Практикум № 4. Python для структур и не только (!)

Иосиф Финкельберг

1 Введение

В первых двух заданиях этого практикума мы будем работать со структурой FMN и NADPH-зависимой нитроредуктазы NfnB альфапротеобактерии из рода Sphingopyxis, полученной в работе этого года [1]. Нитроредуктаза NfnB участвует в разрушении синтетических соединений, используемых, например, в качестве гербицидов, восстанавливая их нитрогруппы (см. рис 1). Таким образом, потенциально она может использоваться для биоремидиации. Структуру нитроредуктазы NfnB интересно изучать в том числе в контексте ее субстратной специфичности. Так, замена остатка Туг88 на Phe значительно меняет субстратную специфичность [1].

Рис. 1: Субстратами нитроредуктазы NfnB являются распространенные гербициды (рисунок взят из работы [1]).

2 Задание 1. Prody и В-факторы часть 1

Здесь мы воспользовались python-модулем Prody для работы с нашей структурой. Мы нашли остаток, средний В-фактор атомов которого максимален. Этим остатком оказался ALA 119 цепи В. Его средний В-фактор якобы равен 103.646. Это кажется довольно подозрительным: по умолчанию стоило бы ожидать, что В-фактор будет высоким у какого-нибудь крупного, подвижного остатка (например, остатка лизина, или ароматического

остатка фенилаланина / тирозина). В связи с этим мы посмотрели на этот остаток в pymol, раскрасив атомы структуры согласно их B-факторам (см. puc 2).

Рис. 2: В-факторы атомов структуры в районе остатка Ala-119. Чем выше В-фактор, тем краснее цвет. Пунктирной линией отмечена неразрешенная часть остова

Видим, что эта часть структуры плохо разрешена (вероятно, как раз, вследствие ее крайне высокой подвижности). Информация о том, что средний В-фактор выше всего для Ala-119 оказывается довольно бесполезной в этом случае: она лишь указывает на то, что Ala-119 находится в подвижной части остова (но не хактеризует остаток как таковой). Приведем еще на всякий случай значения В-факторов для атомов Ala-119: [99.72, 99.88, 102.85, 107.24, 108.54] (см. также скриншот соответствующего .cif файла на рис 3)

```
ATOM
       2483 N N
                       ALA B 1 109 ? 1.54222
                                                -41.41378 -3.23009
                                                                    1.000 91.26091
                                                                                       109 ALA B N
       2484 C CA
MOTA
                       ALA B 1 109 ? 1.65102
                                                -42.58527 -4.09965
                                                                    1.000 94.78299
                                                                                       109 ALA B CA
ATOM
       2485 C C
                             1 109
                                   ? 2.89960
                                                -42.50455 -4.97926
                                                                                       109 ALA B C
                       ALA B
                                                                    1.000 91.08615
                                               -43.00868 -6.10577
MOTA
       2486 0 0
                       ALA B
                             1 109
                                   ? 2.91922
                                                                    1.000 89.60429
                                                                                       109 ALA B 0
MOTA
       2487 C CB
                             1 109
                                   ? 0.40380
                                                -42.72089 -4.96500
                                                                     1.000 100.84659
                                                                                       109 ALA B CB
MOTA
       2488 N N
                       ALA B 1 119
                                   ? - - 11.39853 - - 36.28934 - 4.27254
                                                                    1,000 99.87807
                                                                                       119 ALA B N
                             1 119
MOTA
       2489 C CA
                       ALA B
                                   ? - 10.68176 - 37.46231 - 3.78571
                                                                     1.000
                                                                           102.85315
                                                                                       119 ALA B CA
                                               -37.67246 4.52925
ATOM
       2490 C C
                             1 119 ? -9.36257
                                                                    1.000 107.23913
                                                                                       119 ALA B C
                       ALA · B
MOTA
       2491 0 0
                       ALA B 1 119 ? -9.09280 -- 37.02848 5.54764
                                                                     1.000 108.53769
                                                                                     ? 119 ALA B 0
MOTA
       2492 C CB
                             1 119 ? -10.42760 -37.34296 2.29008
                                                                    1.000 99.72011
                                                                                       119 ALA B CB
```

Рис. 3: Распределение величин В-фактора для атомов остатка Ala-119

Найдем теперь, наоборот, остаток с минимальным средним по атомам В-фактором. Этим остатком оказался Gly-155 цепи А. Вы только взгляните на него, как он уютно и прочно встроился в свою альфа-спираль (см. рис 4)! Разброс значений В-фактора для его атомов невелик. Этот результат, напротив, является достаточно ожидаемым: глицин – это самая маленькая аминокислота, подвижность ее атомов определяется лишь подвижностью соответствующей части белкового остова.

Рис. 4: Распределение величин В-фактора для атомов остатка Gly-155

Рассмотрим теперь эти два остатка в контексте структуры в целом (см. puc. 5).

