МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

ФАКУЛЬТЕТ БИОИНЖЕНЕРИИ И БИОИНФОРМАТИКИ

Оценка качества расшифровки структуры белка гидроксинитриллиазы *Baliospermum montanum* (3WWP) методом рентгеноструктурного анализа

> Отчет студентки 4-го курса Байкузиной Полины Георгиевны

> > Москва 2017 г.

АННОТАЦИЯ

В работе был проведен анализ качества расшифровки структуры белка гидроксинитриллиазы балиоспермума горного (PDB ID 3WWP) методом рентгеноструктурного анализа, были рассмотрены как показатели качества структуры в целом, так и для отдельных остатков.

введение

Гидроксинитриллиазы (HNL) – это ферменты класса лиаз, которые в общем случае катализируют обратимую реакцию отщепления синильной кислоты от циангидринов с образованием кетонов или альдегидов (рис.1).

Рисунок 1. Реакция, катализируемая гидроксинитриллиазами [1].

Гидроксинитриллиазы встречаются в основном у растений, а также у бактерий и некоторых членистоногих. С помощью цианогенеза растения защищаются от животных, поедающих растения, и патогенных микроорганизмов.

Гидроксинитриллиазы обладают исключительной энантиоселективностью, различают R- и S-селективные HNL. Именно благодаря этому свойству гидроксинитриллиазы широко используются в биотехнологии. В данной работе рассматривается S-селективная гидроксинитриллиаза.

S-HNL (ЕС 4.1.2.47) имеют а/в-гидролазную укладку и представляют собой димер, состоящий из идентичных субъединиц (рис.2).

2

Рисунок 2. Гидроксинтриллиаза, структура ЗWWP.

Структура 3WWP была получена японскими учеными Shogo Nakano, Mohammad Dadashipour, Yasuhisa Asano в 2014 году. Помимо данной структуры была получена структура 3WWO с разрешением 2.55Å. Гидроксинитриллиазы могут использовать большое количество субстратов, при этом сохраняя стереоселективность в большинстве случаев. В своем исследовании авторы анализировали структуру, динамику активного сайта и обнаружили, что гидрофобные остатки в активном сайте образуют гидрофобные контакты с субстратом и боковые цепи этих остатков подвижны. Авторы пришли к выводу, что подвижность и размещение гидрофобных остатков важны для широкой субстратной специфичности S-гидроксинтриллиаз [1].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Общая информация о модели

Структура 3WWP была получена методом рентгеноструктурного анализа и опубликована на сайте PDB в 2014 году учеными Shogo Nakano, Mohammad Dadashipour, Yasuhisa Asano, также была опубликована статья «Structural and functional analysis of hydroxynitrile lyase from *Baliospermum montanum* with crystal structure, molecular dynamics and enzyme kinetics», содержащая информацию об исследовании структуры.

Ассиметрическая единица 3WWP содержит шесть субъединиц. Помимо белковых субъединиц модель содержит молекулы цитрата, этандиола, сульфат-ионы и молекулы воды.

Краткая информация о структуре приведена в таблице 1.

Таблица 1. Общая информация о модели.

Разрешение, Å	1.90
Π ν 1 Å	45.00 1.00
Диапазон разрешении структурных факторов, А	45.99 – 1.90
Полнота набора структурных факторов %	99.8
riomora nacopa crpykrypnisk quaropois, /v	· · · · ·
Число измеренных рефлексов	181508
1 1 1	
Кристаллографическая группа	C 2 2 2
Π	a = 191.962A, b = 261.58A, c = 91.98/A
параметры кристаллографической ячейки	a = 00.00, $B = 00.00$, $u = 00.00$
	$a = 90.00, b = 90.00, \gamma = 90.00$

Для решения фазовой проблемы был использован метод молекулярного замещения с использованием структуры 1 EB8 из организма *Manihot esculenta* с разрешением 2.1Å.

Значения индикаторов качества модели в целом

Значения индикаторов качества модели в целом были получены с помощью сервиса EDS [2].

R-фактор отражает соответствие модели и эксперимента. Значение R-фактора составляет 0,173. Хорошими значениями считаются показатели меньше 0,25, поэтому можно считать, что полученная модель хорошо соответствует экспериментальным данным.

R-free служит контролем переоптимизации модели. В данном случае значение R-free составляет 0,199. Хорошими значениями считаются показатели меньше 0,2. Кроме этого, оценивают разницу R и R-free, которая должна быть меньше 10%. В нашем случае R-free - R = 0,026, что меньше 0,1. Это говорит о том, что переоптимизации не произошло.

Для построения карты Рамачандрана был использован сервис MolProbity [3]. Карта Рамачандрана позволяет найти маргиналов по конформации остова, основываясь на значениях торсионных углов φ и ψ . MolProbity строит карты для шести разных случаев: общая карта, для изолейцинов и валинов, остатков перед пролином, для глицинов, транси цис-пролинов. Полученные карты приведены на рис. 3.

