12.011 2.577798347751496 -0.037553300462906 -0.071295936089279 2 C 6.0000 0 12.011 3.873986492322457 2.185572454809287 -0.071154079440477 3 C 6.0000 0 12.011 2.570505769313286 4.532707772080851 -0.069106297553288 4 C 6.0000 0 12.011 3.870779828893218 6.881852460836398 -0.068891669474341 5 C 6.0000 0 12.011 2.571730034361045 9.103123402954814 -0.066667202554563 6 C 6.0000 0 12.011 -0.104394379177570 9.101251323406480 -0.064590485185846 7 C 6.0000 0 12.011 -1.400676714652142 6.878403520911437 -0.064987388100974 8 C 6.0000 0 12.011 -0.097258531708792 4.530961524853663 -0.067173607268124 9 C 6.0000 0 12.011 -1.397699694207893 2.181976027081361 -0.067428187330461 10 H 1.0000 0 1.008 -1.084946273201015 -1.810325661512986 -0.069655980967035 11 H 1.0000 0 1.008 3.567025974018720 -1.807368809805743 -0.072777178170537 12 H 1.0000 0 1.008 5.903170904757275 2.197531022090295 -0.072598591535749 13 H 1.0000 0 1.008 5.899977766415913 6.872210984789727 -0.070531027663361 14 H 1.0000 0 1.008 3.558564098316816 10.874288880557028 -0.066397983249609 15 H 1.0000 0 1.008 -1.093618630784535 10.871115810347092 -0.062723210354081 16 H 1.0000 0 1.008 -3.429844049928067 6.865877574009038 -0.063612977277826 17 H 1.0000 0 1.008 -3.426857524515494 2.191472502231433 -0.066023293867776 -------------------------------- INTERNAL COORDINATES (ANGSTROEM) -------------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 1.416046 0.000 0.000 C 2 1 0 1.361785 120.277 0.000 C 3 2 1 1.420731 120.710 0.000 C 4 3 2 1.420838 121.989 180.000 C 5 4 3 1.361702 120.715 180.006 C 6 5 4 1.416145 120.280 0.000 C 7 6 5 1.361683 120.289 0.000 C 4 3 2 1.411721 119.008 0.000 C 1 2 3 1.361741 120.300 0.000 H 1 2 3 1.072951 119.156 179.998 H 2 1 3 1.072915 119.170 179.999 H 3 2 1 1.073817 120.582 180.001 H 5 4 3 1.073818 118.693 0.000 H 6 5 4 1.072921 120.555 179.996 H 7 6 5 1.072937 119.162 179.996 H 8 7 6 1.073810 120.603 180.006 H 10 1 2 1.073796 120.600 180.000 --------------------------- INTERNAL COORDINATES (A.U.) --------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 2.675938 0.000 0.000 C 2 1 0 2.573401 120.277 0.000 C 3 2 1 2.684792 120.710 0.000 C 4 3 2 2.684994 121.989 180.000 C 5 4 3 2.573243 120.715 180.006 C 6 5 4 2.676126 120.280 0.000 C 7 6 5 2.573208 120.289 0.000 C 4 3 2 2.667766 119.008 0.000 C 1 2 3 2.573317 120.300 0.000 H 1 2 3 2.027583 119.156 179.998 H 2 1 3 2.027516 119.170 179.999 H 3 2 1 2.029220 120.582 180.001 H 5 4 3 2.029222 118.693 0.000 H 6 5 4 2.027528 120.555 179.996 H 7 6 5 2.027557 119.162 179.996 H 8 7 6 2.029206 120.603 180.006 H 10 1 2 2.029181 120.600 180.000 Diagonalization of the overlap matrix: Smallest eigenvalue ... 3.773e-04 Time for diagonalization ... 0.004 sec Threshold for overlap eigenvalues ... 1.000e-08 Number of eigenvalues below threshold ... 0 Time for construction of square roots ... 0.001 sec Total time needed ... 0.005 sec -------------- SCF ITERATIONS -------------- ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp *** Starting incremental Fock matrix formation *** *** Initiating the SOSCF procedure *** *** Re-Reading the Fockian *** *** Removing any level shift *** ITER Energy Delta-E Grad Rot Max-DP RMS-DP 0 -383.22269775 -383.2226977506 0.000338 0.000338 0.000556 0.000054 *** Restarting incremental Fock matrix formation *** 1 -383.22270374 -0.0000059861 0.000139 0.000146 0.000250 0.000019 2 -383.22270472 -0.0000009823 0.000059 0.000121 0.000126 0.000010 3 -383.22270483 -0.0000001132 0.000025 0.000048 0.000028 0.000002 4 -383.22270484 -0.0000000071 0.000012 0.000013 0.000007 0.000001 5 -383.22270484 -0.0000000024 0.000003 0.000008 0.000005 0.000000 ***Gradient check signals convergence*** ***Rediagonalizing the Fockian in SOSCF/NRSCF*** ***************************************************** * SUCCESS * * SCF CONVERGED AFTER 6 CYCLES * ***************************************************** Total Energy : -383.22270484 Eh -10428.01995 eV Last Energy change ... -1.2797e-09 Tolerance : 1.0000e-08 Last MAX-Density change ... 2.1926e-06 Tolerance : 1.0000e-07 **** THE GBW FILE WAS UPDATED (orca.gbw) **** **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) **** **** ENERGY FILE WAS UPDATED (orca.en.tmp) **** Total SCF time: 0 days 0 hours 0 min 33 sec ------------------------- -------------------- FINAL SINGLE POINT ENERGY -383.222704843048 ------------------------- -------------------- ------------------------------------------------------------------------------ ORCA SCF GRADIENT CALCULATION ------------------------------------------------------------------------------ Gradient of the Hartree-Fock SCF energy: Hartree-Fock type ... RHF Number of operators ... 1 Number of atoms ... 18 Basis set dimensions ... 106 Integral neglect threshold ... 2.5e-11 Integral primitive cutoff ... 2.5e-12 Nuclear repulsion gradient ... done One Electron Gradient ... done Pre-screening matrix ... done Starting the two electron gradient: Two electron gradient done ------------------ CARTESIAN GRADIENT ------------------ 1 C : -0.000661473 0.000655344 0.000001436 2 C : 0.000725864 0.000457032 -0.000002000 3 C : 0.000396062 -0.000520895 0.000002372 4 C : -0.001290978 -0.000055484 0.000000144 5 C : 0.000379599 0.000639539 0.000001785 6 C : 0.000785873 -0.000535392 -0.000007361 7 C : -0.000748356 -0.000614870 0.000004678 8 C : -0.000425839 0.000698166 -0.000002730 9 C : 0.001337115 -0.000021464 0.000000931 10 C : -0.000504099 -0.000656501 0.000002634 11 H : 0.000575936 -0.000255693 -0.000001974 12 H : -0.000574906 -0.000240142 0.000002406 13 H : -0.000111660 0.000262973 -0.000000712 14 H : -0.000111796 -0.000291390 -0.000002861 15 H : -0.000579633 0.000244873 0.000002265 16 H : 0.000573587 0.000249456 0.000003797 17 H : 0.000115062 -0.000311965 -0.000003985 18 H : 0.000119640 0.000296414 -0.000000825 Norm of the cartesian gradient ... 0.003347045 RMS gradient ... 0.000455475 MAX gradient ... 0.001337115 ------- TIMINGS ------- Total SCF gradient time ... 