Практикум 9. Структура и функция

Иосиф Финкельберг

1 Введение

В этом практикуме мы рассмотрели потенциал-зависимый K^+ -канал утки кряквы Anas platyrhynchos platyrhynchos. Этот белок участвует в потенциале действия. В ответ на изменение потенциала, связанного с заходом в клетку ионов Na^+, Ca^{2+} , калиевый канал открывается и позволяет выходить из клетки ионам K^+ . Таким образом, он отвечает за восстановление отрицательного потенциала покоя на клеточной мембране.

У млекопитающих белок является гомотетрамером, субъединицы которого окружают пору канала. Каждая субъединица состоит из 6 α -спиралей, которые называются $S_1, ..., S_6$, соответственно [Chen et al. (2010)]. Спирали S_5, S_6 лежат в центральной части канала (pore domain, PD). Они образуют ворота (lower gate: С-концы S_6 -спиралей) и селективный фильтр для ионов K^+ (upper gate: петли между S_5 и S_6 и С-концы S_5) (см. рис. 1). При установлении потенциала покоя четыре С-конца S_6 -спиралей скрещиваются и перекрывают канал (lower gate). Это сопровождается движением сильно положительно заряженной S_4 -спирали и S_4, S_5 -линкерного участка (см. рис. 2). Далее пространство между lower gate и upper gate будем называть 'вестибюлем' канала.

Спирали S_1, S_2, S_3, S_4 образуют потенциал-чувствительный домен, находящийся в периферийной части белка (voltage sensing domain, VSD) [Grizel et al. (2014)] (см. рис. 1). Изменения потенциала улавливают в первую очередь сильно положительно заряженные спирали S_4 [Yellen (2002)].

Рис. 1: Схема строения потенциал-зависимого калиевого канала, взятая из Grizel et al. (2014).

Рис. 2: Схема работы потенциал-зависимого калиевого канала, взятая из Grizel et al. (2014).

Потенциал-зависимы
е K^+- каналы высоко селективны к ионам K^+ и при этом проводят
эти ионы через непроницаемую для них мембрану со скоро-

стью, близкой к предельной возможной (т.е. примерно со скоростью диффузии K^+ в воде). Выделяют четыре особенности строения K^+ -каналов, позволяющие им осуществлять это [Yellen (2002)]. Во-первых, полость канала со стороны цитоплазмы 'выстлана' молекулами воды, с которой K^+ образует электростатические взаимодействия. Во-вторых, на 'вестибюль' канала, в который ионы K^+ заходят из цитоплазмы, направлены своими С-концами 4 α -спирали (S_5 – по одной от каждой субъединицы). Считается, что эти спирали образуют диполи, которые взаимодействуют с положительно-заряженными ионами K^+ электростатически [Doyle et al. (1998)]. В-третьих, в 'вестибюль' канала попадает одновременно несколько ионов K^+ , которые оказываются на небольшом расстоянии (≈ 7 Å) друг от друга и взаимоотталкиваются. Вследствие этого, ионы не задерживаются в 'вестибюле', а проходят по каналу ('single file diffusion': см., например, Hille and Schwarz (1978)). Эти три обстоятельства обосновывают высокую производительность канала. Селективность же объясняется следующим образом. Выход из 'вестибюля' во внеклеточную среду образуют четыре петли (это петли между спиралями S_5 и S_6). Атомы кислородов остовов этих петель по ходу следования из 'вестибюля' во внеклеточную среду мимикрируют под водную шубу иона K^+ : 4 атома кислорода сверху, 4 – снизу. Эти наборы из 8 атомов кислорода образуют фильтр для ионов K^+ (см. рис. 9, 10). Другие ионы оказываются слишком крупными для образуемого ими канала [Yellen (2002)]. Особенно интересно здесь, как этот фильтр работает против ионов Na^+ . Несмотря на то, что сам по себе ион Na^+ имеет меньший радиус, вместе со своей водной шубой он оказывается крупнее иона K^+ [Degrève et al. (1996)] и не проходит в канал (т.е. он не в состоянии заменить водное окружение на связи с кислородами остова белка).

