Отчёт о качестве расшифровки структуры белка печеночной пируваткиназы человека (PDB код 4IP7) методом рентгеноструктурного анализа

Выполнила студентка IV курса Факультета биоинженерии и биоинформатики МГУ имени М.В. Ломоносова Ланина Наталья

Оглавление

Аннотация
Введение
Результаты и обсуждение 6
Общая информация о модели 6
Значения индикаторов качества модели 6
Анализ маргинальных остатков9
1. Asn 535:В - Плохие углы φ и ψ, отсутствие водородной связи (Asn – акцептор)10
2. Gly 91:В – Странное положение кислорода в остове11
3. Glu 430:С – Необычные взаимодействия между цепями 11
4. Val 179:D — Плохой торсионный угол, Z-score<-2,512
5. Phe 88:А – Странная геометрия остова13
Сравнение модели из PDB с моделью из PDB_REDO13
Дополнительные комментарии14
Заключение
Список использованной литературы 17

Аннотация

В работе был проведен анализ структуры печеночной пируваткиназы человека (структура 4IP7). Были рассмотрены некоторые индикаторы качества модели структуры (карта Рамачандрана, R-фактор, R_{free}) и список из 10 маргинальных остатков. Подробно рассмотрены 5 маргинальных остатков структуры белка.

По результатам проведенного анализа можно сделать вывод, что качество структуры не очень хорошее. По всей видимости, это связано как с получением кристалла (белок очень крупный), так и с ошибками в разрешении структуры.

В ходе работы над отчётом удалось познакомиться с возможностями, которые предоставляют серверы для оценки качества структур белковых молекул.

Введение

Пируваткиназа (пируват-фосфотрансфераза, 2.7.1.40) - фермент, катализирующий последнюю реакцию гликолиза - перенос фосфата с фосфоенолпирувата на АДФ (рисунок 1). Таким образом фермент обеспечивает синтез второй молекулы АТФ в процессе гликолиза. Данная реакция практически необратима in vivo, поэтому имеет важное регуляторное значение.¹

Рисунок 1. Схема реакции, катализируемой пируваткиназой.

Пируваткиназа - тетрамер, состоит из четырех одинаковых субъединиц и имеет массу около 200 кДа (рисунок 2). Каждая субъединица состоит из четырех доменов, Такая мультидоменная организация важна для регуляции активности пируваткиназы².

У млекопитающих различают 4 изоформы фермента, в зависимости от источника: М1изоформа (мышечная) и М2-изоформа (фетальная) - продукты альтернативного сплайсинга одной и той же мРНК, L-изоформа (печеночная) и E-изоформа (эритроцитарная). Данные изоформы имеют различия в регуляции и кинетических свойствах.

Рисунок 2. Гомотетрамер пируваткиназы (каждая цепь обозначена своим цветом).

Регуляция фермента

Регуляция пируваткиназы крайне важна, так как с помощью нее обеспечивается регуляция всего процесса гликолиза. Пируваткиназа активируется, когда увеличивается уровень исходных веществ. Активация также происходит в присутствии фосфорилированных сахаров, которые свидетельствуют о том, что доступно достаточное количество «исходного материала». Ингибирование этого фермента осуществляют молекулы, количество которых увеличивается, когда у клетки достаточно энергетических ресурсов.

Регуляторы пируваткиназы:

- 1. Фосфоенолпируват (субстрат), ускоряет реакцию, так как присоединение этого субстрата скорость-лимитирующая стадия реакции.
- 2. АТФ и пируват (продукты) неконкурентные ингибиторы.
- 3. Аланин отрицательный аллостерический модулятор.
- 4. Фруктозо-1,6-бисфосфат активатор.
- 5. Цитрат и оксалат неконкурентные ингибиторы.
- 6. К⁺ активатор, облегчает связывание АДФ.
- 7. Mg²⁺ кофермент.

Структура 4IP7 содержит большое количество лигандов, показанных на рисунке 3.

Рисунок 3. Гомотетрамер пируваткиназы (структура 4ІР7) с лигандами. Синими шариками показаны ионы магния; коричневыми шариками – ионы натрия; черным цветом показан цитрат; оранжевым – фруктозо-1,6-бисфосфат; синим цветом – аденозин.