Рисунок 3. Карты Рамачандрана, полученные с помощью сервиса MolProbity. Голубыми линиями выделены предпочитаемые области, синим – разрешенные.

В запрещенной области оказался только один остаток, это Ser211 из цепи A (0,06%). MolProbity анализировал 1556 остатков, всего остатков в структуре 1568. 1475 остатков (94,8%) попали предпочитаемую область, 1555 остатков (99,9%) попали в разрешенную область.

Сервис MolProbity выдает информацию о плохих ротамерах. Ротамеры – это боковые цепи в типичных для данного типа остатка конформациях. Они описываются наборами допустимых углов χ. У каждого типа остатков свое количество ротамеров.

Структура содержит 72 плохих ротамера (5,31%). По оценке сервиса их должно быть не более 0,3%. Этот показатель сильно влияет на качество расшифровки структуры.

Пространственный R-фактор (RSR) характеризует насколько модель группы атомов соответствует экспериментальной электронной плотности. Также RSR позволяет искать маргинальные остатки. Плохими считаются показатели больше 20%.

Z-score является относительной оценкой RSR, показывает насколько RSR для остатка отличается от среднего RSR для такого же типа остатков в структурах PDB с похожим разрешением. Значения Z-score > 2 свидетельствуют о том, что остаток плохо вписан в электронную плотность. На рис. 4 представлены значения Z-score для каждого остатка каждой цепи. На рис. 5 представлено положение маргинальных остатков по RSR (Z-score > 2).

Рисунок 4. Значения Z-score для каждого остатка.

Рисунок 5. Положение маргинальных остатков и их значение RSR.

По рисункам 4-5 видно, что цепь М разрешена хуже всего, в ней 34 остатка с Zscore > 2, в то время как в остальных цепях в среднем по 4 таких остатка.

Анализ маргинальных остатков

В таблице 2 приведена информация о 12 аминокислотных остатках, являющихся маргинальными по одному и более критериям.

Остаток	Карта	Ротамеры	RSR	Сβ-	Валентные	Недопустимые	Не
	Рамачандрана			конформация	углы	наложения	транс-
				(>0.25Å)		атомов	и не
							цис-
Val124A		+			+		
Thr142A		+		+		+	
Ile163A		+		+	+	+	
Arg199A		+			+	+	
Ser211A	+						
Leu260A		+	+			+	
His103G		+					
Leu106G		+				+	
Thr142L		+		+		+	+
Lys72M			+			+	
Glu123M			+				
Leu183M		+	+				
Thr185R		+	+			+	
Asn135R				+			
Ala263R						+	+

Таблица 2. Информация о некоторых маргинальных остатках в структуре 3WWP.

Анализ 5 маргинальных остатков

Далее более подробно будут рассмотрены 5 маргинальных остатков.

1. Arg199A

Данный остаток является маргинальным по трем параметрам: плохой ротамер, неправильный валентный угол, атом CD перекрывается с атомом кислорода из молекулы воды.

На рис.6 показан остаток аргинина с обозначенными углами χ. С помощью MolProbity были получены следующие значения углов: 281.9°, 123.2°, 68.9°, 265.6°. Полученное значение для χ₂ не наблюдается у аргининов (рис.7).

Рисунок 6. Arg199А, желтым цветом обозначены углы χ_1 , χ_2 , χ_3 , χ_4 .

Рисунок 7. Распределение конформаций углов *х* для аргинина. Получено с помощью сервиса Rotamers revisited [4]. В случае отрицательного значения нужно прибавить 360°.

Рисунок 8. Arg199A, желтым цветом обозначен проблемный валентный угол.

При анализе электронной плотности вокруг данного остатка заметно, что остаток не достаточно хорошо вписывается. Возможно, это неточность расшифровки, и корректировка угла χ_2 и валентного угла привела бы остаток в более удачную конформацию.

Рисунок 9. Электронная плотность вокруг остатка Arg199A на уровне подрезки 3 о.

2. Ser211A

Этот остаток является единственным маргиналом по карте Рамачандрана. На рис. 10 отмечены торсионные углы ф и ψ.

Рисунок 10. Ser211A, желтым цветом обозначены углы φ и ψ .

На рис. 11 показана функция электронной плотности для остатка. Атом кислорода не вписывается в электронную плотность, хочется его развернуть. Вероятно, это также ошибка расшифровки.

Рисунок 11. Электронная плотность вокруг остатка Ser211A на уровне подрезки 2σ. Желтым цветом обозначены углы φ и ψ.

3. Leu260A

На рис. 12 обозначены углы χ₁ и χ₂. Согласно MolProbity углы равняются 257.8° и 89.5°. Из рис.13 видно, что для лейцинов не характерно такое значение угла χ₁.

Рисунок 12. Leu260A, желтым цветом обозначены углы χ_1 и χ_2 .