17.262 sec One electron gradient .... 0.281 sec ( 1.6%) Prescreening matrices .... 0.090 sec ( 0.5%) Two electron gradient .... 16.713 sec ( 96.8%) ------------------------------------------------------------------------------ ORCA GEOMETRY RELAXATION STEP ------------------------------------------------------------------------------ Reading the OPT-File .... done Getting information on internals .... done Copying old internal coords+grads .... done Making the new internal coordinates .... (new redundants).... done Validating the new internal coordinates .... (new redundants).... done Calculating the B-matrix .... done Calculating the G,G- and P matrices .... done Transforming gradient to internals .... done Projecting the internal gradient .... done Number of atoms .... 18 Number of internal coordinates .... 93 Current Energy .... -383.222704843 Eh Current gradient norm .... 0.003347045 Eh/bohr Maximum allowed component of the step .... 0.300 Current trust radius .... 0.300 Updating the Hessian (BFGS) .... done Forming the augmented Hessian .... done Diagonalizing the augmented Hessian .... done Last element of RFO vector .... 0.999898360 Lowest eigenvalues of augmented Hessian: -0.000034186 0.020032551 0.020274366 0.020341666 0.023075424 Length of the computed step .... 0.014258725 The final length of the internal step .... 0.014258725 Converting the step to cartesian space: Initial RMS(Int)= 0.0014785609 Transforming coordinates: Iter 0: RMS(Cart)= 0.0025556847 RMS(Int)= 2.8399108116 Iter 1: RMS(Cart)= 0.0000059841 RMS(Int)= 0.0000040576 Iter 2: RMS(Cart)= 0.0000000224 RMS(Int)= 0.0000000120 done Storing new coordinates .... done .--------------------. ----------------------|Geometry convergence|--------------------- Item value Tolerance Converged ----------------------------------------------------------------- Energy change -0.00004271 0.00000500 NO RMS gradient 0.00025553 0.00010000 NO MAX gradient 0.00073019 0.00030000 NO RMS step 0.00147856 0.00200000 YES MAX step 0.00451141 0.00400000 NO .................................................... Max(Bonds) 0.0011 Max(Angles) 0.26 Max(Dihed) 0.02 Max(Improp) 0.00 ----------------------------------------------------------------- The optimization has not yet converged - more geometry cycles are needed --------------------------------------------------------------------------- Redundant Internal Coordinates (Angstroem and degrees) Definition Value dE/dq Step New-Value ---------------------------------------------------------------------------- 1. B(C 1,C 0) 1.4160 0.000107 -0.0004 1.4156 2. B(C 2,C 1) 1.3618 -0.000257 0.0002 1.3619 3. B(C 3,C 2) 1.4207 0.000147 -0.0005 1.4202 4. B(C 4,C 3) 1.4208 0.000190 -0.0006 1.4202 5. B(C 5,C 4) 1.3617 -0.000297 0.0002 1.3619 6. B(C 6,C 5) 1.4161 0.000149 -0.0005 1.4156 7. B(C 7,C 6) 1.3617 -0.000311 0.0003 1.3619 8. B(C 8,C 7) 1.4209 0.000199 -0.0007 1.4202 9. B(C 8,C 3) 1.4117 -0.000638 0.0011 1.4128 10. B(C 9,C 8) 1.4208 0.000189 -0.0006 1.4202 11. B(C 9,C 0) 1.3617 -0.000286 0.0002 1.3620 12. B(H 10,C 0) 1.0730 -0.000057 0.0002 1.0731 13. B(H 11,C 1) 1.0729 -0.000071 0.0002 1.0731 14. B(H 12,C 2) 1.0738 -0.000110 0.0004 1.0742 15. B(H 13,C 4) 1.0738 -0.000110 0.0004 1.0742 16. B(H 14,C 5) 1.0729 -0.000068 0.0002 1.0731 17. B(H 15,C 6) 1.0729 -0.000062 0.0002 1.0731 18. B(H 16,C 7) 1.0738 -0.000113 0.0004 1.0742 19. B(H 17,C 9) 1.0738 -0.000118 0.0004 1.0742 20. A(C 9,C 0,H 10) 120.54 0.000542 -0.19 120.35 21. A(C 1,C 0,H 10) 119.16 -0.000730 0.26 119.41 22. A(C 1,C 0,C 9) 120.30 0.000188 -0.06 120.24 23. A(C 0,C 1,C 2) 120.28 0.000095 -0.03 120.24 24. A(C 2,C 1,H 11) 120.55 0.000580 -0.21 120.35 25. A(C 0,C 1,H 11) 119.17 -0.000675 0.24 119.41 26. A(C 1,C 2,C 3) 120.71 -0.000316 0.10 120.81 27. A(C 1,C 2,H 12) 120.58 0.000425 -0.14 120.44 28. A(C 3,C 2,H 12) 118.71 -0.000110 0.04 118.75 29. A(C 2,C 3,C 4) 121.99 -0.000381 0.12 122.11 30. A(C 2,C 3,C 8) 119.01 0.000201 -0.06 118.95 31. A(C 4,C 3,C 8) 119.00 0.000180 -0.06 118.95 32. A(C 5,C 4,H 13) 120.59 0.000446 -0.15 120.44 33. A(C 3,C 4,H 13) 118.69 -0.000146 0.06 118.75 34. A(C 3,C 4,C 5) 120.71 -0.000301 0.10 120.81 35. A(C 6,C 5,H 14) 119.17 -0.000689 0.24 119.41 36. A(C 4,C 5,H 14) 120.55 0.000580 -0.21 120.35 37. A(C 4,C 5,C 6) 120.28 0.000109 -0.04 120.24 38. A(C 7,C 6,H 15) 120.55 0.000557 -0.20 120.35 39. A(C 5,C 6,H 15) 119.16 -0.000705 0.25 119.41 40. A(C 5,C 6,C 7) 120.29 0.000147 -0.05 120.24 41. A(C 8,C 7,H 16) 118.69 -0.000156 0.06 118.75 42. A(C 6,C 7,H 16) 120.60 0.000478 -0.16 120.44 43. A(C 6,C 7,C 8) 120.71 -0.000322 0.10 120.81 44. A(C 7,C 8,C 9) 121.99 -0.000385 0.12 122.11 45. A(C 3,C 8,C 9) 119.01 0.000198 -0.06 118.94 46. A(C 3,C 8,C 7) 119.00 0.000186 -0.06 118.94 47. A(C 8,C 9,H 17) 118.70 -0.000118 0.05 118.75 48. A(C 0,C 9,H 17) 120.60 0.000484 -0.17 120.43 49. A(C 0,C 9,C 8) 120.70 -0.000366 0.12 120.82 50. D(H 11,C 1,C 0,H 10) -0.00 -0.000001 0.01 0.01 51. D(C 2,C 1,C 0,C 9) -0.00 -0.000001 0.00 0.00 52. D(H 11,C 1,C 0,C 9) 180.00 -0.000001 0.01 180.00 53. D(C 2,C 1,C 0,H 10) 180.00 -0.000001 0.01 180.00 54. D(C 3,C 2,C 1,C 0) 0.00 0.000000 -0.00 -0.00 55. D(H 12,C 2,C 1,H 11) 0.00 0.000001 -0.00 -0.00 56. D(C 3,C 2,C 1,H 11) -180.00 0.000001 -0.00 -180.00 57. D(H 12,C 2,C 1,C 0) -180.00 0.000001 -0.00 -180.00 58. D(C 8,C 3,C 2,H 12) -180.00 0.000000 -0.01 -180.00 59. D(C 4,C 3,C 2,H 12) -0.00 -0.000000 -0.00 -0.00 60. D(C 4,C 3,C 2,C 1) 180.00 0.000000 0.00 180.00 61. D(C 8,C 3,C 2,C 1) 0.00 0.000000 -0.00 -0.00 62. D(H 13,C 4,C 3,C 2) 0.01 0.000002 -0.02 -0.01 63. D(C 5,C 4,C 3,C 8) 0.00 0.000002 -0.01 -0.01 64. D(C 5,C 4,C 3,C 2) -179.99 0.000002 -0.02 -180.01 65. D(H 13,C 4,C 3,C 8) -179.99 0.000002 -0.02 -180.01 66. D(H 14,C 5,C 4,H 13) -0.00 -0.000002 0.01 0.01 67. D(H 14,C 5,C 4,C 3) 180.00 -0.000002 0.01 180.00 68. D(C 6,C 5,C 4,H 13) 180.00 0.000000 0.01 180.01 69. D(C 6,C 5,C 4,C 3) -0.00 -0.000000 0.00 0.00 