Было замечено, что через несколько дней после выделения, сродство пируваткиназы к фосфоенолпирувату значительно уменьшается. Возможно, это происходит из-за окисления Cys436 или Ser12, находящихся в центре связывания фосфоенолпирувата. В статье³ изучается взаимосвязь окисления и фосфорилирования указанных остатков, и их влияние на сродство к фосфоенолпирувату.

Результаты и обсуждение

Общая информация о модели

Модель 4IP7 представляет собой гомотетрамер из четырех цепей (А, В, С и D), каждая массой около 60 кДа и длиной 540 аминокислотных остатков. Биологическая единица также является тетрамером. Элементарная ячейка содержит 8 молекул, пространственная группа – Р 1 2 1. Структура размещена в банке 9 января 2013 года, последние изменения – 6 февраля 2013 года. Авторы структуры: Holyoak T., Zhang B., Deng J., Tang Q., Prasannan C.B., Fenton, A.W.

При решении фазовой проблемы для структуры 4IP7 использовался метод молекулярного замещения. После удаления молекул воды и ионов была проведена оптимизация с использованием структуры 2VGB.

Разрешение структуры 1.8 Å. Всего было получено 242852 рефлексов, из них было использовано 236781 (полнота данных составляет 97,5%). Диапазон разрешения для использованных рефлексов: 1.8 – 37.53 Å.

Значения индикаторов качества модели

<u> R-фактор:</u>

R_{x-ray}=0.189, R_{free}=0.226 (R_{free} посчитан по 11896 рефлексам - 5,29% от общего числа). Значение R_{free} - R_{x-ray} составляет 0.037 (менее 0.1) и показывает на хорошую оптимизацию структуры.

Карта Рамачандрана

Для построения карты Рамачандрана был использован сервер MolProbity⁴. Полученные карты представлены на рисунке 4 (множество пар двугранных углов φ и ψ для всех типов аминокислотных остатков разбито на 6 групп для удобства). В запрещенных областях находится 7 остатков: Thr 340:A, Asn 535:A, Gly 184:B, Thr 340:B, Ala 166:C, Thr 340:C, Thr 340:D.

МоlProbity определяет некоторые критерии качества для данной структуры. Количество остатков, находящихся в запрещенных областях карты Рамачандрана, составляет 0.34%, что превышает стандартный порог (менее 0.05% остатков в запрещенной области). Количество остатков в разрешенных и предпочитаемых обастях составляет 97.15%, что ниже стандартного порога (более 98%). Был найден 91 остаток (5.44%) с конформацией боковой цепи, не соответствующей ни одному из ротамеров, что также превышает допустимый порог (менее 1%).Число недопустимых наложений атомов составляет 6 атомов на 1000. Для 10.66% остатков структуры значение Z-score превышает 2% (по данным EDS⁵) (рисунок 5).

Суммарная информация о некоторых индикаторах качества структуры 4IP7 представлена в таблице 1.

Рисунок 4. Карта Рамачандрана для структуры 4IP7, построенная сервисом MolProbity. На карте видно 7 маргинальных остатков, находящихся в запрещенной зоне: Thr 340:A, Asn 535:A, Gly 184:B, Thr 340:B, Ala 166:C, Thr 340:C, Thr 340:D.

Рисунок 5. Z-score для всех остатков структуры 4IP7.

таолица 1. величины некоторых индикаторов качества структуры в целом для модели 41				
R-фактор	0.189			
R _{free}	0.226			
$R_{free} - R_{x-ray}$	0.037			
RSR-фактор	0.204			
Число маргиналов по карте Рамачандрана	7 (0.34%)			
Число остатков в предпочитаемой области	97.15%			
карты Рамачандрана				
Отклонения Cβ > 0.25 Å	20 (1.05%)			
Ковалентные связи, существенно	83 (0.52%)			
отклоняющиеся от теории				
Валентные углы, существенно отклоняющиеся	64 (0.29%)			
от теории				

Таблица 1. Величины некоторых индикаторов качества структуры в целом для модели 4IP7.