2 Задание 1. Blast against PDB

Для белка кряквы известна лишь последовательность (Uniprot: U3I0J4). Мы воспользовались сервером Protein blast, чтобы найти гомологов U3I0J4белка. Мы привели выдачу Blast в таблице на сервере. Blast выдал более 100 находок, 13 из которых обладали *identity* > 90%. Вполне ожидаемо, большая часть находок пришлась на млекопитающих (причем лучшими находками оказались белки крысы Rattus norvegicus). Наилучшее покрытие последовательности белка кряквы составило 100% при идентичности выравнивания 96-97%. Нашлись сразу две структуры с такими показателями: 2a79 и 3lut. Обе структуры получены для белка Rattus norvegicus. Любопытно, что хотя наш белок является мембранным, обе структуры получены с помощью рентгено-структурного анализа (РСА). Вероятно дело в том, что размеры белка (56.6 кДа) не позволяют получить его структуру с помощью ядерного-магнитного резонанса. Вместе с тем, в годы, когда структуру белка активно изучали (первое десятилетие XXI века), криоэлектронная микроскопия еще не была развита настолько, чтобы получать с ее помощью качественные белковые структуры. Удивительным образом, авторам структуры 2a79 [Long et al. (2005)] удалось даже впоследствии закристаллизовать белок вместе вместе с липидным аналогом мембраны: 2r9r [Long et al. (2007)]. Эта структура также оказалась среди Blast-находок, однако для нас она является непригодной, так как для ее получения авторы использовали химерный белок со вставкой в области S_3, S_4 из другого калиевого канала. Мы решили для дальнейших заданий использовать в первую очередь 3lut (канал в открытом состоянии), а также в случае затруднений смотреть на 2a79.

3 Задание 2. Локализация позиций

В этом практикуме мы будем рассматривать позиции с индексами 399, 376, 417 по Uniprot-последовательности белка кряквы. Нам повезло, и в крысином белке на тех же позициях стоят те же аминокислотные остатки: Val-399, Gly-376, Tyr-417, причем контексты по последовательности для этих остатков те же, что и для белка утки: см, например, рис. 3.

Mammalian Shaker Kv1.2 potassium channel- beta subunit complex [Rattus norvegicus]

Sequence ID: 2A79_B Length: 499 Number of Matches: 1

Range 1	:1t	o 499	<u>GenPept</u>	<u>Graphics</u>
---------	-----	-------	----------------	-----------------

Vext Match A Previous Match

Score		Expect	Method		Identities	Positives	Gaps	
1004 bits	s(2595)	0.0	Compositional I	matrix adjust.	485/499(97%)	491/499(98%)	0/499(0%)	
Query	1	MTVATG						60
Sbjct	1	MTVATG	DPVDEAAALPG	HPODTYDPEAD	ECCERVVINIS	GLRFETQLKTLA	QFPETLLG	60
Query	61			FDRNRPSFDAIL		PVNVPLDIFSEE	IRFYELGE	120
Sbjct	61	DPKKRM	RYFDPLRNEYF	FDRNRPSFDAIL	YYYQSGGRLRR	PVNVPLDIFSEE	IRFYELGE	120
Query	121	EAMEME	REDEGYIKEEE			PARIIAIVSVMV		180
Sbjct	121	EAMEMF	REDEGYIKEEE	RPLPENEFQRQ	/WLLFEYPESSG	PARIIAIVSVMV	ILISIVSF	180
Query	181	CLETLP	I FRDENEDMHG	SGLSHPPYSNSS		PFFIVETLCIIW		240
Sbjct	181	CLETLP	IFRDENEDMHG	GGVTFHTYSNST	TIGYQQSTSFTD	PFFIVETLCIIW	FSFEFLVR	240
Query	241	FFACPS	KAGFFTNIMNI	IDIVAIIPYFI		GOOGOOAMSLAI		300
Sbjct	241	FFACPS	KAGFFTNIMNI	IDIVAIIPYFI	LGTELAEKPED	AQQGQQAMSLAI	LRVIRLVR	300
Query	301	VFRIFK						360
Sbjct	301	VFRIFK		GQTLKASMREL	GLLIFFLFIGVI	LFSSAVYFAEAD	ERDSQFPS	360
Query	361	IPDAFW		GDMVPTTIGGKI			FNYFYHRE	420
Sbjct	361	IPDAFW	WAVVSMTTVGY	GDMVPTTIGGKI	IVGSLCAIAGVL	TIALPVPVIVSN	FNYFYHRE	420
Query	421	TEGEE0			ASTISKSDYME			480
Sbjct	421	TEGEEQ	AQYLQVTSCPK	IPSSPDLKKSRS	SASTISKSDYME	IQEGVNNSNEDF	REENLKTA	480
Query	481			DV 499				
Sbjct	481	NCTLAN	TNYVNITKMLT	DV 499				

Рис. 3: Blast-выравнивание белков утки и крысы.

4 Задание 3. 'Мутагенез' в Рутоl: результаты и выводы

Сперва, чтобы соотнести информацию о функции белка со структурой в Pymol, мы раскрасили упомянутые во введении элементы структуры: см. рис. 4.