70. D(H 15,C 6,C 5,H 14) -0.00 -0.000000 0.01 0.00 71. D(H 15,C 6,C 5,C 4) 180.00 -0.000002 0.01 180.01 72. D(C 7,C 6,C 5,H 14) 180.00 -0.000001 0.01 180.00 73. D(C 7,C 6,C 5,C 4) -0.00 -0.000003 0.01 0.01 74. D(H 16,C 7,C 6,H 15) 0.01 0.000002 -0.01 -0.01 75. D(H 16,C 7,C 6,C 5) -179.99 0.000003 -0.01 -180.01 76. D(C 8,C 7,C 6,H 15) -179.99 0.000003 -0.02 -180.01 77. D(C 8,C 7,C 6,C 5) 0.01 0.000004 -0.02 -0.01 78. D(C 9,C 8,C 3,C 2) -0.00 -0.000001 0.01 0.00 79. D(C 7,C 8,C 3,C 4) -0.00 -0.000001 0.01 0.00 80. D(C 7,C 8,C 3,C 2) 180.00 -0.000001 0.01 180.01 81. D(C 9,C 8,C 7,H 16) -0.00 -0.000001 0.01 0.01 82. D(C 9,C 8,C 7,C 6) 179.99 -0.000002 0.01 180.01 83. D(C 3,C 8,C 7,H 16) 180.00 -0.000001 0.01 180.00 84. D(C 3,C 8,C 7,C 6) -0.00 -0.000002 0.01 0.00 85. D(C 9,C 8,C 3,C 4) 180.00 -0.000001 0.00 180.00 86. D(H 17,C 9,C 8,C 7) 0.00 0.000001 -0.01 -0.01 87. D(C 0,C 9,C 8,C 7) -180.00 0.000000 -0.01 -180.01 88. D(C 0,C 9,C 8,C 3) 0.00 0.000000 -0.00 -0.00 89. D(H 17,C 9,C 0,H 10) 0.00 0.000000 -0.00 -0.00 90. D(H 17,C 9,C 0,C 1) 180.00 -0.000000 -0.00 180.00 91. D(H 17,C 9,C 8,C 3) -180.00 0.000001 -0.01 -180.00 92. D(C 8,C 9,C 0,H 10) -180.00 0.000000 -0.00 -180.00 93. D(C 8,C 9,C 0,C 1) 0.00 0.000000 -0.00 -0.00 ---------------------------------------------------------------------------- ************************************************************* * GEOMETRY OPTIMIZATION CYCLE 4 * ************************************************************* --------------------------------- CARTESIAN COORDINATES (ANGSTROEM) --------------------------------- C -0.051777 -0.021721 -0.036746 C 1.363826 -0.020708 -0.037858 C 2.048984 1.156334 -0.037706 C 1.360815 2.398652 -0.036465 C 2.047322 3.641894 -0.036269 C 1.360598 4.818009 -0.035273 C -0.055015 4.817097 -0.034357 C -0.740148 3.640035 -0.034343 C -0.051979 2.397698 -0.035437 C -0.738442 1.154464 -0.035581 H -0.578150 -0.956893 -0.036819 H 1.891455 -0.955189 -0.038843 H 3.123144 1.160705 -0.038568 H 3.121490 3.638911 -0.036873 H 1.886952 5.753206 -0.035193 H -0.582608 5.751587 -0.033671 H -1.814312 3.635604 -0.033516 H -1.812616 1.157426 -0.034752 ---------------------------- CARTESIAN COORDINATES (A.U.) ---------------------------- NO LB ZA FRAG MASS X Y Z 0 C 6.0000 0 12.011 -0.097844022431691 -0.041047330950119 -0.069440348621850 1 C 6.0000 0 12.011 2.577256971936359 -0.039132604936795 -0.071541970772828 2 C 6.0000 0 12.011 3.872018382065127 2.185154854023675 -0.071254904384660 3 C 6.0000 0 12.011 2.571568220418011 4.532795331275765 -0.068908319080375 4 C 6.0000 0 12.011 3.868878708541504 6.882182996549052 -0.068538789836113 5 C 6.0000 0 12.011 2.571157854497377 9.104717457106130 -0.066657044128210 6 C 6.0000 0 12.011 -0.103963750853965 9.102994519708451 -0.064924378286378 7 C 6.0000 0 12.011 -1.398677098774683 6.878669230292600 -0.064898334747571 8 C 6.0000 0 12.011 -0.098225483892877 4.530992471347884 -0.066965573045401 9 C 6.0000 0 12.011 -1.395453120900061 2.181620490698656 -0.067238186658736 10 H 1.0000 0 1.008 -1.092545631723032 -1.808266627481927 -0.069577532168519 11 H 1.0000 0 1.008 3.574331882176200 -1.805046059178450 -0.073402371014929 12 H 1.0000 0 1.008 5.901887212282105 2.193414973662710 -0.072882058340843 13 H 1.0000 0 1.008 5.898761909846634 6.876545090892422 -0.069680375178595 14 H 1.0000 0 1.008 3.565822165378183 10.871983773640437 -0.066505999369572 15 H 1.0000 0 1.008 -1.100969271733728 10.868923906040729 -0.063628344794953 16 H 1.0000 0 1.008 -3.428552631155109 6.870295243926275 -0.063335754461140 17 H 1.0000 0 1.008 -3.425347712105613 2.187218176235902 -0.065672475946457 -------------------------------- INTERNAL COORDINATES (ANGSTROEM) -------------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 1.415603 0.000 0.000 C 2 1 0 1.361936 120.245 0.000 C 3 2 1 1.420187 120.812 0.000 C 4 3 2 1.420191 122.109 180.000 C 5 4 3 1.361924 120.813 179.990 C 6 5 4 1.415614 120.243 0.000 C 7 6 5 1.361941 120.239 0.000 C 4 3 2 1.412795 118.945 0.000 C 1 2 3 1.361955 120.236 0.000 H 1 2 3 1.073134 119.415 180.004 H 2 1 3 1.073149 119.409 180.001 H 3 2 1 1.074170 120.437 180.001 H 5 4 3 1.074172 118.748 0.000 H 6 5 4 1.073146 120.348 180.004 H 7 6 5 1.073138 119.411 180.006 H 8 7 6 1.074173 120.439 179.992 H 10 1 2 1.074178 120.435 179.999 --------------------------- INTERNAL COORDINATES (A.U.) --------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 2.675103 0.000 0.000 C 2 1 0 2.573686 120.245 0.000 C 3 2 1 2.683765 120.812 0.000 C 4 3 2 2.683773 122.109 180.000 C 5 4 3 2.573663 120.813 179.990 C 6 5 4 2.675123 120.243 0.000 C 7 6 5 2.573695 120.239 0.000 C 4 3 2 2.669795 118.945 0.000 C 1 2 3 2.573722 120.236 0.000 H 1 2 3 2.027929 119.415 180.004 H 2 1 3 2.027958 119.409 180.001 H 3 2 1 2.029886 120.437 180.001 H 5 4 3 2.029891 118.748 0.000 H 6 5 4 2.027952 120.348 180.004 H 7 6 5 2.027937 119.411 180.006 H 8 7 6 2.029893 120.439 179.992 H 10 1 2 2.029903 120.435 179.999 Diagonalization of the overlap matrix: Smallest eigenvalue ... 3.762e-04 Time for diagonalization ... 0.004 sec Threshold for overlap eigenvalues ... 1.000e-08 Number of eigenvalues below threshold ... 0 Time for construction of square roots ... 0.002 sec Total time needed ... 0.005 sec -------------- SCF ITERATIONS -------------- ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp *** Starting incremental Fock matrix formation *** *** Initiating the SOSCF procedure *** *** Re-Reading the Fockian *** *** Removing any level shift *** ITER Energy Delta-E Grad Rot Max-DP RMS-DP 0 -383.22271627 -383.2227162677 0.000398 0.000398 0.000593 0.000047 *** Restarting incremental Fock matrix formation *** 1 -383.22272274 -0.0000064770 0.000177 0.000191 0.000268 0.000021 2 -383.22272393 -0.0000011810 0.000063 0.000154 0.000140 0.000013 3 -383.22272409 -0.0000001657 0.000019 0.000042 0.000020 0.000001 4 -383.22272410 -0.0000000047 0.000010 0.000030 0.000016 0.000001 ***Gradient check signals convergence*** ***Rediagonalizing the Fockian in SOSCF/NRSCF*** ***************************************************** * SUCCESS * * SCF CONVERGED AFTER 5 CYCLES * ***************************************************** Total Energy : -383.22272410 Eh -10428.02047 eV Last Energy change ... -1.7708e-09 Tolerance : 1.0000e-08 Last MAX-Density change ... 3.7487e-06 Tolerance : 1.0000e-07 **** THE GBW FILE WAS UPDATED (orca.gbw) **** **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) **** **** ENERGY FILE WAS UPDATED (orca.en.tmp) **** Total SCF time: 0 days 0 hours 0 min 29 sec ------------------------- -------------------- FINAL SINGLE POINT ENERGY -383.222724097876 ------------------------- -------------------- ------------------------------------------------------------------------------ ORCA SCF GRADIENT CALCULATION ------------------------------------------------------------------------------ Gradient of the Hartree-Fock SCF energy: Hartree-Fock type ... RHF Number of operators ... 1 Number of atoms ... 18 Basis set dimensions ... 106 Integral neglect threshold ... 2.5e-11 Integral primitive cutoff ... 2.5e-12 Nuclear repulsion gradient ... done One Electron Gradient ... done Pre-screening matrix ... done Starting the two electron gradient: Two electron gradient done ------------------ CARTESIAN GRADIENT ------------------ 1 C : -0.000246790 0.000351719 -0.000001371 2 C : 0.000226127 0.000432441 0.000000849 3 C : -0.000413385 -0.000283441 -0.000000808 4 C : 0.000024468 0.000002305 0.000001218 5 C : -0.000423948 0.000289643 -0.000004048 6 C : 0.000233908 -0.000423526 0.000004729 7 C : -0.000237642 -0.000378759 -0.000002395 8 C : 0.000427593 0.000283314 0.000001265 9 C : -0.000048299 -0.000015806 -0.000000142 10 C : 0.000459220 -0.000248994 -0.000002667 11 H : 0.000061779 -0.000159463 0.000002227 12 H : -0.000060808 -0.000166476 -0.000002000 13 H : 0.000113794 0.000069823 -0.000001946 14 H : 0.000115593 -0.000075429 0.000006532 15 H : -0.000062115 0.000165299 -0.000001353 16 H : 0.000063078 0.000162103 -0.000005513 17 H : -0.000115283 -0.000074935 0.000004807 18 H : -0.000117291 0.000070180 0.000000615 Norm of the cartesian gradient ... 0.001451730 RMS gradient ... 0.000197555 MAX gradient ... 0.000459220 ------- TIMINGS ------- Total SCF gradient time ... 17.285 sec One electron gradient .... 0.281 sec ( 1.6%) Prescreening matrices .... 0.090 sec ( 0.5%) Two electron gradient .... 16.737 sec ( 96.8%) ------------------------------------------------------------------------------ ORCA GEOMETRY RELAXATION STEP ------------------------------------------------------------------------------ Reading the OPT-File .... done Getting information on internals .... done Copying old internal coords+grads .... done Making the new internal coordinates .... (new redundants).... done Validating the new internal coordinates .... (new redundants).... done Calculating the B-matrix .... done Calculating the G,G- and P matrices .... done Transforming gradient to internals .... done Projecting the internal gradient .... done Number of atoms .... 18 Number of internal coordinates .... 93 Current Energy .... -383.222724098 Eh Current gradient norm .... 0.001451730 Eh/bohr Maximum allowed component of the step .... 0.300 Current trust radius .... 0.300 Updating the Hessian (BFGS) .... done Forming the augmented Hessian .... done Diagonalizing the augmented Hessian .... done Last element of RFO vector .... 0.999995619 Lowest eigenvalues of augmented Hessian: -0.000001956 0.020034786 0.020274388 0.020344596 0.023078294 Length of the computed step .... 0.002960180 The final length of the internal step .... 0.002960180 Converting the step to cartesian space: Initial RMS(Int)= 0.0003069564 Transforming coordinates: Iter 0: RMS(Cart)= 0.0005021216 RMS(Int)= 1.1284847608 Iter 1: RMS(Cart)= 0.0000002176 RMS(Int)= 0.0000001632 Iter 2: RMS(Cart)= 0.0000000002 RMS(Int)= 0.0000000001 done Storing new coordinates .... done .--------------------. ----------------------|Geometry convergence|--------------------- Item value Tolerance Converged ----------------------------------------------------------------- Energy change -0.00001925 0.00000500 NO RMS gradient 0.00008993 0.00010000 YES MAX gradient 0.00031453 0.00030000 NO RMS step 0.00030696 0.00200000 YES MAX step 0.00086231 0.00400000 YES .................................................... Max(Bonds) 0.0003 Max(Angles) 0.05 Max(Dihed) 0.01 Max(Improp) 0.00 ----------------------------------------------------------------- The step convergence is overachieved with reasonable convergence on the gradient Convergence will therefore be signaled now ***********************HURRAY******************** *** THE OPTIMIZATION HAS CONVERGED *** ************************************************* --------------------------------------------------------------------------- Redundant Internal Coordinates --- Optimized Parameters --- (Angstroem and degrees) Definition OldVal dE/dq Step FinalVal ---------------------------------------------------------------------------- 1. B(C 1,C 0) 1.4156 -0.000030 -0.0000 1.4156 2. B(C 2,C 1) 1.3619 -0.000310 0.0002 1.3622 3. B(C 3,C 2) 1.4202 -0.000077 -0.0000 1.4202 4. B(C 4,C 3) 1.4202 -0.000081 -0.0000 1.4202 5. B(C 5,C 4) 1.3619 -0.000315 0.0003 1.3622 6. B(C 6,C 5) 1.4156 -0.000028 -0.0001 1.4156 7. B(C 7,C 6) 1.3619 -0.000299 0.0002 1.3622 8. B(C 8,C 7) 1.4202 -0.000070 -0.0000 1.4202 9. B(C 8,C 3) 1.4128 -0.000188 0.0003 1.4131 10. B(C 9,C 8) 1.4202 -0.000092 -0.0000 1.4202 11. B(C 9,C 0) 1.3620 -0.000293 0.0002 1.3622 12. B(H 10,C 0) 1.0731 0.000109 -0.0001 1.0730 13. B(H 11,C 1) 1.0731 0.000115 -0.0001 1.0730 14. B(H 12,C 2) 1.0742 0.000114 -0.0001 1.0741 15. B(H 13,C 4) 1.0742 0.000116 -0.0001 1.0741 16. B(H 14,C 5) 1.0731 0.000114 -0.0001 1.0730 17. B(H 15,C 6) 1.0731 0.000110 -0.0001 1.0730 18. B(H 16,C 7) 1.0742 0.000116 -0.0001 1.0741 19. B(H 17,C 9) 1.0742 0.000117 -0.0001 1.0741 