Рисунок 13. Распределение конформаций углов х для лейцина.

Кроме этого, остаток является маргинальным по RSR. Но значения RSR и Z-score не сильно превышают допустимые значения, 0,204 и 2,08, соответственно. Остаток не полностью вписывается в функцию электронной плотности.

Рисунок 14. Электронная плотность вокруг остатка Leu260A на уровне подрезки 1.5 .

4. Thr142L

Данный остаток является плохим ротамером, перекрываются атомы, находится в конформации не цис- и не транс-. На рис. 15 отмечен угол χ , значение которого совсем не характерно для треонинов (рис. 16).

Рисунок 15. Thr142L, желтым цветом обозначен угол *х*.

Рисунок 16. Распределение конформаций углов х для треонина.

Данный остаток находится в конформации не цис- и не транс-, угол ω составляет -170.3°, что не характерно для белков. Обычно угол ω принимает значения 180°, редко 0°.

Рисунок 17. Thr142L, желтым цветом показан угол ω .

На рис. 18 показана функция электронной плотности для остатка. Остаток вписывается в электронную плотность, но не совсем так, как надо. Вероятно, это неточность расшифровки, и можно было скорректировать угол χ .

Рисунок 18. Электронная плотность вокруг остатка Thr142L на уровне подрезки 1.5 о.

5. Glu123M

Glu123M является маргиналом по RSR. Значение RSR для него составляет 0,436, Zscore 4,2. Остаток очень плохо вписывается в экспериментальную функцию электронной плотности (рис. 19).

Рисунок 19. Электронная плотность вокруг остатка Glu123M на уровне подрезки 0.5 о.

Данный остаток согласно сервису EDS не является маргинальным в других цепях, но при визуализации обнаружилось, что не во всех цепях этот остаток хорошо вписывается в электронную плотность (рис. 20).

Рисунок 20. Электронная плотность вокруг остатка Glu123L на уровне подрезки 1 о.

Сравнение модели из PDB с моделью из PDB_REDO

Сервис PDB_REDO содержит оптимизированные версии записей PDB. В результате работы сервис представляет сравнение параметров оценки качества расшифровки для исходной структуры и структуры, полученной PDB_REDO (табл. 3). Зеленым цветом выделены параметры, значения которых улучшились для модели из PDB_REDO.

Таблица 3. Сравнение параметров оценки качества расшифровки структур из PDB и PDB_REDO.

Validation metrics from PDB-REDO						
	PDB	PDB-REDO				
Crystallographic refinement						
R	0.1595	0.1494				
R-free	0.1983	0.1726				
Bond length RMS Z-score	0.503	0.710				
Bond angle RMS Z-score	0.708	0.840				
Model quality (raw scores percentiles)						
Ramachandran plot appearance	36	64				
Rotamer normality	41	77				
Coarse packing	N/A	N/A				
Fine packing	44	56				
Bump severity	62	86				
Hydrogen bond satisfaction	72	81				

Из таблицы видно, что многие показатели улучшились. Для более наглядного представления в таблице 4 приведено сравнение параметров оценки качества для структур из PDB и PDB_REDO согласно MolProbity. Действительно, улучшились показатели по ротамерам, нет остатков в запрещенной области карты Рамачандрана. Но при этом заметно увеличилось количество плохих связей и углов.

Таблица 4. Сравнение параметров оценки качества расшифровки структур из PDB и PDB_REDO, данные получены с помощью сервиса MolProbity.

	PDB		PDB_REDO	
Poor rotamers	72	5.31%	14	1.03%
Favored rotamers	1248	92.04%	1309	96.53%
Ramachandran outliers	1	0.06%	0	0.00%
Ramachandran favored	1475	94.79%	1487	95.57%
MolProbity score	2.36		1.11	
Cβ deviations >0.25Â	6	0.41%	5	0.34%
Bad bonds:	0 / 12983	0.00%	12 / 12983	0.09%
Bad angles:	13 / 17632	0.07%	25 / 17632	0.14%

ЗАКЛЮЧЕНИЕ

Можно заключить, что структура 3WWP расшифрована не очень хорошо, не смотря на то, что структура, в принципе, имеет хорошее разрешение (1.9Å) и большинство параметров оценки качества структуры находятся в пределах нормы. Данные из PDB_REDO показывают, что модель могла быть оптимизирована намного лучше.

СПИСОК ЛИТЕРАТУРЫ

- Nakano S., Dadashipour M., Asano Y. Structural and functional analysis of hydroxynitrile lyase from Baliospermum montanum with crystal structure, molecular dynamics and enzyme kinetics //Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. – 2014. – T. 1844.
 – №. 12. – C. 2059-2067.
- 2. http://eds.bmc.uu.se/eds/.
- 3. http://molprobity.biochem.duke.edu/.
- 4. http://xray.bmc.uu.se/gerard/supmat/chi.html.