Рис. 4: Структура калиевого канала Kv1.2 крысы. Показаны все 4 изомера. Покрашены спирали S_1 (bromine), S_2 (red), S_3 (magenta), $S_4 + S_4, S_5$ -linker (blue), S_5 (green), S_6 (yellow). Серым цветом покрашена цепь А – цитозольная часть белка (весь остальной белок – цепь В, находится в мембране). Видим, что молекулы воды избегают гидрофобной, мембранной части белка. Фиолетовым показаны ионы калия. В соответствии с моделью 'single file diffusion' мы видим сразу несколько ионов K^+ !

Далее мы будем раскрашивать спирали так же, как сделали это на рисунке 4. Теперь рассмотрим по-отдельности позиции 399, 376, 417. Val-399 находится внутри α -спирали S_6 и смотрит в 'вестибюль' канала (см. рис 5, 6). Это ключевая для функционирования белка полость.

Рис. 5: Валин 399. Вид сбоку: снизу находится цитоплазма. Видим, что, находясь на S_6 α -спирали, Val-399 смотрит в полость 'вестибюля' канала. Здесь и далее 'тетрамер' калия – это баг рутоl. На этом месте подразумевается единственный ион K^+ .

Рис. 6: Валин 399. Вид с внешней стороны клетки. Здесь хорошо видно, что четыре α -спирали S_5 смотрят своими С-концами в одну точку – это как раз то, что мы выше называли upper gate, – селективный для K^+ фильтр.

Водородные связи мы точно не потеряем при замене валина на любую другую аминокислоту, но существенные изменения в структуру мы при этом можем внести. Более крупные аминокислоты могут не поместиться в полость, в которую направлен валин. Кроме того, заменяя валин на аргинин, мы должны учитывать, что мы вносим в эту полость положительный заряд, который, вероятно, сделает белок нефункциональным: +заряженный аргинин будет препятствовать прохождению ионов K^+ по полости канала.

С помощью инструмента Mutagenesis (внутри Wizard) мы сделали замену Val-399 -> Arg-399 (см. рис. 7, 8). Любой из возможных ротамеров аргинина имеет непозволительно высокие показатели Ван-дер-Ваальсовых перекрываний с окружением (предельными допустимыми значениями мы считаем strain = 20 - 25, при этом минимальное значение strain для возможных ротамеров аргина оказалось равным 48). На рисунках мы привели ротамеров аргинина, имеющий наименьшее перекрывание с соседними остатками (strain = 48). Мы видим, что аргинин, пребывая в этом ротамере, как бы 'отворачивается' от полости вестибюля. Представленность этого ротамера в природных структурах составляет 1%.

Рис. 7: Аргинин 399. Вид сбоку: снизу находится цитоплазма. Видим, что, находясь на S_6 α -спирали, Arg-399 'отварачивается' от полости 'вестибюля' канала.

Рис. 8: Аргинин 399. Вид с внешней стороны клетки.

Итак, можно сделать вывод, что подобная мутация, во-первых, несовместима со структурой белка: остаток аргинина не помещается в отведенную для Val-399 полость. Во-вторых, наличие положительно-заряженного остатка в 'вестибюле' канала, вероятно, несовместимо с транспортировкой по каналу ионов K^+ .

Перейдем теперь к остатку Gly-376. Этот остаток находится в петле между α -спиралями S_5 и S_6 . Эти петли выводят 'вестибюль' во внеклеточное пространство. Как мы помним, этот участок обеспечивает селективность к ионам K^+ , мимикрируя атомами кислородов своего остова под водную шубу K^+ (см. рис. 9, 10).

Рис. 9: Глицин 376. Вид сбоку: снизу находится цитоплазма. Кислороды остовов петель между спиралями S_5 и S_6 изображены шариками. Они образуют селективный для ионов калия фильтр. Фиолетовыми шарами, как и раньше, показаны ионы K^+ . Выделенные атомы кислорода изображают водную шубу, характерную для K^+ : по 4 сверху и по 4 снизу от иона калия.

Рис. 10: Глицин 376. Вид с внешней стороны клетки.

Здесь, как и в предыдущем случае, для функционирования белка необходимо оставлять канал пустым (не заслонять его боковыми остатками) (см. рис. 10). Следовательно, если мутировать Gly-376 в лейцин, нужно размещать массивный боковой радикал лейцина вне полости канала. Посмотрим, возможно ли это. Оказывается, что перекрывания для каждого из возможных ротамеров лейцина с окружающими аминокислотными остатками даже хуже, чем в предыдущем случае ($strain_{min} = 104$) (см. рис. 11). При этом оптимальный по перекрыванию ротамер имеет представленность в природе около 40%, что не так плохо (но все равно для нас не актуально: лейцин просто не влезает в эту позицию).