20. A(C 9,C 0,H 10) 120.35 0.000151 -0.05 120.30 21. A(C 1,C 0,H 10) 119.41 -0.000116 0.05 119.46 22. A(C 1,C 0,C 9) 120.24 -0.000035 -0.00 120.23 23. A(C 0,C 1,C 2) 120.24 0.000001 -0.00 120.24 24. A(C 2,C 1,H 11) 120.35 0.000136 -0.05 120.30 25. A(C 0,C 1,H 11) 119.41 -0.000137 0.05 119.46 26. A(C 1,C 2,C 3) 120.81 0.000036 0.01 120.82 27. A(C 1,C 2,H 12) 120.44 0.000052 -0.03 120.41 28. A(C 3,C 2,H 12) 118.75 -0.000089 0.02 118.77 29. A(C 2,C 3,C 4) 122.11 0.000052 0.01 122.12 30. A(C 2,C 3,C 8) 118.95 -0.000027 -0.00 118.94 31. A(C 4,C 3,C 8) 118.95 -0.000025 -0.00 118.94 32. A(C 5,C 4,H 13) 120.44 0.000057 -0.03 120.41 33. A(C 3,C 4,H 13) 118.75 -0.000096 0.02 118.77 34. A(C 3,C 4,C 5) 120.81 0.000039 0.00 120.82 35. A(C 6,C 5,H 14) 119.41 -0.000136 0.05 119.46 36. A(C 4,C 5,H 14) 120.35 0.000139 -0.05 120.30 37. A(C 4,C 5,C 6) 120.24 -0.000003 -0.00 120.24 38. A(C 7,C 6,H 15) 120.35 0.000147 -0.05 120.30 39. A(C 5,C 6,H 15) 119.41 -0.000126 0.05 119.46 40. A(C 5,C 6,C 7) 120.24 -0.000022 -0.00 120.24 41. A(C 8,C 7,H 16) 118.75 -0.000097 0.02 118.77 42. A(C 6,C 7,H 16) 120.44 0.000055 -0.03 120.41 43. A(C 6,C 7,C 8) 120.81 0.000042 0.00 120.82 44. A(C 7,C 8,C 9) 122.11 0.000063 0.01 122.12 45. A(C 3,C 8,C 9) 118.94 -0.000032 -0.00 118.94 46. A(C 3,C 8,C 7) 118.94 -0.000031 -0.00 118.94 47. A(C 8,C 9,H 17) 118.75 -0.000099 0.02 118.77 48. A(C 0,C 9,H 17) 120.43 0.000042 -0.03 120.41 49. A(C 0,C 9,C 8) 120.82 0.000057 0.00 120.82 50. D(H 11,C 1,C 0,H 10) 0.01 0.000002 -0.00 0.00 51. D(C 2,C 1,C 0,C 9) 0.00 0.000001 -0.00 0.00 52. D(H 11,C 1,C 0,C 9) -180.00 0.000001 -0.00 -180.00 53. D(C 2,C 1,C 0,H 10) -180.00 0.000001 -0.00 -180.00 54. D(C 3,C 2,C 1,C 0) -0.00 -0.000000 0.00 -0.00 55. D(H 12,C 2,C 1,H 11) -0.00 0.000000 -0.00 -0.00 56. D(C 3,C 2,C 1,H 11) 180.00 -0.000001 0.00 180.00 57. D(H 12,C 2,C 1,C 0) -180.00 0.000000 -0.00 -180.00 58. D(C 8,C 3,C 2,H 12) 180.00 -0.000002 0.00 180.00 59. D(C 4,C 3,C 2,H 12) -0.00 -0.000001 0.00 -0.00 60. D(C 4,C 3,C 2,C 1) 180.00 -0.000000 0.00 180.00 61. D(C 8,C 3,C 2,C 1) -0.00 -0.000001 0.00 -0.00 62. D(H 13,C 4,C 3,C 2) -0.01 -0.000004 0.01 -0.01 63. D(C 5,C 4,C 3,C 8) -0.01 -0.000003 0.01 -0.00 64. D(C 5,C 4,C 3,C 2) 179.99 -0.000003 0.01 180.00 65. D(H 13,C 4,C 3,C 8) 179.99 -0.000004 0.01 180.00 66. D(H 14,C 5,C 4,H 13) 0.01 0.000003 -0.00 0.00 67. D(H 14,C 5,C 4,C 3) -180.00 0.000002 -0.00 -180.00 68. D(C 6,C 5,C 4,H 13) -179.99 0.000001 -0.00 -180.00 69. D(C 6,C 5,C 4,C 3) 0.00 0.000001 -0.00 0.00 70. D(H 15,C 6,C 5,H 14) 0.00 0.000001 -0.00 0.00 71. D(H 15,C 6,C 5,C 4) -179.99 0.000002 -0.00 -180.00 72. D(C 7,C 6,C 5,H 14) -180.00 0.000001 -0.00 -180.00 73. D(C 7,C 6,C 5,C 4) 0.01 0.000003 -0.01 -0.00 74. D(H 16,C 7,C 6,H 15) -0.01 -0.000003 0.00 -0.01 75. D(H 16,C 7,C 6,C 5) 179.99 -0.000003 0.01 180.00 76. D(C 8,C 7,C 6,H 15) 179.99 -0.000004 0.01 180.00 77. D(C 8,C 7,C 6,C 5) -0.01 -0.000004 0.01 0.00 78. D(C 9,C 8,C 3,C 2) 0.00 0.000001 -0.00 0.00 79. D(C 7,C 8,C 3,C 4) 0.00 0.000001 -0.00 0.00 80. D(C 7,C 8,C 3,C 2) -179.99 0.000002 -0.00 -180.00 81. D(C 9,C 8,C 7,H 16) 0.01 0.000001 -0.00 0.00 82. D(C 9,C 8,C 7,C 6) -179.99 0.000003 -0.01 -180.00 83. D(C 3,C 8,C 7,H 16) -180.00 0.000001 -0.00 -180.00 84. D(C 3,C 8,C 7,C 6) 0.00 0.000002 -0.01 -0.00 85. D(C 9,C 8,C 3,C 4) -180.00 0.000001 -0.00 -180.00 86. D(H 17,C 9,C 8,C 7) -0.01 -0.000001 0.00 -0.00 87. D(C 0,C 9,C 8,C 7) 179.99 -0.000001 0.00 180.00 88. D(C 0,C 9,C 8,C 3) -0.00 -0.000001 0.00 -0.00 89. D(H 17,C 9,C 0,H 10) -0.00 -0.000001 0.00 -0.00 90. D(H 17,C 9,C 0,C 1) 180.00 -0.000000 0.00 180.00 91. D(H 17,C 9,C 8,C 3) 180.00 -0.000001 0.00 180.00 92. D(C 8,C 9,C 0,H 10) 180.00 -0.000001 0.00 180.00 93. D(C 8,C 9,C 0,C 1) -0.00 -0.000001 0.00 0.00 ---------------------------------------------------------------------------- ******************************************************* *** FINAL ENERGY EVALUATION AT THE STATIONARY POINT *** *** (AFTER 4 CYCLES) *** ******************************************************* --------------------------------- CARTESIAN COORDINATES (ANGSTROEM) --------------------------------- C -0.051758 -0.021974 -0.036755 C 1.363805 -0.020980 -0.037802 C 2.049045 1.156301 -0.037669 C 1.360952 2.398653 -0.036503 C 2.047390 3.641918 -0.036362 C 1.360573 4.818278 -0.035293 C -0.054989 4.817349 -0.034265 C -0.740204 3.640045 -0.034374 C -0.052103 2.397700 -0.035479 C -0.738510 1.154439 -0.035621 H -0.578876 -0.956605 -0.036852 H 1.892170 -0.954919 -0.038715 H 3.123106 1.160238 -0.038471 H 3.121457 3.639406 -0.037071 H 1.887668 5.752933 -0.035187 H -0.583333 5.751291 -0.033457 H -1.814269 3.636093 -0.033564 H -1.812583 1.156945 -0.034830 ---------------------------- CARTESIAN COORDINATES (A.U.) ---------------------------- NO LB ZA FRAG MASS X Y Z 0 C 6.0000 0 12.011 -0.097808587366012 -0.041525614253398 -0.069457457688540 1 C 6.0000 0 12.011 2.577218085771947 -0.039646514820953 -0.071434675601637 2 C 6.0000 0 12.011 3.872133279582767 2.185092203262714 -0.071183826914644 3 C 6.0000 0 12.011 2.571827500871817 4.532797680644739 -0.068980566205794 4 C 6.0000 0 12.011 3.869007161483661 6.882227230101384 -0.068714970388639 5 C 6.0000 0 12.011 2.571110660629270 9.105226205078942 -0.066693753684580 6 C 6.0000 0 12.011 -0.103914805453304 9.103469379884936 -0.064751984013582 7 C 6.0000 0 12.011 -1.398783382343948 6.878688135605014 -0.064956610437512 8 C 6.0000 0 12.011 -0.098460029094429 4.530997026388878 -0.067046298322635 9 C 6.0000 0 12.011 -1.395582400998665 2.181573383428006 -0.067314806789926 10 H 1.0000 0 1.008 -1.093917854675867 -1.807720719900320 -0.069639815922130 11 H 1.0000 0 1.008 3.575683466556944 -1.804535173509403 -0.073160468241592 12 H 1.0000 0 1.008 5.901815125138685 2.192532166106772 -0.072700342028320 13 H 1.0000 0 1.008 5.898698648625760 6.877479686261953 -0.070053154297940 14 H 1.0000 0 1.008 3.567174734295732 10.871466983046263 -0.066493637588352 15 H 1.0000 0 1.008 -1.102339932631247 10.868364388411189 -0.063224244387263 16 H 1.0000 0 1.008 -3.428470979737443 6.871219971011075 -0.063427029755755 17 H 1.0000 0 1.008 -3.425286107084926 2.186309476105605 -0.065819118568289 -------------------------------- INTERNAL COORDINATES (ANGSTROEM) -------------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 1.415564 0.000 0.000 C 2 1 0 1.362184 120.242 0.000 C 3 2 1 1.420180 120.818 0.000 C 4 3 2 1.420177 122.115 180.001 C 5 4 3 1.362183 120.817 179.997 C 6 5 4 1.415563 120.241 0.000 C 7 6 5 1.362191 120.238 0.000 C 4 3 2 1.413056 118.942 0.000 C 1 2 3 1.362196 120.235 0.000 H 1 2 3 1.073027 119.463 180.001 H 2 1 3 1.073039 119.458 180.001 H 3 2 1 1.074069 120.412 180.001 H 5 4 3 1.074070 118.770 0.000 H 6 5 4 1.073036 120.301 180.000 H 7 6 5 1.073031 119.460 180.002 H 8 7 6 1.074072 120.411 179.998 H 10 1 2 1.074076 120.409 180.000 --------------------------- INTERNAL COORDINATES (A.U.) --------------------------- C 0 0 0 0.000000 0.000 0.000 C 1 0 0 2.675028 0.000 0.000 C 2 1 0 2.574154 120.242 0.000 C 3 2 1 2.683751 120.818 0.000 C 4 3 2 2.683746 122.115 180.001 C 5 4 3 2.574153 120.817 179.997 C 6 5 4 2.675027 120.241 0.000 C 7 6 5 2.574167 120.238 0.000 C 4 3 2 2.670289 118.942 0.000 C 1 2 3 2.574178 120.235 0.000 H 1 2 3 2.027728 119.463 180.001 H 2 1 3 2.027750 119.458 180.001 H 3 2 1 2.029696 120.412 180.001 H 5 4 3 2.029697 118.770 0.000 H 6 5 4 2.027745 120.301 180.000 H 7 6 5 2.027735 119.460 180.002 H 8 7 6 2.029702 120.411 179.998 H 10 1 2 2.029710 120.409 180.000 --------------------- BASIS SET INFORMATION --------------------- There are 2 groups of distinct atoms Group 1 Type C : 10s4p contracted to 3s2p pattern {631/31} Group 2 Type H : 4s contracted to 2s pattern {31} Atom 0C basis set group => 1 Atom 1C basis set group => 1 Atom 2C basis set group => 1 Atom 3C basis set group => 1 Atom 4C basis set group => 1 Atom 5C basis set group => 1 Atom 6C basis set group => 1 Atom 7C basis set group => 1 Atom 8C basis set group => 1 Atom 9C basis set group => 1 Atom 10H basis set group => 2 Atom 11H basis set group => 2 Atom 12H basis set group => 2 Atom 13H basis set group => 2 Atom 14H basis set group => 2 Atom 15H basis set group => 2 Atom 16H basis set group => 2 Atom 17H basis set group => 2 ------------------------------------------------------------------------------ ORCA GTO INTEGRAL CALCULATION ------------------------------------------------------------------------------ BASIS SET STATISTICS AND STARTUP INFO # of primitive gaussian shells ... 172 # of primitive gaussian functions ... 252 # of contracted shell ... 66 # of contracted basis functions ... 106 Highest angular momentum ... 1 Maximum contraction depth ... 6 Integral package used ... LIBINT Integral threshhold Thresh ... 2.500e-11 Primitive cut-off TCut ... 2.500e-12 INTEGRAL EVALUATION One electron integrals ... done Pre-screening matrix ... done Shell pair data ... done ( 0.003 sec) ------------------------------------------------------------------------------- ORCA SCF ------------------------------------------------------------------------------- ------------ SCF SETTINGS ------------ Hamiltonian: Ab initio Hamiltonian Method .... Hartree-Fock(GTOs) General Settings: Integral files IntName .... orca Hartree-Fock type HFTyp .... RHF Total Charge Charge .... 0 Multiplicity Mult .... 1 Number of Electrons NEL .... 68 Basis Dimension Dim .... 106 Nuclear Repulsion ENuc .... 460.0270955572 Eh Convergence Acceleration: DIIS CNVDIIS .... on Start iteration DIISMaxIt .... 12 Startup error DIISStart .... 0.200000 # of expansion vecs DIISMaxEq .... 5 Bias factor DIISBfac .... 1.050 Max. coefficient DIISMaxC .... 10.000 Newton-Raphson CNVNR .... off SOSCF CNVSOSCF .... on Start iteration SOSCFMaxIt .... 150 Startup grad/error SOSCFStart .... 0.003300 Level Shifting CNVShift .... on Level shift para. LevelShift .... 0.2500 Turn off err/grad. ShiftErr .... 0.0010 Zerner damping CNVZerner .... off Static damping CNVDamp .... on Fraction old density DampFac .... 0.7000 Max. Damping (<1) DampMax .... 0.9800 Min. Damping (>=0) DampMin .... 0.0000 Turn off err/grad. DampErr .... 0.1000 Fernandez-Rico CNVRico .... off SCF Procedure: Maximum # iterations MaxIter .... 125 SCF integral mode SCFMode .... Direct Integral package .... LIBINT Reset frequeny DirectResetFreq .... 20 Integral Threshold Thresh .... 2.500e-11 Eh Primitive CutOff TCut .... 2.500e-12 Eh Convergence Tolerance: Convergence Check Mode ConvCheckMode .... Total+1el-Energy Energy Change TolE .... 1.000e-08 Eh 1-El. energy change .... 1.000e-05 Eh Orbital Gradient TolG .... 1.000e-05 Orbital Rotation angle TolX .... 1.000e-05 DIIS Error TolErr .... 5.000e-07 Diagonalization of the overlap matrix: Smallest eigenvalue ... 3.765e-04 Time for diagonalization ... 0.004 sec Threshold for overlap eigenvalues ... 1.000e-08 Number of eigenvalues below threshold ... 0 Time for construction of square roots ... 0.002 sec Total time needed ... 0.005 sec --------------------- INITIAL GUESS: MOREAD --------------------- Guess MOs are being read from file: orca.gbw Input Geometry matches current geometry (good) Input basis set matches current basis set (good) MOs were renormalized MOs were reorthogonalized (Schmidt) ------------------ INITIAL GUESS DONE ( 0.0 sec) ------------------ -------------- SCF ITERATIONS -------------- ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp *** Starting incremental Fock matrix formation *** *** Initiating the SOSCF procedure *** *** Re-Reading the Fockian *** *** Removing any level shift *** ITER Energy Delta-E Grad Rot Max-DP RMS-DP 0 -383.22272495 -383.2227249517 0.000073 0.000073 0.000109 0.000010 *** Restarting incremental Fock matrix formation *** 1 -383.22272523 -0.0000002828 0.000029 0.000055 0.000053 0.000004 2 -383.22272529 -0.0000000526 0.000015 0.000047 0.000025 0.000003 3 -383.22272530 -0.0000000095 0.000006 0.000013 0.000007 0.000000 4 -383.22272530 -0.0000000011 0.000003 0.000007 0.000003 0.000000 ***Gradient check signals convergence*** ***Rediagonalizing the Fockian in SOSCF/NRSCF*** ***************************************************** * SUCCESS * * SCF CONVERGED AFTER 5 CYCLES * ***************************************************** ---------------- TOTAL SCF ENERGY ---------------- Total Energy : -383.22272530 Eh -10428.02051 eV Components: Nuclear Repulsion : 460.02709556 Eh 12517.97367 eV Electronic Energy : -843.24982085 Eh -22945.99418 eV One Electron Energy: -1429.01997970 Eh -38885.61055 eV Two Electron Energy: 585.77015885 Eh 15939.61638 eV Virial components: Potential Energy : -766.91689377 Eh -20868.86963 eV Kinetic Energy : 383.69416848 Eh 10440.84913 eV Virial Ratio : 1.99877130 --------------- SCF CONVERGENCE --------------- Last Energy change ... 