Практическая биоинформатика

Обзор протеома бактерии Gemmatimonas phototrophica AP64

Кондратенко Наталья Дмитриевна¹

 1 Факультет биоинженерии и биоинформатики МГУ им. М. В. Ломоносова

РЕЗЮМЕ:

В данной работе был исследован протеом бактерии *Gemmatimonas phototrophica* AP64. Была изучена особенность распределения белков по длине, особенности распределения кодирующих последовательностей по продукту (РНК, белок или псевдоген) и положению на цепи.

КЛЮЧЕВЫЕ СЛОВА:

Протеом, белок, Gemmatimonas phototrophica AP64, геном

1 ВВЕДЕНИЕ

Систематическое положение Gemmatimonas phototrophica

Домен	Prokaryota			
Царство	Bacteria			
Тип	Gemmatimonadetes			
Класс	Gemmatimonadetes			
Порядок	Gemmatimonadales			
Семейство	Gemmatimonadacea			
	e			
Род	Gemmatimonas			
Вид	G. phototrophica			

Геном бактерии Gemmatimonas phototrophica, штамм AP64, был секвенирован в 2015 году. Она была обнаружена в изоляции в пресноводном Лебедином озере (в оригинале Swan Lake) в западной пустыне Гоби. Основываясь на 96.1% идентичности гена 16S рРНК к бактерии Gemmatimonas aurantiaca Т-27Т данный вид был отнесен к типу Gemmatimonadetes. Gemmatimonas phototrophica функциональные реакционные центры фотосинтеза II типа, но не ассимилирует органический углерод, из чего можно сделать вывод, что бактерия ведет фотогетеротрофный образ жизни [1]. Открытие данного краснопигментированного штамма, продуцирующего бактериохлорофилл а имело большое значение, так как ранее было зафиксировано только 6 из 30 описанных типов бактерий, продуцирующих бактериохлорофилл: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes и Acidobacteria. Секвенирование генома дало основания для того, чтобы считать Gemmatimonadetes седьмым бактериохлорофиллоносным типом бактерий и может дать новое представление об эволюции бактериального фотосинтеза [2]. В данной работе проведен анализ распределения кодирующих последовательностей данной бактерии, что может быть полезно для дальнейших исследований генома данной бактерии.

2 МЕТОДЫ

Были получены данные о геноме данной бактерии на сайте NCBI: *Gemmatimonas phototrophica* AP64, complete genome, GCA 000695095.2 ASM69509v2 feature table.txt.gz.

На основе результатов таблицы была построена плоская таблица.

Для каждого сочетания в колонках «#features» и «class» было посчитано число строк с такими значениями. Далее была построена гистограмма длин белков, с помощью встроенных функций была подечитана и описана статистика: максимальная и минимальная длины белка, средняя длина, среднестатистическое отклонение от среднего значения. С помощью СЧЁТЕСЛИМН было посчитали число генов белков, псевдогенов и генов РНК. на прямой и комплементарной цепи. Все упомянутые выше действия были произведены в программе Microsoft Office Excel.

3 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1 Белки

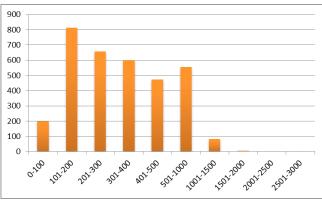

Геном бактерии *Gemmatimonas photrophica* содержит 3388 последовательностей, кодирующих белок. Длина белков варьировалась от самой маленькой в 43 аминокислоты до самой большой в 2787 аминокислот. Средняя длина была около 353 аминокислот. Статистические данные приведены в Таблице 1.

Таблица 1. Статистические данные о длине белков бактерии G. phototrophica.

Максимальная длина	43
Минимальная длина	2787
Среднее значение	352.7576741
Среднеквадратичное отклонение от среднего	236.1325385
Медиана	303

Чаще всего в протеоме данной бактерии можно найти белки длины от 100 до 200 аминокислот, что видно на приведенной ниже Диаграмме 1.

Диаграмма 1. Распределение белков по длине.

СПИСОК ЛИТЕРАТУРЫ

[1] Zenq, Y., Selyanin, V., Lukes, M., Dean, J.(2015) International journal of systematic and evolutionary microbilogy: Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca.

https://kodomo.fbb.msu.ru/~natalia_kondratenko/term1/pr13.xlsx

[2] Zeng, Y., (2014) Proceedings of the National Academy of Science of the United States of America: Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes,

3.2 Распределение последовательностей, кодирующих РНК, белки и псевдогены по цепям ДНК

Всего в геноме бактерии G. phototrophica AP64 3965 кодирующих последовательностей, при этом кодируются 3388 последовательностями, а РНК - 54 последовательностями, также в геноме насчитывается 523 псевдогена. В Таблице 2 приведены данные о распределении кодирующих последовательностей между прямой и обратной цепями ДНК. Как можно видеть из данной таблицы, на прямой и обратной цепях ДНК находится примерно одинаковое количество кодирующих последовательностей.

Таблица 2. Распределение кодирующих последовательностей.

Цепь	Белки	Псевдогены	Гены РНК
Прямая	1626	263	26
Обратная	1762	260	28

ЗАКЛЮЧЕНИЕ

- (1) В геноме бактерии Gemmatimonas phototrophica AP64 наиболее распространены белки в диапазоне от 100 до 200 аминокислот. В целом, чаще всего встречаются белки с длиной от 100 до 400 аминокислот, но есть и маленькие (43 аминокислоты), и большие (2787 аминокислот).
- (2) Кодирующие последовательности встречаются на прямо и обратной цепях ДНК с приблизительно равной частотой

СОПРОВОДИТЕЛЬНЫЕ МАТЕРИАЛЫ

Файл со всеми таблицами, на основе которых была написана эта статья, доступен по ссылке: