МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

ФАКУЛЬТЕТ БИОИНЖЕНЕРИИ И БИОИНФОРМАТИКИ

Отчёт по качеству расшифровки структуры рибонуклеотид редуктазы (PDB ID: 3R1R)

Выполнил студент 4-го курса ФББ МГУ

Кравченко Павел Андреевич

Преподаватели: Алексеевский Андрей Владимирович Спирин Сергей Александрович Маслова Валентина

Москва 2019 г.

Содержание

Аннотация	2	
Введение	2	
Результаты и обсуждение	5	
Общие сведения о модели	5	
Индикаторы качества модели	6	
Анализ качества модели с помощью сторонних сервисов	8	
Molprobity	8	
EDS	9	
WHAT_CHECK	10	
Визуализация выбранных маргинальных остатков	11	
ARG (323)	12	
GLY (270) A	13	
GLY (271) A	13	
ALA (74) A	15	
LEU (6) A	16	
Сравнение модели PDB с моделью PDB_redo	17	
Заключение	23	
Ссылки на литературу и источники информации	24	

Аннотация

В данной работе был произведен анализ качества расшифровки структуры рибонуклеотид редуктазы (PDB ID: 3R1R), полученной методом рентгеноструктурного анализа (PCA). Он включает в себя некоторые показатели качества структуры, такие как R-фактор, R free, карты Рамачандрана, RSR, Z-score. Целью анализа была оценка указанных выше показателей качества модели, а также подробное рассмотрение некоторых маргинальных аминокислотных остатков.В результате работы был сделан вывод о качестве расшифровки структуры белка.

Введение

Рисунок 1. Устройство рибонуклеотид редуктазы. [6]

Рибонуклеотидредуктаза необходима для синтеза дезоксирибонуклеотидов, образующих ДНК. Фермент модифицирует рибонуклеотиды, связав АТР в качестве позитивного аллостерического регулятора (показан красным на рис. 1). Ингибирование фермента происходит в том же аллостерическом сайте при связывании dATP, чтобы предотвратить образование токсичных уровней дезоксирибонуклеотидов.

Рисунок 2. Дезактивированный фермент. [6]

Интересен способ, которым достигается дезактивация фермента. Если восстановить соседние белки в составе кристалла, то видно, что соседние молекулы "стыкуются" друг с другом и образуют кольца, блокируя друг друга по-цепочке (рис 2.). Механизм реакции основан на использовании свободных радикалов (рис. 3), а такая молекулярная перестройка нарушает путь для свободного радикала между субъединицами.

Рисунок 3. Механизм реакции, проводимой рибонуклеотидредуктазой [5]

Результаты и обсуждение

Общие сведения о модели

Из базы данных PDB был скачан файл с описанием структуры белка.

- Запись была сделана 28 января 1998 года. В 1997 году в журнале Structure вышла статья [1] с отчетом о расшифровке структуры, целью которой являлось установление значения редукции остатков цистеина в каталитическом центре фермента. Также расшифровка структуры уточнила представления о возможном каталитическом механизме реакции и возможных вариантах ингибирования.
- Разрешение структуры 3Å с довольно хорошей поддержкой (полнота набора гармоник 96.1%) и диапазоном разрешений от 2.99Å - 39.7Å. Всего было измерено 65054 рефлекса. Файл содержит 18634 атома, образующих две белковые цепи: А и В, состоящих в сумме из 2363 аминокислотных остатков.
- Кристаллизация проводилась в растворе 1.7 М сульфата лития, 10 ММ сульфате магния в 25 ММ и цитратном буфере (Ph=6). Концентрация белка в растворе для кристаллизации составила 17 MG/ML. Также в раствор были добавлены 10 ММ АМР РNР и 10 ММ CDP. Создание модели проводилось de novo с помощью программ SCALEPACK, TNT, REFMAC, DENZO.

Основная информация о полученной модели представлена в таблице 1.

Параметр	Значение			
Параметры записи				
PDB ID:	3R1R			
Организм	Escherichia coli (strain K12)			
Название публикации	BINDING OF ALLOSTERIC EFFECTORS TO RIBONUCLEOTIDE BINDING OF ALLOSTERIC EFFECTORS TO RIBONUCLEOTIDE REDUCTASE PROTEIN R1: REDUCTION OF ACTIVE-SITE CYSTEINES PROMOTES SUBSTRATE BINDING.			
Авторы	M.ERIKSSON, U.UHLIN, S.RAMASWAMY, M.EKBERG, K.REGNSTROM, B.M.SJOBERG, H.EKLUND			

Таблица 1. Основные параметры модели. [3, 4]

Год публикации	1997			
Параметры белка				
Вес структуры	268238.38			
Число атомов в структуре	17943			
Число аминокислотных остатков	2363			
Число цепей	2			
Симметрия	Asymmetric - C1			
Стехиометрия белка	Monomer - A			
Параметры структуры				
Метод определения структуры	X-RAY DIFFRACTION			
Число измеренных рефлексов	65054			
Разрешение	3 Å			
Полнота набора рефлексов с данным разрешением	96.1%			
Пространственная группа	Н 3 2			
Параметры ячейки	a = 224.610, b = 224.610, c = 336.630; α = 90.00, β = 90.00, γ = 120.00			
Использовавшееся для построения программное обеспечение	SCALEPACK, TNT, REFMAC, DENZO			
Метрики				
R-Factor	0.263			
R-Free	0.287			

По классификации Pfam [4] данный фермент относится к семейству рибонуклеотидредуктаз (Ribonucleotide reductase, small chain).

Индикаторы качества модели

Для оценки качества полученной модели в кристаллографии используют несколько основных индикаторов качества:

- R фактор это среднеквадратичное отклонение расстояний между модулями структурных факторов, рассчитанных по построенной модели и полученных в эксперименте. Данный фактор отражает то, насколько в целом модель хорошо описывает результаты РСА. Из таблицы 1 видно, что R фактор имеет значение 0.263, что несколько больше общепринятой нормы в 0.25.
- **R-free** это тот же R фактор, но для минимизации R-free использовалась только часть полученных в эксперименте структурных факторов, а 5% использовалась для валидации модели. У авторов модели R-free не сильно отличается от R фактора, что может говорить о том, что переоптимизации удалось избежать, однако оба фактора имеют надпороговое значение. Нужно с осторожностью относится к описанию данной моделью экспериментальных данных.
- Рассчитывают долю маргинальных остатков с помощью:
 - построения карт Рамачандрана данные карты отражают разрешенные области углов ф и ф для данного белка. На рисунке 5 показана карта Рамачандрана для модели рибонуклеотид редуктазы.
 - проверки не перекрывания Ван-дер-Ваальсовых радиусов атомов

• измерения длин и углов связей, ротаметров

Рисунок 4. Основные показатели качества модели. Черные полоски отражают процентиль структур с таким же значением параметра относительно всех РСА моделей, а белые отражают процентиль структур относительно РСА моделей близкого разрешения. [3]

Анализ качества модели с помощью сторонних сервисов

Molprobity

Был проведен анализ качества модели с помощью сервиса **Molprobity** [7]. К модели были добавлены атомы водорода. При добавлении ротамеров было исправлено 3 "плохих" ротамера. Ниже представлено заключение сервиса о качестве модели.

- "ClashScore" число недопустимых наложений атомов на 1000 (10.49 ~ 1% атомов); перцентиль данной структуры по отношению к структурам примерно такого же разрешения: "97th percentile" значит, что 97% структур ClashScore хуже (больше), чем у данной. Относительно критериев недопустимых наложений можно заключить, что модель имеет хорошее качество.
- **"Poor rotamers"** число остатков с маргинальными по отклонению от ротамеров боковыми цепями. Рекомендуемое значение <0.3%. Всего нашлось 214 остатков (11.11%). Это может говорить о достаточно плохом качестве модели.
- "Ramachandran outliers" полные маргиналы по карте Рамачандрана, лежат вне допустимой области. Рекомендуемое значение <0.05%. Всего нашлось 12 остатков (0.54%), что также является показателем плохого качества модели.
- "Ramachandran favored" число и процент остатков в предпочитаемой области. Предпочтительным значением параметра является значение > 98%. Сервис определил, что в предпочтительной области находятся 91.47% остатков.

Рисунок 5. Карта Рамачандрана для модели рибонуклеотид редуктазы в общем случае, полученная с помощью сервиса **Molprobity**. Диапазон углов от -180° до 180°. По оси абсцисс φ, а по оси ординат – ψ. Сине-фиолетовым цветом выделены разрешенные области значений углов φ и ψ, а голубым – наиболее предпочтительные области. Можно заметить, что на первый взгляд большинство остатков имеют углы, попадающие в наиболее предпочтительные области. [4]

EDS

- RSR. Помимо R фактора и R-free можно оценивать качества построения модели с помощью пространственного R фактора. Он позволяет оценить соответствие рассчитанных и полученных в эксперименте электронных плотностей. Для анализа RSR использовался сервис EDS [8]. Значение RSR для всей модели составило 0.227, что является достаточно хорошим показателем для данного разрешения. Данный фактор можно использовать для локальной оценки качества.
- RSRZ. Также был определен Z-score. Данный параметр является нормированной и центрированной на RSR по PDB величиной, то есть,

показателем того, насколько RSR для остатка в данной модели отличается от среднего значения RSR по структурам из PDB с близким разрешением. Пороговым значением для данной величины является значение 2. Для целой цепи А значение RSRZ составило 0.01. Некоторые маргинальные по данному критерию остатки указаны в таблице 2.

WHAT_CHECK

- Coarse Packing Quality Control. Была посчитана общая оценка правильности окружения остатков. Окружение считается плохим, если скор < -5.0. Значение параметра составило -0.764, что отражает достаточно хорошее окружение остатков в модели.
- Anomalous bond lengths. Все связи в модели оказались стандартной длины.
- **Peptide flip validation.** Были обнаружены 6 остатков, два из которых указаны в таблице 2. Данные остатки поворачиваются на 180 градусов при релаксации связи С-С.
- Bond angles that deviate more than 4 sigma. Не было найдено аномальных углов.
- Ramachandran outlier. Было найдено 12 остатков, находящихся вне оптимальных значений углов.

Можно заметить, что, в основном, при построении модели ошибки возникают в остатках с длинными подвижными боковыми цепями.

Nº	Остаток	Критерий	
1	<mark>ARG (323 A)</mark>	Coarse Packing Quality Control = -7.734. RSRZ = 4.6	
2	ARG (269)A	Coarse Packing Quality Control = -7.912	
3	<mark>GLY (270) A</mark>	RSRZ = 11.7	
4	<mark>GLY (271) A</mark>	RSRZ = 7.3	
5	ASP (11) A	RSRZ = 6.6	
6	ASN (35)A	Peptide flip validation	
7	ALA (74)A	Peptide flip validation. RSRZ = 2.7	
8	ARG (298) A	Ramachandran outlier. RSRZ = 3.3	
9	LEU (6) A	Ramachandran outlier. RSRZ = 4.2	

Таблица 2. Примеры аминокислотных остатков, маргинальных по одному или более критериям.

В отчете по валидации структуры белка [10] содержится информация о маргинальности всех остатков как в визуальном, так и в табличном формате. Рисунок 6 показывает карту маргинальности остатков цепи А. Качество остатков отражено следующим образом:

- Зеленый цвет остатка означает отсутствие маргинальности по всем показателям
- > Желтый цвет остатка означает маргинальность по одному показателю
- > Оранжевый цвет остатка означает маргинальность по двум показателям
- Красный цвет остатка означает маргинальность по более, чем двум показателям
- > Серыми выделены остатки, не представленные в структуре
- > Красными точками указаны остатки, имеющие RSRZ > 2

• Molecule 1: RIBONUCLEOTIDE REDUCTASE R1 PROTEIN

Рисунок 6. Карта маргинальности остатков цепи А структуры 3R1R. Описание в тексте. Видно, что модель содержит достаточно большое количество остатков с RSRZ > 2 и маргинальностью по одному или более критериям. [10]

Далее была проведена визуализация выбранных маргинальных остатков.

Визуализация выбранных маргинальных остатков

Для визуализации были выбраны следующие маргинальные остатки.

Nº	Остаток	Критерий
1	ARG (323) A	Coarse Packing Quality Control = -7.734. RSRZ = 4.6
3	GLY (270) A	RSRZ = 11.7
4	GLY (271) A	RSRZ = 7.3
7	ALA (74)A	Peptide flip validation. RSRZ = 2.7
9	LEU (6) A	Ramachandran outlier. RSRZ = 4.2

Таблица 3. Аминокислотные остатки, выбранные для более подробного изучения.

ARG (323)

Рисунок 7. Визуализация электронной плотности остатка ARG (323) А на уровне подрезки (сигма) = 1.

Из рисунка 7 видно, что остаток аргинина совершенно не покрыт электронной плотностью и координаты его атомов, видимо, были взяты из общих соображений о длинах связей и углах. Данный остаток был выбран из-за крайне низкого значения параметра правильности окружения (-7.734) и достаточно высокого значения RSRZ (4.6). Теперь мы видим, что электронной плотности на боковой цепи нет совсем.

GLY (270) A

Рисунок 8. Визуализация электронной плотности остатка GLY (270) А на уровне подрезки (сигма) = 1.

Из рисунка 8 видно, что в окрестности остатка глицина 270 модель цепи А выходит за электронную плотность. Видимо, так было получилось из-за наличия небольшого облака электронной плотности недалеко от С-альфа атома остатка глицина. Не удивительно, что RSRZ самый большой для модели - 11.7.

GLY (271) A

Рисунок 9. Визуализация электронной плотности остатка GLY (271) А на уровне подрезки (сигма) = 1.

Для остатка глицина 271 также верны все замечания, описанные для остатка глицина 270, так как это соседние аминокислоты, образующие поворот в модели. Видно, что плотности так же нет на остатках 269 и 272. RSRZ для остатка 271 оказался равен 7.3, что выше порога в 3.7 раза.

ALA (74) A

Рисунок 10. Визуализация электронной плотности остатка ALA (74) А на уровне подрезки (сигма) = 1.

Рисунок 10 демонстрирует остаток аланина в составе модели структуры рибонуклеотид редуктазы. Согласно результатам оценки качества модели, данный остаток имеет угловую напряженность и при умозрительном разрезани связи срелаксирует на 180 градусов. RSRZ скор остатка составил 2.7. Видно, что остов покрыт электронной плотностью, тогда как боковой радикал остался обнажен. В целом, метильная группа аланина редко играет важную роль в составе белка и на неточность можно было бы "закрыть глаза", если бы отсутствовал угловой фактор.

LEU (6) A

Рисунок 11. Визуализация электронной плотности остатка LEU (6) А на уровне подрезки (сигма) = 1.

Остаток лейцина 6 на цепи А был указан как нетипичный по углу ф. Видно, что связь С' - N - С-альфа расположена под острым углом. Также его RSRZ равняется 4.2, видимо, из-за того, что боковой радикал выходит за границу электронной плотности.

Сравнение модели PDB с моделью PDB_redo

База данных PDB_redo [11] содержит оптимизированные по описанным выше параметрам версии моделей PDB.

В модели PDB_redo было изменено 34 ротамера, убрано 33 молекулы воды, 98 остатков стали лучше вписываться в свои электронные плотности, однако для 2х остатков данный параметр стал хуже. Изменение других параметров показано в таблице 4.

Параметр качества	PDB	PDB_redo
R	0,2405	0,2226
R-free	0,2604	0,2595
Z-score для длин связей	0,322	0,497
Z-score для углов	1,081	0,730
Качество карты Рамачандрана	5	26
Число хорошо упакованных остатков	32	56
Нормальность ротамеров (перцентили)	1	34
Достоверность водородных связей (перцентили)	25	25

Таблица 4. Сравнение качества структур PDB и PDB_redo

Рисунок 12. Карта Рамачандрана с указанием изменения углов маргинальных остатков в структуре PDB_redo. [11]

Рисунок 13. Сравнение основных показателей качества расшифровки структуры для моделей из PDB и PDB_redo. Можно заметить, что R-free параметр уменьшился, а Z-score карты Рамачандрана и качество ротамеров увеличилось. [11]

Ниже представлены отличия в визуализации моделей PDB и PDB_redo. Зеленым показана оптимизированная модель PDB_redo, а красным - исходная модель PDB.

Рисунок 14. Сравнение маргинального остатка ARG (323) А в модели PDB и PDB_redo. Видно, что для данного остатка положение боковой цепи практически не изменилось.

Рисунок 15. Оптимизированная модель PDB_redo приобрела небольшой бета-лист.

Рисунок 16. Оптимизированная модель PDB_redo приобрела второй небольшой бета-лист.

Рисунок 17. Оптимизированная модель PDB_redo приобрела третий небольшой бета-лист.

Рисунок 18. Оптимизированная модель PDB_redo утратила бета-складку.

Заключение

Исходя из приведенного выше анализа, можно сделать вывод, что качество расшифровки структуры рибонуклеотид редуктазы (PDB ID: r3r1) можно считать удовлетворительным, а в каких-то аспектах даже плохим. Для многих остатков было показано, что модель не полностью вписывается в электронную плотность, а местами присутствует нарушение допустимых углов и напряжений. Оптимизация модели (PDB_redo), в целом, улучшила ряд параметров, но некоторые проблемные точки все же сохранились, видимо, в силу низкого качества данных. Будет интересно сравнить результаты рентгеноструктурного анализа 1997 года и структуру, полученную с помощью РСА или криоэлектронной микроскопии в наши дни.

Ссылки на литературу и источники информации

- 3r1r: Eriksson, M., Uhlin, U., Ramaswamy, S., Ekberg, M., Regnstrom, K., Sjoberg, B.M., Eklund, H. (1997) Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Structure 5: 1077-1092
- 1mrr: Atta, M., Nordlund, P., Aberg, A., Eklund, H., Fontecave, M. (1992) Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli. Spectroscopic and crystallographic characterization. J.Biol.Chem. 267: 20682-20688
- 3. Запись PDBe 3R1R <u>https://www.ebi.ac.uk/pdbe/entry/pdb/3r1r/</u>
- 4. Структура RCSB PDB 3R1R <u>https://www.rcsb.org/structure/3R1R</u>
- 5. Статья в википедии о рибонуклеотид резуктазе <u>https://en.wikipedia.org/wiki/Ribonucleotide_reductase</u>
- 6. Статья о молекуле месяца рибонуклеотид резуктазе <u>http://pdb101.rcsb.org/motm/238</u>
- 7. Сервис molprobity <u>http://molprobity.biochem.duke.edu/</u>
- 8. Сервис EDS <u>http://eds.bmc.uu.se/eds/</u>
- 9. Сервис WHAT IF https://swift.cmbi.umcn.nl/servers/html/index.html
- 10. Отчет о стректуре PDB 3R1R https://files.rcsb.org/pub/pdb/validation_reports/r1/3r1r/3r1r_full_validation.pdf
- 11. PDB-REDO 3R1R https://pdb-redo.eu/db/3r1r