3.2355e-10 Tolerance : 1.0000e-08 Last MAX-Density change ... 6.8461e-07 Tolerance : 1.0000e-07 Last RMS-Density change ... 6.6836e-08 Tolerance : 5.0000e-09 Last Orbital Gradient ... 3.1870e-07 Tolerance : 1.0000e-05 Last Orbital Rotation ... 4.1292e-07 Tolerance : 1.0000e-05 **** THE GBW FILE WAS UPDATED (orca.gbw) **** **** DENSITY FILE WAS UPDATED (orca.scfp.tmp) **** **** ENERGY FILE WAS UPDATED (orca.en.tmp) **** ---------------- ORBITAL ENERGIES ---------------- NO OCC E(Eh) E(eV) 0 2.0000 -11.245805 -306.0139 1 2.0000 -11.244744 -305.9850 2 2.0000 -11.237119 -305.7775 3 2.0000 -11.237084 -305.7766 4 2.0000 -11.236859 -305.7705 5 2.0000 -11.236791 -305.7686 6 2.0000 -11.235719 -305.7395 7 2.0000 -11.235691 -305.7387 8 2.0000 -11.234979 -305.7193 9 2.0000 -11.234965 -305.7190 10 2.0000 -1.182174 -32.1686 11 2.0000 -1.115516 -30.3547 12 2.0000 -1.052496 -28.6399 13 2.0000 -1.011010 -27.5110 14 2.0000 -0.986654 -26.8482 15 2.0000 -0.853601 -23.2277 16 2.0000 -0.837889 -22.8001 17 2.0000 -0.815433 -22.1891 18 2.0000 -0.705109 -19.1870 19 2.0000 -0.704583 -19.1727 20 2.0000 -0.680670 -18.5220 21 2.0000 -0.622059 -16.9271 22 2.0000 -0.613450 -16.6928 23 2.0000 -0.585182 -15.9236 24 2.0000 -0.585134 -15.9223 25 2.0000 -0.564469 -15.3600 26 2.0000 -0.534287 -14.5387 27 2.0000 -0.519868 -14.1463 28 2.0000 -0.482877 -13.1397 29 2.0000 -0.470790 -12.8108 30 2.0000 -0.447454 -12.1759 31 2.0000 -0.383405 -10.4330 32 2.0000 -0.318172 -8.6579 33 2.0000 -0.287780 -7.8309 34 0.0000 0.100061 2.7228 35 0.0000 0.132478 3.6049 36 0.0000 0.191045 5.1986 37 0.0000 0.239286 6.5113 38 0.0000 0.260699 7.0940 39 0.0000 0.265143 7.2149 40 0.0000 0.288299 7.8450 41 0.0000 0.312104 8.4928 42 0.0000 0.316351 8.6084 43 0.0000 0.325076 8.8458 44 0.0000 0.338925 9.2226 45 0.0000 0.360395 9.8069 46 0.0000 0.416259 11.3270 47 0.0000 0.416844 11.3429 48 0.0000 0.468271 12.7423 49 0.0000 0.490268 13.3409 50 0.0000 0.499135 13.5822 51 0.0000 0.503688 13.7060 52 0.0000 0.516577 14.0568 53 0.0000 0.546220 14.8634 54 0.0000 0.697831 18.9890 55 0.0000 0.732970 19.9451 56 0.0000 0.739531 20.1237 57 0.0000 0.750749 20.4289 58 0.0000 0.761619 20.7247 59 0.0000 0.774746 21.0819 60 0.0000 0.778919 21.1955 61 0.0000 0.788282 21.4502 62 0.0000 0.811585 22.0844 63 0.0000 0.817251 22.2385 64 0.0000 0.829457 22.5707 65 0.0000 0.859497 23.3881 66 0.0000 0.865523 23.5521 67 0.0000 0.870225 23.6800 68 0.0000 0.884116 24.0580 69 0.0000 0.884677 24.0733 70 0.0000 0.902987 24.5715 71 0.0000 0.909176 24.7399 72 0.0000 0.912796 24.8384 73 0.0000 0.922725 25.1086 74 0.0000 0.943138 25.6641 75 0.0000 0.943970 25.6867 76 0.0000 1.010185 27.4885 77 0.0000 1.081938 29.4410 78 0.0000 1.122330 30.5401 79 0.0000 1.132257 30.8103 80 0.0000 1.138328 30.9755 81 0.0000 1.139049 30.9951 82 0.0000 1.162339 31.6289 83 0.0000 1.187740 32.3200 84 0.0000 1.190081 32.3838 85 0.0000 1.227049 33.3897 86 0.0000 1.227969 33.4147 87 0.0000 1.249736 34.0070 88 0.0000 1.276921 34.7468 89 0.0000 1.309249 35.6265 90 0.0000 1.310819 35.6692 91 0.0000 1.349103 36.7110 92 0.0000 1.356951 36.9245 93 0.0000 1.367311 37.2064 94 0.0000 1.392599 37.8946 95 0.0000 1.439614 39.1739 96 0.0000 1.501010 40.8446 97 0.0000 1.513174 41.1756 98 0.0000 1.573588 42.8195 99 0.0000 1.631488 44.3950 100 0.0000 1.739820 47.3429 101 0.0000 1.770121 48.1674 102 0.0000 1.793079 48.7921 103 0.0000 1.840400 50.0798 104 0.0000 2.207664 60.0736 105 0.0000 2.209546 60.1248 ******************************** * MULLIKEN POPULATION ANALYSIS * ******************************** ----------------------- MULLIKEN ATOMIC CHARGES ----------------------- 0 C : -0.207180 1 C : -0.207219 2 C : -0.163595 3 C : -0.074353 4 C : -0.163596 5 C : -0.207210 6 C : -0.207198 7 C : -0.163601 8 C : -0.074320 9 C : -0.163639 10 H : 0.200129 11 H : 0.200106 12 H : 0.207865 13 H : 0.207867 14 H : 0.200110 15 H : 0.200120 16 H : 0.207863 17 H : 0.207853 Sum of atomic charges: -0.0000000 -------------------------------- MULLIKEN REDUCED ORBITAL CHARGES -------------------------------- 0 C s : 3.179235 s : 3.179235 pz : 1.003762 p : 3.027945 px : 0.951072 py : 1.073111 1 C s : 3.179267 s : 3.179267 pz : 1.003748 p : 3.027952 px : 0.951317 py : 1.072887 2 C s : 3.127751 s : 3.127751 pz : 1.003029 p : 3.035843 px : 1.117892 py : 0.914922 3 C s : 3.127432 s : 3.127432 pz : 0.986444 p : 2.946922 px : 0.913614 py : 1.046864 4 C s : 3.127752 s : 3.127752 pz : 1.003022 p : 3.035843 px : 1.117968 py : 0.914853 5 C s : 3.179262 s : 3.179262 pz : 1.003749 p : 3.027948 px : 0.951078 py : 1.073121 6 C s : 3.179249 s : 3.179249 pz : 1.003762 p : 3.027950 px : 0.951301 py : 1.072887 7 C s : 3.127762 s : 3.127762 pz : 1.003007 p : 3.035839 px : 1.117902 py : 0.914929 8 C s : 3.127414 s : 3.127414 pz : 0.986469 p : 2.946906 px : 0.913609 py : 1.046827 9 C s : 3.127782 s : 3.127782 pz : 1.003008 p : 3.035856 px : 1.117979 py : 0.914869 10 H s : 0.799871 s : 0.799871 11 H s : 0.799894 s : 0.799894 12 H s : 0.792135 s : 0.792135 13 H s : 0.792133 s : 0.792133 14 H s : 0.799890 s : 0.799890 15 H s : 0.799880 s : 0.799880 16 H s : 0.792137 s : 