Рис. 11: Лейцин 376. Вид с внешней стороны клетки.

Таким образом, мутация Gly-376 -> Leu-376 снова оказывается несовместимой со структурой белка, необходимой для выполнения его функции.

Наконец, рассмотрим остаток Туг-417. Этот остаток принадлежит $S_6 \alpha$ спирали. В отличие от предыдущих двух случаев, он находится достаточно далеко от полости канала. Тем не менее, область, в которой он лежит, тоже может являться функционально важной. Действительно, остаток тирозина смотрит в сторону S_4, S_5 -линкера (см. рис. 12). Выдвигалась гипотеза, что этот участок белка может быть задействован в закрывании канала в ответ на реполяризацию мембраны [Long et al. (2007)]: см. рис. 13. Кроме того, на сегодняшний день считается установленным, что закрывание / открывание канала сопровождаются движениями сильно положительнозаряженной спирали S_4 относительно, в частности, S_6 спирали [Grizel et al. (2014)]: см. рис. 2. Теоретически, остаток Туг-417 мог бы участвоват в закреплении S_4 относительно S_6 .

Рис. 12: Тирозин 417. Гипотетическая водородная связь с Glu 327. Видим, что согласно структуре 3lut водородную связь между этими остатками тяжело реализовать.

12

Рис. 13: Гипотетическое участие S_4, S_5 -линкера в закрывании канала: схема взята из Long et al. (2007).

Мы видим (рис. 12), что согласно 3lut структуре расстояние между остатками Туг-417 и Glu-327 слишком велико, чтобы между ними могла образовываться водородная связь. Мы решили проверить возможность этого взаимодействия также с точки зрения нашей запасной структуры: 2a79 (см. рис. 14).

Рис. 14: Тирозин 417. Гипотетическая водородная связь с Glu 327. Видим, что согласно структуре 2a79 водородная связь между этими остатками вполне может существовать.

Здесь расстояние между остатками вполне благоприятствует образованию водородной связи. При замене Туг-417 -> Phe-417 эта водородная связь, естественно, исчезнет (если она в самом деле существовует). Можно спекулировать, что при этом канал может менять свою функцию из-за дестабилизации структуры. В данном случае, замечательным образом оказалось, что мы можем проверить данное утверждение. Действительно, данная мутация была проделана экспериментально в работе Hattan et al. (2002). Оказывается, что она ведет к сильному снижению тока калия через канал. Возможно, эффект объясняется нарушением регуляции открывания / закрывания канала.

5 Благодарности

Я хотел бы поблагодарить Соню Гайдукову за обсуждение практикума и, в частности, эффекта мутации Туг-417 -> Phe-417!

6 Ceccии Pymol

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/FBB_bioinformatics_ Zlobin_prac9.pdf

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/session0.
pse

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/session1.
pse

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/session2.
pse

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/session3. pse

https://kodomo.fbb.msu.ru/~osyafinkelberg/term7/prac9/session4.
pse

Список литературы

- Chen, X., Wang, Q., Ni, F., and Ma, J. (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. *Proceedings of the National Academy of Sciences*, 107(25):11352–11357.
- Degrève, L., Vechi, S. M., and Junior, C. Q. (1996). The hydration structure of the Na+ and K+ ions and the selectivity of their ionic channels. *Biochimica et Biophysica Acta (BBA) Bioenergetics*, 1274(3):149–156.
- Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998). The Structure of the Potassium Channel: Molecular Basis of K ⁺ Conduction and Selectivity. *Science*, 280(5360):69–77.
- Grizel, A. V., Glukhov, G. S., and Sokolova, O. S. (2014). Mechanisms of activation of voltage-gated potassium channels. *Acta Naturae*, 6(4):10–26.
- Hattan, D., Nesti, E., Cachero, T. G., and Morielli, A. D. (2002). Tyrosine Phosphorylation of Kv1.2 Modulates Its Interaction with the Actin-binding Protein Cortactin. *Journal of Biological Chemistry*, 277(41):38596–38606.
- Hille, B. and Schwarz, W. (1978). Potassium channels as multi-ion single-file pores. Journal of General Physiology, 72(4):409–442.

- Long, S. B., Campbell, E. B., and MacKinnon, R. (2005). Crystal Structure of a Mammalian Voltage-Dependent *Shaker* Family K ⁺ Channel. *Science*, 309(5736):897–903.
- Long, S. B., Tao, X., Campbell, E. B., and MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. *Nature*, 450(7168):376–382.
- Yellen, G. (2002). The voltage-gated potassium channels and their relatives. *Nature*, 419(6902):35–42.