## МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

ФАКУЛЬТЕТ БИОИНЖЕНЕРИИ И БИОИНФОРМАТИКИ

# Отчет по расшифровке структуры бифункционального белка GImU из *S. pneumonia*e

Выполнил студент 4-го курса Волик Павел

> Москва 2017 г.

#### Аннотация

Отчет представляет собой анализ качества расшифровки структуры 4aaw бифункционального белка GlmU из организма *Streptococcus pneumoniae*.

#### Введение

N-ацетилглюкозамин-1-фосфат уридилтрансфераза/глюкозамин-1-фосфат ацетилтрансфераза (GlmU) – бифункциональный фермент (гомотример), который катализирует реакцию образования УДФ-N-ацетилглюкозамина (UDP-GlcNAc), который входит в состав пептидокликанов и липополисахаридов грамположительных и грамотрицательных бактерий. На первой стадии реакции С-концевой домен GlmU катализирует перенос ацетильной группы с кофермента А на глюкозамин-1-фосфат (GlcN-1-P) с образованием N-ацетилглюкозамин-1-фосфата (GlcNAc-1-P). На второй стадии N-концевой домен GlmU катализирует перенос УМФ с УТФ на GlcNAc-1-P с образованием UDP-GlcNAc и пирофосфата [1]. Схема данной реакции приведена на Рис. 1.



*Рис. 1.* Схема реакции, катализируемой GlmU [1].

Целью данной статьи ([1]) являлось нахождение ингибитора ацетилтрансферазного домена фермента GlmU посредством сканирования серии химических соединений и выявления среди них тех, которые демонстрировали антибактериальную активность. Была расшифрована структура данного фермента, которая подтвердила, что найденный ингибитор (R84) связывается в сайте, занимаемом субстратом ацетил-КоА (конкурентное ингибирование).

## Результаты и обсуждения

#### Общая информация о модели

Структура бифункционального белка GlmU в комплексе с ингибитором была расшифрована в 2012 году, расшифровку описывает статья «Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series» (Green OM, McKenzie AR, Shapiro AB, Otterbein L, Ni H, Patten A, Stokes S, Albert R, Kawatkar S, Breed J) [1].

Метод решения фазовой проблемы – метод молекулярного замещения.

В состав кристалла помимо белка входят сульфат-анион и ингибитор данного

белка – R84. Его структурная формула приведена на Рис. 2.

Molecule 2 is 4-{[1-(2-{[( $\{5-[(3-CARBOXYPROPANOYL)AMINO]-2,4-DIMETHOXYPH ENYL$ }SULFONYL)AMINO]METHYL}PHENYL)PIPERIDIN-4-YL]METHOXY}-4-OXO BUTANOIC ACID (three-letter code: R84) (formula:  $C_{29}H_{37}N_3O_{11}S$ ).



Рис. 2. Ингибитор данного фермента.

Всего измерено 44633 рефлекса.

Разрешение структуры: 2,2 Å, диапазон разрешений структурных факторов: 76,47-1,8 Å.

Полнота набора структурных факторов в этом диапазоне: 99,83%. Параметры кристаллографической ячейки:

CRYST1 116.779 116.779 116.683 90.00 90.00 120.00 Р 3 2 1 6 Первые три числа – длины направляющих векторов, следующие три – углы между ними.

Некристаллографические симметрии присутствуют. Белок представляет собой гомотример [2]. Асимметрическая единица включает в себя 6 субъединиц (или 2 гомотримера).

#### Значения индикаторов качества модели в целом

На Рис. 3 представлены характеристики структуры 4aaw по отношению ко всем PDB-структурам (темные символы), полученным методом PCA, и по отношению к структурам близкого разрешения (светлые символы). В целом, стурктура 4aaw расшифрована лучше, чем структуры близкого разрешения, и прмерно так же (или лучше по отдельным критериям), чем все структуры PDB.



*Рис. 3.* Характеристика расшифровки структуры 4ааw.

R-фактор показывает, насколько модель соответствует экспериментальным данным. R-Free более точно описывает качество модели и позволяет учесть переоптимизацию, так как его считают по контрольным рефлексам, которые не используют для создании модели.

#### R-фактор: 0,20164

R-Free: 0,23662

R-Free < 25%, разность R-free – R < 10%. Это позволяет говорить о том, что у модели хорошее качество и переоптимизации не наблюдается.

Пространственный R-фактор (RSR) показывает насколько хорошо каждый аминокислотный остаток соответствует экспериментальным данным, то есть, насколько хорошо остаток в модели вписывается в электронную плотность (Рис. 4).



Рис. 4. RSR остатков (сервис EDS [4])

Видна четкая маргинальность (очень большое значение RSR) у остатка Thr159.

Оценка RSRZ (Рис. 5) демонстрирует значение RSR конкретного остатка в сравнении с таковой оценкой для аналогичных остатков.



*Рис. 5.* RSRZ остатков (сервис EDS [4]).