0.792137 17 H s : 0.792147 s : 0.792147 ******************************* * LOEWDIN POPULATION ANALYSIS * ******************************* ---------------------- LOEWDIN ATOMIC CHARGES ---------------------- 0 C : -0.123353 1 C : -0.123345 2 C : -0.110816 3 C : -0.023221 4 C : -0.110812 5 C : -0.123346 6 C : -0.123353 7 C : -0.110801 8 C : -0.023236 9 C : -0.110804 10 H : 0.123232 11 H : 0.123223 12 H : 0.122546 13 H : 0.122546 14 H : 0.123225 15 H : 0.123229 16 H : 0.122545 17 H : 0.122541 ------------------------------- LOEWDIN REDUCED ORBITAL CHARGES ------------------------------- 0 C s : 2.933862 s : 2.933862 pz : 1.003568 p : 3.189491 px : 1.080682 py : 1.105242 1 C s : 2.933861 s : 2.933861 pz : 1.003554 p : 3.189484 px : 1.080706 py : 1.105224 2 C s : 2.930545 s : 2.930545 pz : 1.004635 p : 3.180271 px : 1.103146 py : 1.072491 3 C s : 2.890334 s : 2.890334 pz : 0.983621 p : 3.132887 px : 1.075934 py : 1.073332 4 C s : 2.930545 s : 2.930545 pz : 1.004629 p : 3.180267 px : 1.103180 py : 1.072458 5 C s : 2.933861 s : 2.933861 pz : 1.003555 p : 3.189485 px : 1.080686 py : 1.105244 6 C s : 2.933861 s : 2.933861 pz : 1.003567 p : 3.189493 px : 1.080701 py : 1.105224 7 C s : 2.930548 s : 2.930548 pz : 1.004615 p : 3.180253 px : 1.103145 py : 1.072493 8 C s : 2.890329 s : 2.890329 pz : 0.983643 p : 3.132907 px : 1.075932 py : 1.073332 9 C s : 2.930547 s : 2.930547 pz : 1.004614 p : 3.180257 px : 1.103177 py : 1.072466 10 H s : 0.876768 s : 0.876768 11 H s : 0.876777 s : 0.876777 12 H s : 0.877454 s : 0.877454 13 H s : 0.877454 s : 0.877454 14 H s : 0.876775 s : 0.876775 15 H s : 0.876771 s : 0.876771 16 H s : 0.877455 s : 0.877455 17 H s : 0.877459 s : 0.877459 ***************************** * MAYER POPULATION ANALYSIS * ***************************** NA - Mulliken gross atomic population ZA - Total nuclear charge QA - Mulliken gross atomic charge VA - Mayer's total valence BVA - Mayer's bonded valence FA - Mayer's free valence ATOM NA ZA QA VA BVA FA 0 C 6.2072 6.0000 -0.2072 3.8691 3.8691 0.0000 1 C 6.2072 6.0000 -0.2072 3.8691 3.8691 -0.0000 2 C 6.1636 6.0000 -0.1636 3.8874 3.8874 0.0000 3 C 6.0744 6.0000 -0.0744 3.8867 3.8867 -0.0000 4 C 6.1636 6.0000 -0.1636 3.8874 3.8874 -0.0000 5 C 6.2072 6.0000 -0.2072 3.8691 3.8691 0.0000 6 C 6.2072 6.0000 -0.2072 3.8691 3.8691 -0.0000 7 C 6.1636 6.0000 -0.1636 3.8874 3.8874 -0.0000 8 C 6.0743 6.0000 -0.0743 3.8867 3.8867 -0.0000 9 C 6.1636 6.0000 -0.1636 3.8874 3.8874 0.0000 10 H 0.7999 1.0000 0.2001 0.9334 0.9334 0.0000 11 H 0.7999 1.0000 0.2001 0.9334 0.9334 -0.0000 12 H 0.7921 1.0000 0.2079 0.9285 0.9285 -0.0000 13 H 0.7921 1.0000 0.2079 0.9285 0.9285 -0.0000 14 H 0.7999 1.0000 0.2001 0.9334 0.9334 0.0000 15 H 0.7999 1.0000 0.2001 0.9334 0.9334 -0.0000 16 H 0.7921 1.0000 0.2079 0.9285 0.9285 -0.0000 17 H 0.7921 1.0000 0.2079 0.9285 0.9285 0.0000 Mayer bond orders larger than 0.1 B( 0-C , 1-C ) : 1.2802 B( 0-C , 9-C ) : 1.6169 B( 0-C , 10-H ) : 0.9411 B( 1-C , 2-C ) : 1.6169 B( 1-C , 11-H ) : 0.9411 B( 2-C , 3-C ) : 1.2592 B( 2-C , 12-H ) : 0.9353 B( 3-C , 4-C ) : 1.2592 B( 3-C , 8-C ) : 1.3498 B( 4-C , 5-C ) : 1.6169 B( 4-C , 13-H ) : 0.9353 B( 5-C , 6-C ) : 1.2801 B( 5-C , 14-H ) : 0.9411 B( 6-C , 7-C ) : 1.6169 B( 6-C , 15-H ) : 0.9411 B( 7-C , 8-C ) : 1.2592 B( 7-C , 16-H ) : 0.9353 B( 8-C , 9-C ) : 1.2592 B( 9-C , 17-H ) : 0.9353 ------- TIMINGS ------- Total SCF time: 0 days 0 hours 0 min 27 sec Total time .... 27.828 sec Sum of individual times .... 27.820 sec (100.0%) Fock matrix formation .... 27.775 sec ( 99.8%) Diagonalization .... 0.005 sec ( 0.0%) Density matrix formation .... 0.002 sec ( 0.0%) Population analysis .... 0.007 sec ( 0.0%) Initial guess .... 0.011 sec ( 0.0%) Orbital Transformation .... 0.000 sec ( 0.0%) Orbital Orthonormalization .... 0.010 sec ( 0.0%) DIIS solution .... 0.001 sec ( 0.0%) SOSCF solution .... 0.018 sec ( 0.1%) ------------------------- -------------------- FINAL SINGLE POINT ENERGY -383.222725297383 ------------------------- -------------------- *** OPTIMIZATION RUN DONE *** *************************************** * ORCA property calculations * *************************************** --------------------- Active property flags --------------------- (+) Dipole Moment ------------------------------------------------------------------------------ ORCA ELECTRIC PROPERTIES CALCULATION ------------------------------------------------------------------------------ Dipole Moment Calculation ... on Quadrupole Moment Calculation ... off Polarizability Calculation ... off GBWName ... orca.gbw Electron density file ... orca.scfp.tmp ------------- DIPOLE MOMENT ------------- X Y Z Electronic contribution: -0.00000 0.00001 0.00004 Nuclear contribution : -0.00002 -0.00000 -0.00004 ----------------------------------------- Total Dipole Moment : -0.00002 0.00001 0.00000 ----------------------------------------- Magnitude (a.u.) : 0.00002 Magnitude (Debye) : 0.00006 Timings for individual modules: Sum of individual times ... 269.589 sec (= 4.493 min) GTO integral calculation ... 4.765 sec (= 0.079 min) 1.8 % SCF iterations ... 190.585 sec (= 3.176 min) 70.7 % SCF Gradient evaluation ... 71.250 sec (= 1.188 min) 26.4 % Geometry relaxation ... 2.989 sec (= 0.050 min) 1.1 % ****ORCA TERMINATED NORMALLY**** TOTAL RUN TIME: 0 days 0 hours 4 minutes 32 seconds 252 msec
На основе полученных координат составим новые входные файлы и рассчитаем энергию (FINAL SINGLE POINT ENERGY) методом Хартри-Фока и используя метод функционала плотности (заголовок !DFT RHF 6-31G):
%%bash
/srv/databases/orca/orca orca.inp > orca_HF.txt
%%bash
/srv/databases/orca/orca orca.inp > orca_DFT.txt
Algorithm |
E Naphthalene |
Hartree-Fock |
-383.223 |
DFT |
-382.253 |
Энергии, полученные двумя разными методами, различаются на 0,97 Hartree, или на 608.68 kcal/mol. К сожалению, для азулена получить значения энергии не получилось, а на основе этих данных нельзя заключить, какой метод лучше.