Анализ маргинальных остатков

На карте Рамачандрана, построенной сервисом EDS (рисунок 6) обнаружено 32 остатка,

находящихся в запрещенной зоне.

Используя эти данные, данные с сайта MolProbity и с сайта PDBREPORT⁶ было отобрано 10 маргинальных остатков, информация о них указана в таблице 2.

N⁰	Остаток	Критерий	
1	Asn 535:B	Плохие углы φ и ψ, отсутствие водородной связи (Asn – акцептор)	
2	Gly 91:B	Странное положение кислорода в остове	
3	Glu 430:C	Необычные взаимодействия между цепями	
4	Val 179:D	Плохой торсионный угол, Z-score<-2,5	
5	Phe 88:A	Странная геометрия остова	
6	Ala 166:C	В запрещенной области на карте Рамачандрана	
7	Val 517:B		
8	His 275:B	Странная геометрия остова (длины и углы)	
9	Thr 340:A	Плохие углы φ и ψ, маленькая длина связи (отклонение больше 4σ)	
10	Ser 374:A	Плохие углы φ и ψ, нестандартный угол связи (отклонение больше 4σ)	

Таблица 2. Список десяти маргинальных остатков, иллюстрирующий различные отклонения.

Первые пять остатков были подробно рассмотрены в структуре, для каждого было получено изображение электронной плотности.

Рисунок 6. Карта Рамачандрана, полученная средствами EDS, для модели 4IP7. Квадратами отмечены остатки глицина. Остатки вне разрешённой области отмечены звёздочками.

1. Asn 535:В - Плохие углы φ и ψ, отсутствие водородной связи (Asn – акцептор).

Данный остаток попадает в запрещенную область на карте Рамачандрана. Кроме того, аспарагин является акцептором протона и должен образовывать водородную связь, но в данном случае этого не происходит (рисунок 7). На рисунке показан остаток Asn535:В и электронная плотность вокруг него с уровнем подрезки 1.5 о. Видны нестандартные торсионные углы и отсутствие водородных связей, образованных боковым радикалом. Тем не менее, остаток вписывается в карту электронной плотности.

Рисунок 7. Изображение остатка Asn535:В, сеточкой показана электронная плотность остатка с подрезкой 1.5 о.

2. Gly 91:В – Странное положение кислорода в остове.

На рисунке 8 показан остаток глицина-91. Видно, что карбоксильный атом кислорода расположен в цис-положении по отношению к аминогруппе. Такая ситуация очень нехарактерна для пептидной связи. Тем не менее, остаток глицина хорошо вписывается в карту электронной плотности на уровне подрезки 20.

Рисунок 8. Изображение остатка Gly91:B, сеточкой показана электронная плотность остатка с подрезкой 2 о.

3. Glu 430:С – Необычные взаимодействия между цепями.

На рисунке 9 приведено изображение остатков Glu 430 цепей C и D, а также электронная плотность этих остатков с подрезкой 1.5 видно, что остатки как бы раздваиваются, и в одном из

вариантов их положения они не связаны друг с другом ковалентно. Судя по электронной плотности, такая ситуация возникла из-за того, что в разных кристаллах остатки могут быть расположены поразному, и в разных кристаллах в одном и том же месте находятся остатки разных цепей.

Рисунок 9. Изображение остатков Glu 430 цепей С и D, сеточкой показана электронная плотность остатка с подрезкой 1.5 о.

4. Val 179:D – Плохой торсионный угол, Z-score<-2,5.

В базе PDBREPORT про данный остаток указано, что он имеет нестандартный торсионный угол и плохой Z-score. На рисунке 10 изображен этот остаток и соответствующая электронная плотность с уровнем подрезки 1.5 о. Видно, что боковая цепь данного остатка не вписывается в электронную плотность. Видимо, расположение этого остатка было выбрано случайным образом.

Рисунок 10. Изображение остатка Val179:D, сеточкой показана электронная плотность остатка с подрезкой 1.5 о.