Видна маргинальность остатков Thr159, Ala147, Thr189.

| All-Atom<br>Contacts | Clashscore, all atoms:                                                        | 7.05      |        | 97 <sup>th</sup> percentile <sup>*</sup> (N=456, 2.20Å ± 0.25Å)   |
|----------------------|-------------------------------------------------------------------------------|-----------|--------|-------------------------------------------------------------------|
|                      | Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms. |           |        |                                                                   |
| Protein<br>Geometry  | Poor rotamers                                                                 | 14        | 3.73%  | Goal: <0.3%                                                       |
|                      | Favored rotamers                                                              | 339       | 90.40% | Goal: >98%                                                        |
|                      | Ramachandran outliers                                                         | 1         | 0.22%  | Goal: <0.05%                                                      |
|                      | Ramachandran favored                                                          | 437       | 96.90% | Goal: >98%                                                        |
|                      | MolProbity score                                                              | 2.01      |        | 85 <sup>th</sup> percentile <sup>*</sup> (N=10167, 2.20Å ± 0.25Å) |
|                      | Cβ deviations >0.25Å                                                          | 5         | 1.21%  | Goal: 0                                                           |
|                      | Bad bonds:                                                                    | 11 / 3497 | 0.31%  | Goal: 0%                                                          |
|                      | Bad angles:                                                                   | 8 / 4746  | 0.17%  | Goal: <0.1%                                                       |
| Peptide Omegas       | Cis Prolines:                                                                 | 2 / 13    | 15.38% | Expected: ≤1 per chain, or ≤5%                                    |
|                      | Cis nonProlines:                                                              | 1 / 440   | 0.23%  | Goal: <0.05%                                                      |

Выдача сервиса MolProbity [3] (Рис. 6).

*Рис. 6.* Выдача сервиса MolProbity.

Результат выдачи показывает нелучшие показатели оценок качества данной структуры.

Тем не менее, Clashscore (число недопустимых стерических перекрываний атомов на 1000 (т.е. 5 значит 0.5% атомов); перцентиль данной структуры по отношению к структурам примерно такого же разрешения) довольно неплохой – 97-ой (сотый перцентиль отражает наилучшее качество для

данного индикатора среди моделей с близким разрешением, нулевой – наихудшее).

Стоит отметить присутствие одного маргинального остатка, который не является пролином и находится в цис-конформации – Ala147, и несколько остатков (14) с неблагоприятной конформацией боковых цепей, в частности: Asn345, Lys389, Val412, Thr450.

Карта Рамачандрана, построенная с помощью сервиса MolProbity (Рис. 7), выявила всего один маргинальный остаток – Gly53. Процент маргинальных остатков (расположенных в запрещенных областях): 0,2%.







*Рис.* 7. Карты Рамачандрана для обычных остатков; для Ile и Val; для остатков, расположенных перед Pro; для Gly, для Pro в транс- и цис-конформациях. Разрешенные области обведены синим, благоприятные – голубым.

Построение карты Рамачандрана с помощью сервиса EDS (Рис. 6) выявило 2,2% маргинальных остатков (лежащих в недопустимых областях). Выявленные маргиналы представлены в Табл. 1.



*Рис. 8.* Карта Рамачандрана, построенная с помощью сервиса EDS.

| Residue     | Туре | Phi    | Psi   |
|-------------|------|--------|-------|
|             |      | Angle  | Angle |
| <u>A64</u>  | ALA  | -25.9  | 120.9 |
| <u>A76</u>  | LEU  | -154.0 | 20.4  |
| <u>A103</u> | THR  | -119.9 | 73.1  |
| <u>A134</u> | ASN  | -117.4 | 74.7  |
| <u>A190</u> | ASN  | -96.3  | 31.4  |
| A256        | ASN  | -153.6 | 88.4  |
| <u>A357</u> | ASN  | 75.0   | -1.4  |
| <u>A389</u> | LYS  | -141.2 | -54.5 |
| <u>A447</u> | GLU  | 73.9   | -16.1 |

*Таблица 1.* Маргинальные остатки, выявленные по карте Рамачандрана (сервис EDS)

# Маргинальные остатки

В таблице 2 представлены некоторые маргинальные остатки и критерии, по которым они были выявлены.

| N⁰ | остаток | Показатель            |
|----|---------|-----------------------|
|    |         | маргинальности        |
| 1  | Thr159  | RSRZ                  |
| 2  | Ala147  | RSRZ, цис-конформация |
| 3  | Thr189  | RSRZ                  |
| 4  | Gly53   | Карта Рамачандрана    |
| 5  | Ala64   | Карта Рамачандрана    |
| 6  | Leu76   | Карта Рамачандрана    |
| 7  | Asn345  | Боковая цепь          |
| 8  | Lys389  | Боковая цепь          |
| 9  | Val412  | Боковая цепь          |
| 10 | Thr450  | Боковая цепь          |

*Таблица 2.* Некоторые маргинальные остатки из структуры 4aaw

## Анализ некоторых маргинальных остатков

#### Thr189

Показатель маргинальности – очень высокое значение RSRZ, равное 3.2 [2]



*Рис. 9.* Остаток Thr189 и его окружение. Электронная плотность показана на уровне подрезки 1,5*о*.