Рис. 5: Распределение величин В-фактора структуры 7dpi. Крупно показаны остатки Gly-155 (остаток находится в неподвижной, центральной области белка) и Ala-119 (этот остаток, напротив, расположен в, вероятно, очень подвижной и плохо разрешенной части структуры)

Здесь наблюдается следующее явление: подвижный остаток находится в подвижной части белка, неподвижный – в неподвижной (надо признаться, я сам был поражен, когда в первый раз это осознал). Кстати, тут, видимо, самое время рассказать, что белок является гомодимером. Центральная его часть, судя по цветовой схеме распределения значений В-фактора, является достаточно неподвижной, в отличие от переферийных участков.

3 Задание 2. Prody и В-факторы часть 2

В этом задании мы рассмотрели зависимость среднего (по атомам) Вфактора остатка от расстояния до центра масс нашего белка (см. рис 6).

Рис. 6: Зависимость (логарифма) среднего В-фактора остатка от расстояния до центра масс белка. Розовая кривая – линейное приближение.

Мы видим, что в нашем белке средняя величина В-фактора остатка положительно скоррелирована с расстоянием до центра масс. Более того, эта зависимость хорошо аппроксимируется экспонентой (см. рис 6). Кроме того, чем больше расстояние, тем больше дисперсия у средних значений Вфактора. Качественно эта зависимость хорошо согласуется с тем, что мы наблюдаем глазами в pymol (см. рисунок 5). Можно сделать вывод, что центральная, массивная часть нашего белка является достаточно жесткой, а вот перефирийные участки подвижны. То, что возрастание В-фактора при удалении от центра масс имеет именно экспоненциальную природу, в принципе, можно было бы объяснить с помощью совсем тривиальной модели. Пусть белок – это плоский объект, состоящий из скрепленных друг с другом жестких стержней одинаковой длины; соседние стержни могут поворачиваться друг относительно друга на углы в каком-то диапозоне (т.е. белок – это ломаная прямая на плоскости, состоящая из соединенных друг с другом отрезков длины 1, между двумя соседними отрезками угол должен лежать в диапозоне $[\pi - \alpha : \pi + \alpha]$ с каким-то небольшим фиксированным значением α). Пусть мы закрепили левый конец этой ломаной, и первые несколько ее отрезков, а остальным дали свободно варьировать в допустимом диапозоне углов между соседними отрезками. Тогда конец правого подвижного отрезка будет бегать по дуге 2α , правый конец следующего за ним отрезка, соответственно, по дуге 4α , ..., правый конец n-го подвижного отрезка будет бегать, соответственно, по дуге $2^n \alpha$. В-фактор для каждой вершины будет пропорционален длине дуги, по которой она бегает. Таким образом, В-фактор будет экспоненциально зависеть от расстояния до неподвижной части ломаной.

Интуитивно, кажется, что эта зависимость – это не какой-то фундаментальный закон природы, так как она определяется формой и свойствами белка, которые должны сильно варьировать. Можно предположить, что по-

хожую зависимость мы будем видеть для таких белков, у которых в центре масс структура является достаточно ригидной, а при удалении от центра будет иметь какую-то +- константную "гибкость" (дальше, понятно, можно пытаться более строго эти свойства структуры определить).

4 Задание 3. Как работает восстановление функции электронной плотности по экспериментальным данным

Как это кратко и точно изложено в задании к практикуму: "В обычном мире, мы делаем кристалл, который состоит из молекул имеющих электроны, которые распределены так, что мы можем описать их электронной плотностью. Эту электронную плотность мы хотим узнать в ходе рентгеноструктурного анализа. Проводим эксперимент, получаем амплитуды, берем откуда-то фазы, проводим синтез Фурье и восстанавливаем электронную плотность, надеясь, что эта полученная "восстановленная" электронная плотность максимально близка к реальной". В этом задании мы решили слегка изменить "обычный мир": здесь мы упражнялись в работе со скриптами, написанными А.А.Алексеевским. Эти скрипты моделируют одномерную вселенную, укладывающуюся в отрезок от 0 до 30 ангстрем. Вселенная заполнена пятью атомами, в нашем случае: H(3), C(4.5), O(9), C(10.5), О(16), где в скобках указаны координаты атомов на отрезке. В роли природы (/окружающего мира/бога и тд) выступают, собственно, плоды творчества А.А.Алексеевского: они генерируют распределение "настоящей" (см. assumptions нашей модели в задании к практикуму) электронной плотности для нашей вселенной, а также вносят в наш эксперимент погрешности измерения. В роли кристаллографа выступаем мы.

Сперва мы предположили, что в эксперименте нам удалось получить полный набор гармоник (с нулевой по i-ю). Мы варьировали значение i-номер последней разрешенной гармоники, и следили за тем, как меняется точность предсказания нашей модели. На рис. 7 и в таблице 1 приведены результаты. Видим, что для отличного качества (по графику восстановленной функции можно определить положение максимума всех гауссовых слагаемых функции ("атомов")), достаточно первых тридцати гармоник.