5. Phe 88:А – Странная геометрия остова.

Сервис PDBREPORT относит данный остаток к остаткам с необычной геометрией остова. На рисунке 11 показан остаток Phe88:А и соответствующая электронная плотность с уровнем подрезки 1.5 о. В данном случае остаток и геометрия остова выглядят вполне нормально.

Рисунок 11. Изображение остатка Phe88:А, сеточкой показана электронная плотность остатка с подрезкой 1.5 .

Сравнение модели из PDB с моделью из PDB REDO

На сервере PDB REDO⁷ была построена структура 4ip7 final (рисунок 12) по имеющимся экспериментальным данным о 4IP7. В результате для 58 остатков RSR остатков значительно улучшился, а для 41остатка значительно ухудшился. RSRZ улучшился для 73 остатков, а ухудшился для 88 остатков.

В таблице 3 перечислены некоторые характеристики для 4ip7 и 4ip7_final.

	Таблица 3. Некоторые характеристики 4ip7 и 4ip7_tinal.		
Характеристика	4ip7	4ip7_final	
R	0.1870	0.1803	
R _{free}	0.2260	0.2032	
R _{free} – R	0.0390	0.0229	

_ _

Оптимизация структуры значительно уменьшила значение R_{free} и разность R_{free}- R, а также устранила часть аномалий в исходной структуре.

Рисунок 12. Совмещение структур моделей 4ІР7 из PDB (показана голубым цветом) и из PDB_REDO (показана коричневым цветом. Для наглядности изображена только одна цепь (А).

Дополнительные комментарии

При рассмотрении структуры в формате ribbons можно заметить три крупных разрыва полипептидной цепи (рисунок 13). Такие разрывы встречаются во всех четырех цепях гомотетрамера, и везде они одинаковые. Скорее всего, такая ситуация связана с разрушением белка при кристаллизации. Но что странно, об этой аномалии не сообщает ни один сервис, использованный для оценки качества структуры.

Рисунок 13. Изображение белка (цепь А) в формате ribbon. Красными шариками обозначены границы разрывов цепи.

Заключение

Проведенный анализ структуры 1ІР7 выявил довольно большое количество маргинальных остатков. Маргинальность некоторых из них можно объяснить сложностями кристаллизации белка, других - ошибкой построения модели. Проблемы при кристаллизации могут возникать из-за того что это очень крупный белок.

Кроме того найдены крупные разрывы в цепи (до 7 аминокислотных остатков).

Обсуждаемый в статье остаток Ser 12 (его заменяли для изучения значимости при связывании фосфоенолпирувата) вообще отсутствует в данной структуре.

Таким образом, можно сказать, что качество данной структуры не очень хорошее.

Список использованной литературы

- 1. Prilusky J, Hodis E, Canner D, et al. Proteopedia: a status report on the collaborative, 3D webencyclopedia of proteins and other biomolecules. *J Struct Biol*. 2011;175(2):244–52. doi:10.1016/j.jsb.2011.04.011.
- 2. Valentini G, Chiarelli LR, Fortin R, et al. Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. *J Biol Chem*. 2002;277(26):23807–14. doi:10.1074/jbc.M202107200.
- 3. Holyoak T, Zhang B, Deng J, Tang Q, Prasannan CB, Fenton AW. Energetic coupling between an oxidizable cysteine and the phosphorylatable N-terminus of human liver pyruvate Kinase. *Biochemistry*. 2013;52(3):466–476. doi:10.1021/bi301341r.
- 4. Davis IW, Leaver-Fay A, Chen VB, et al. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res*. 2007;35. doi:10.1093/nar/gkm216.
- 5. Kleywegt GJ, Harris MR, Zou JY, Taylor TC, Wählby A JT. The Uppsala Electron-Density Server. *Acta Crystallogr D Biol Crystallogr*. 2004.
- 6. Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures. *Nature*. 1996;381:272. doi:10.1038/381272a0.
- 7. Joosten RP, Long F, Murshudov GN, Perrakis A. The {\it PDB_REDO} server for macromolecular structure model optimization. *IUCrJ*. 2014;1:213–220. doi:10.1107/S2052252514009324.