Видим, что остаток очень плохо вписывается в электронную плотность. Причина маргинальности скорее всего ошибка расшифровки. Это предположение подкрепляет то, что данный остаток располагается в альфаспирали на поверхности глобулы белка, и, вероятно, имеет большую подвижность (Рис. 10).



*Рис. 10.* Положение Thr189 в структуре белка.

## Thr159

Показатель маргинальности – высокое значение RSRZ: 3,3 [2].



*Рис. 11.* Остаток Thr159 и его окружение. Электронная плотность показана на уровне подрезки 1,5*о*.

Аналогично предыдущему случаю, остаток очень плохо вписывается в электронную плотность. Вероятно, это тоже ошибка расшифровки. Остаток расположен также на поверхности глобулы (Рис. 12)



*Рис. 12.* Положение Thr159 в структуре белка.

## Ala147

Маргинален сразу по двум показателям – сервис EDS выявил для данного остатка высокий RSRZ (больше двух), а также цис-конформацию (Рис. 13).



*Рис. 13.* Аla147 в цис-конформации.

Рис. 14 показывает, что данный остаток очень плохо описывается электронной плотностью.



*Рис. 14.* Остаток Ala147 и его окружение. Электронная плотность показана на уровне подрезки 1,5*5*.

Непролиновые цис-конформации в общем случае запрещены. Лишь в очень редких случаях остатки могут действительно находиться в структуре белка в цис-конформации, но в том случае это имеет важное функциональное значение, в частности, такие остатки могут играть ключевую роль в стабилизации активного центра [5]. Но в данном случае это скорее не особенность, а опять же ошибка расшифровки, так как электронная плотность очень плохо описывает остаток, и он располагается в петле на поверхности белка, то есть имеет большую подвижность (Рис. 15)



*Рис.* 15. Расположение остатка Ala147 в структуре 4ааw.

#### Ala64

Маргинальный признак – положение в недопустимой области карты Рамачандрана (сервис EDS). Такое возможно, если остаток расположен близко с другими остатками белка, например, при контакте между субъединицами, или ионами металла, входящих в структуру белка в качестве кофакторов. Однако в данном случае это ошибка расшифровки, так как остаток плохо описывается электронной плотностью и располагается на поверхности глобулы белка (Рис. 16).



*Рис. 16.* Остаток Ala62 и его окружение. Электронная плотность показана на уровне подрезки 1,5*о*.

#### Lys389

Маргинальный признак – непредпочитаемая конформация боковой цепи (Sidechain outliers, Рис. 17). Скорее всего это тоже ошибка расшифровки, так как боковая группа данного лизина очень плохо описывается электронной плотностью и этот остаток лежит в петле на поверхности глобулы.



*Рис.* 17. Остаток Lys389 и его окружение. Электронная плотность показана на уровне подрезки 1,5*5*.

# Сравнение модели из PDB и PDB\_redo

Для проверки того, можно ли улучшить структуру 4AAW, была проанализирована соответствующая запись в PDB\_redo [6].

Таблица 3. Сравнение характеристик исходной PDB-структуры и структуры из PDB\_redo

| Характеристика | 4AAW (PDB) | 4AAW (PDB_redo) |
|----------------|------------|-----------------|
| R-фактор       | 0.1971     | 0.1904          |
| R-Free         | 0.2320     | 0.2233          |



*Рис.* 18. Наложение исходной структуры 4AAW (красный цвет) и структуры PDB\_redo (голубой цвет).

Видим, что значения основных индикаторов качества расшифровки (Табл. 3) в модели PDB\_redo немного лучше, чем таковые для исходной структуры. При наложении (Рис. 18) структуры совпадают (практически идентичны)

#### Заключение

Качество расшифровки структуры 4AAW бифункционального белка GlmU из организма *Streptococcus pneumoniae* хорошее. Индикаторы качества в большинстве своем выше, чем у PDB-структур с близким разрешением. Анализ PDB\_redo показал, что расшифровка структуры очень близка к оптимальной. В структуре немало маргинальных остатков, но рассмотренные из них являются следствием скорее ошибок расшифровки, чем функциональными особенностями.

## Список литературы

- 1 Green OM, McKenzie AR, Shapiro AB, Otterbein L, Ni H, Patten A, Stokes S, Albert R, Kawatkar S, Breed J. Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphateacetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series. Bioorg Med Chem Lett. 2012 Feb 15;22(4):1510-9.
- 2 https://files.rcsb.org/pub/pdb/validation\_reports/aa/4aaw/4aaw\_full\_validation.pdf
- 3 http://molprobity.biochem.duke.edu
- 4 http://eds.bmc.uu.se
- 5 Joseph AP, Srinivasan N, de Brevern AG. Cis-trans peptide variations in structurally similar proteins. Amino Acids. 2012 Sep;43(3):1369-81.
- 6 https://pdb-redo.eu