Биоинформатика

Обзор протеома бактерии Corynebacterium pseudotuberculosis 31

Светлана Козюлина

РЕЗЮМЕ

В представленной ниже работе представлены краткие сведения о биологических признаках бактерии Corynebacterium pseudotuberculosis 31, в том числе и о её геноме. В обзоре приведены данные о числе закодированных в геноме белков и различных видов РНК, а также информация о распре-делении длин белков, дополненная гистограммой.

1 ВВЕДЕНИЕ

1.1 Систематическое положение

Тип: Actinobacteria Класс: Actinomycetales Порядок: Actinomycetes

Семейство: Corynebacteriaceae

Род: Corynebacterium

Вид: Corynebacterium pseudotuberculosis Штамм: Corynebacterium pseudotuberculosis 31

1.2 Род Corynebacterium

Коринебактерии (от греч. булава и бактерии) – группа палочковидных бактерий, образующих булавовидные, кокковые или слабоветвящиеся формы. В осн. неподвижны, спор не образуют, аэробы и факультативные анаэробы. Патогенные К. вызывают дифтерию у человека, листериоз у животных и человека; непатогенные обитают на кожных покровах, в воздухе, почве, на растениях. [1]

1.3 Вид Corynebacterium pseudotuberculosis

Corynebacterium pseudotuberculosis – патоген животных, является возбудителем так называемого псевдотуберкулёза (CLA). Это заболевание встречается у крупных овец и коз по всему миру и приводит к значительным экономическим потерям, в основном за счет сокращения шерсти, мяса и надоев молока, снижения пораженных болезнью животных. В некоторых случаях инфекция не вызывает очевидных симптомов у животных, оставаясь нераспознанной до самого

вскрытия, что затрудняет получение точных данных о распространенности этого заболевания. [2]

2 МАТЕРИАЛЫ И МЕТОДЫ

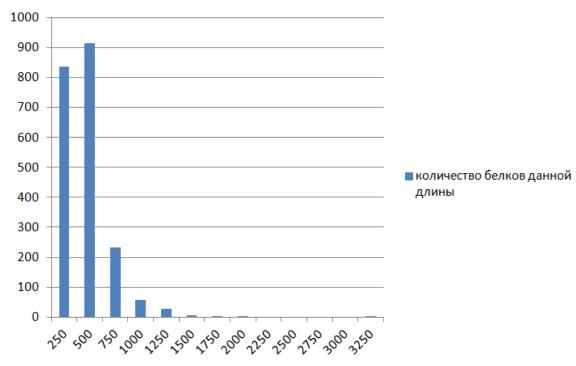
Для создания всех таблиц и гистограмм данной работы использовалась программа Microsoft Excel Office 2010. Информация о геноме бактерии взята с сайта NCBI. Конечное редактирование было произведено в Microsoft Word 2010.

3 РЕЗУЛЬТАТЫ

3.1 Распределение генов по цепям ДНК

В результате анализа генома бактерии было обнаружено, что геном суммарно содержит 2174 генов, из которых 2112 кодируют белки, 47 — различные виды РНК, при этом на комплементарной цепи ДНК содержится, как правило, больше генов белков и РНК, чем на прямой цепи. Гены тРНК составляют наибольшую часть общего

количества генов всех встречающихся в геноме типов РНК. Подробные данные приведены в таблице 1 (см. ниже).


3.2 Распределение длин белков

Распределение длин белков представлено на гистограмме (см.ниже). Видно, что для бактерии наиболее характерны длины генов меньше пятиста аминокислотных остатков. При этом максимальная встречающая длина белка в геноме составляет 3032 аминокислотных остатков, а минимальная – 40. Не редки также длины генов в диапазоне от 750 до 1000 аминокислотных остатков, тогда как белки с длинами больше полутора тысяч встречаются крайне редко.

1

Таблица 1	На прямой цепи ДНК	На комплементарной цепи ДНК	Суммарно на обеих цепях	На миллион пар нуклеотидов
число генов белков	1042	1070	2112	888,50
число генов тРНК	28	19	47	19,77
число генов рРНК	6	6	12	5,05
число генов тмРНК	1	0	1	0,42
число генов некодирующих РНК	1	1	2	0,84

Гистограмма длин белков

4 ОБСУЖДЕНИЕ

Два наиболее длинных белка генома бактерии – это:

- 1) Поликетидсинтазы I типа большие модулярные белки, состоящие из нескольких доменов, обладающих определённой ферментативной или другой функциональной активностью и связанных между собой короткими пептидными фрагментами, то есть домены как будто «нанизаны» на одну «нить», формируя «сборочную линию», на которой и осуществляется синтез определенного продукта. [3]
- 2) Трансмембранные рецепторы. мембранные белки, которые размещаются, и работают не только во внешней клеточной мембране, но и в мембранах компартментов и органелл клетки. Связывание с сигнальной молекулой (гормоном или медиатором) происходит с одной стороны

от мембраны, а клеточный ответ формируется на другой стороне от мембраны. Таким образом, они играют уникальную и важную роль в межклеточных связях и передаче сигнала. [4]

Могу предположить, что длина этих белков характерные значения длин белков для этого организма из-за своей высокой специфичности.

5 СОПРОВОДИТЕЛЬНЫЕ МАТЕРИАЛЫ

Ссылка на файл с расчетами:

http://kodomo.fbb.msu.ru/~s.kozyulina/pr14.xlsx

6 БЛАГОДАРНОСТИ

Выражаю благодарность моим преподавателям информатики, помогающим мне освоить основы Excel, необходимые для создания представленных в отчете гистограмм и таблиц, а также Лилии Васильевой за помощь в поиске информации и в переносе полученных в Excel данных в обзор формата Word.

7 СПИСОК ЛИТЕРАТУРЫ

[1] http://dic.academic.ru

<u>http://dic.academic.ru/dic.nsf/es/28863/%D0%BA%D0%BE%D1%80%D0%B8%D0%BD%D0%B5%D0%B1%D0%B0%D0%BA%D0%B8%D0%B8</u>— информация о группе Corynebacterium

[2] Caŭt NCBI

https://www.ncbi.nlm.nih.gov/genome/?term=Corynebacteriu m+pseudotuberculosis – общая информация о виде

https://www.ncbi.nlm.nih.gov/nuccore/1040467483?log\$=acti vity – геном

[3] Википедия

<u>B0</u> – поликетидсинтазы I типа

[4] Википедия

https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D 0%BD%D1%81%D0%BC%D0%B5%D0%BC%D0%B1%D1 %80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1 %80%D0%B5%D1%86%D0%B5%D0%BF%D1%82%D0%B E%D1%80%D1%8B – трансмембранные рецепторы