Рис. 7: График восстановленной функции по полному набору гармоник с $n=0,\,1,\,\dots$. Здесь и далее над каждым рисунком в поле F указана погрешность, вносимая в значение амплитуды ряда Фурье, описывающего ЭП нашей вселенной; в поле P указана погрешность, вносимая в значение фазы; в поле filter – указаны взятые нами гармоники. Здесь и далее серой пунктирной линией указана "настоящая" ЭП вселенной, красной – восстановленная по нашей модели ЭП.

Затем мы решили внести шум в данные нашего эксперимента, изменив значения фаз и модулей ряда Фурье, приближающего ЭП нашей вселенной (см. рис 8 и таблицу 1). Видим, что изменение фазы вносит больший (отрицательный) вклад в качество модели по сравнению с изменением амплитуды. Надо заметить, впрочем, что и в том, и вдругом случае качество заметно ухудшилось по сравнению с незашумленными данными (возможно, мы переборщили с абсолютными значениями вносимого нами отклонения модуля / фазы от их истинных значений).

Рис. 8: График восстановленной функции по полному набору гармоник с $n=0,\,1,\,....$ Дополнительно внесен шум (на верхней панели внесена погрешность в значение фазы, на нижнем – в значение амплитуды.)

Наконец, мы провели исследование того, как влияет на качество модели наличие лишь некоторых гармоник. Мы приблизительно случайно исключали некоторые гармоники из их полного набора и затем рисовали восстановленную по нашей модели ЭП (см. рис 9 и таблицу 1). Мы видим, сильную скоррелированность качества нашей модеи и полноты данных При этом формальное "разрешение" (посчитанное по количеству имеющихся гармоник) очень слабо отражает реальное качество модели: особенно, если пропущенным оказываются гармоники с высокими номерами. Можно сделать вывод о том, что качество хорошо оценивается комбинацией параметров: полнотой данных + гармоникой с самым низким из имеющихся номером (более подробно эти моменты разбирались на коллоквиуме, так что, если можно длинные рассуждения здесь опущу).

Рис. 9: График восстановленной функции по неполному набору гармоник.

Таблица 1. Восстановление функции по коэффициентам ряда Фурье.

(числа написаны для примера представления данных; в вашем конкретном случае будут другими)

Набор	Разрешен	Полнот	Шум	Шум фазы	Качество	Комментар					
гармоник	ие	a	амплитуды (%	(% от величины	восстановления	ии .					
	(Å)	данны	от величины	phi)	(отличное,						
		X	F)		хорошее,						
		(%)			среднее,						
					плохое)						
Полный набор гармоник											
0-1	30 Å	100%	0	0	Плохое	В скрипте					
						func2fourier.					
						ру					
						идиотская					
						опечатка					
						на 42					
						строчке,					
						исправьте , пожалуйста					
						Гіожалуйста					
0-3	10 Å	100%	0	0	Плохое	•					
0-10	3 Å	100%	0	0	Среднее						
0-15	2 Å	100%	0	0	Хорошее						
0-30	1 Å	100%	0	0	Отличное						
0-60	0.5 Å	100%	0	0	Отличное						
	•		Ш	ТУМ	•						
0-10	3 Å	100%	0	20	Плохое						
0-15	2 Å	100%	0	20	Плохое						
0-20	1.5 Å	100%	0	20	Среднее						
0-30	1 Å	100%	0	20	Среднее						
0-60	0.5 Å	100%	0	20	Среднее						
0-10	3 Å	100%	20	0	Плохое						
0-15	2 Å	100%	20	0	Плохое						
0-20	1.5 Å	100%	20	0	Среднее						
0-30	1 Å	100%	20	0	Среднее						
0-60	0.5 Å	100%	20	0	Хорошее						
		0==:		абор гармоник							
2-15	3 Å	87%	5	5	Среднее						
2-20	1.5 Å	90%	5 2	5 2	Среднее						
2-60	0.5 Å	97%	2	2	Отличное (даже						
					водород, и тот						
0.6035	2 8	020/			виден!)						
0-6,8-15	3 Å	93%	5	5	Средненько (на						
0.0.11	1 - 8	0007	_	_	троечку)						
0-9,11-	1.5 Å	90%	5	5	Средненько, да						
15,17-20					и то, как-то						
					жутковато						

0-19,21- 24,27- 29,32- 44,47-60	0.5 Å	90%	2	2	Неплохо, при желании водород угадывается	
0-6,8- 15,25	1.2 Å	56%	5	5	Средненько (на троечку)	То же самое: внесение одной малой гармоники не повлияло на качество
0-9,11- 15,17- 20,30	1 Å	60%	5	5	Средненько, да и то, как-то жутковато	То же самое: внесение одной малой гармоники не повлияло на качество
0-19,21- 24,27- 29,32- 44,47- 60,70	0.43 Å	76%	2	2	Неплохо, при желании угадывается водород	То же самое: внесение одной малой гармоники не повлияло на качество

5 Сессии Pymol

 $\verb|https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac4/session0.| \\ pse \\$

6 Ссылки

[1] Kim et al, 'Crystal structure of FMN and NADPH-dependent nitroreductase NfnB mutant Y88A derived from sphigopyxis sp. strain HMH' 2021 Journal of biological chemistry