Отчет по качеству расшифровки структуры 4TMA, полученной методом PCA

Работу выполнил: Сутормин Д.А., 4 курс

Москва

2015

Введение

Общая информация об объекте

Структура 4ТМА представляет собой комплекс ДНК-гиразы (A₂B₂) из *Escherichia coli* с ингибитором YacG.

ДНК-гираза принадлежит к классу топоизомераз IIa, её основной активностью в клетке является внесение отрицательных супервитков в кольцевые молекулы ДНК – плазмиды и хромосомы. Отрицательная суперспирализация ДНК играет важную роль во многих физиологических процессах, таких как регуляция транскрипции, репликации; компактизация нуклеиновой кислоты; деление клеток. Авторы статьи предполагают, что основной функцией закодированного в геноме белка YacG является тонкая регуляция клеточного роста, в ответ на метаболитический статус организма (опосредованная через перечисленные функции гиразы) (**Рисунок 1**)¹.

В процессе работы гиразы, фермент вносит в ДНК временный двуцепочечный разрыв (каталитический центр в А-субъединицах) и проносит сквозь него другой дуплекс. После чего разрыв сшивается обратно².

Механизм действия многих антибиотиков, мишенью которых является ДНК-гираза, заключается в стабилизации промежуточного комплекса гираза+ДНК, в котором сохраняется двуцепочечный разрыв в одном из дуплексов. Такой комплекс со временем диссоциирует, в результате чего в клетке накапливаются разрывы ДНК³. Белок YacG может защищать клетку от действия антибиотиков, поскольку он препятствует связыванию фермента с нуклеиновой кислотой (**Рисунок 1**).

Рисунок 1. Предполагаемые функции ингибитора гиразы YacG¹

ДНК-гираза непростой объект для кристаллизации, поэтому в данной работе для получения структуры использовался фьюжн белков GyrAB, и итоговый комплекс представлял собой тетрамер (GyrAB)₂YacG₂.

Общая информация о структуре

Структура 4ТМА была получена в 2014 году международной группой авторов из Калифорнийского Института в Беркли, США и из Индийского Научного Института в Бангалоре, Индия¹. Некоторые характеристики структуры суммированы в **Таблице 1**.

Параметр	Значение			
Состав комплекса	(GyrAB) ₂ YacG ₂			
Метод решения фазовой	Молекулярное замещение с помощью			
проблемы	структуры 3NUH			
Число измеренных рефлексов	67314			
Разрешение	3,3 Å			
Диапазон разрешений	49,32 – 3,30 Å			
Полнота данных	78,0 %			
Кристаллографическая группа	P 21 21 21			
R-фактор	0,238 ¹			
Свободный R-фактор	0,2841			
	Стороны (Å)	Углы (°)		
Параметры ячейки	a= 107.2	α=90		
	в= 114.5	β=90		
	c= 462.1	γ=90		

Таблица 1. Основные характеристики структуры 4ТМА

Согласно эмпирическому правилу, R-фактор не превышает разрешение/10: 0,238 < 0,33. Также, (R – R-free)=0,046, что примерно равно 5%. Данные оценки говорят о том, что структура достаточно хороша для своего разрешения. Однако, RSR для структуры (получен в EDS) составляет 0,245, что является довольно большой величиной (значения выше 0,2 говорят о плохом соответствии экспериментальной ЭП модельной ЭП).

Результаты

Анализ структуры сервисами MolProbity и EDS

С помощью сервиса MolProbity⁴ к структуре были добавлены водороды, определены стерическизатрудненные боковые цепи Asn, Gln, His. После редакции всех инверсий радикалов, был проведен полный анализ взаимодействий атомов в структуре.

Clashscore структуры составил 18,26, что является 97% персентилью среди моделей с уровнем разрешения хуже 3 Å. Можно сказать, что для своего разрешения, структура довольно хорошая.

Для поиска маргинальных остатков по торсионным углам φ и ψ были построены карты Рамачандрана (**Рисунок 2**). Всего сервисом было обнаружено 8 маргинальных остатков, 5 из которых перечислены в **Таблице 2** (выделены красным).

Также к маргиналам были причислены несколько, исправленных на предыдущем этапе, остатков (**Таблица 2**, выделены желтым).

Были найдена пара остатков с максимальным уровнем перекрывания – более 1,5 Å (**Таблица 2**, выделены зеленым).

Группа остатков (А 378-389) была включена в таблицу из-за экстремальных значений RSR (>0.3), они выделены синим (значения получены при помощи EDS⁵).

Остальные маргиналы были включены в таблицу по совокупности свойств (Таблица 2, без выделения).

Таблица 2. Описание маргинальных остатков по торсионным углам φ и ψ (выделены красным), перекрыванию с другими остатками, длинам и углам связей, ротамерам.

Позиция	Остато	(φ, ψ)	Clash > 0.4Å	Rotamer Bond lengths Bond angles		RSR	
остатка	К	(°)					
A 220	ALA	(104.3, - 102.9)	0.45Å O with A 221 ALA HB3	ALA HB3		0.203	
C 79	PRO	(-99.2, 101.2)	0.77Å - OUTLIER(S) OUTLIER(S) HB3 with C 74 ILE O worst is NCD: worst is CA-N-CD: 4.3 σ		OUTLIER(S) worst is CA-N-CD: 4.3 σ	0.284	
D 403	LEU	(-92.9, - 1.0)	0.69Å N with D 404 PRO CD	-	-	-	0,362
E 401	PRO	(-75.3, - 73.7)	0.50Å HA with G 468 GLY HA3	Å		0.199	
G 439	PRO	(-58.6, 64.3)	-	-	-	-	0.089
A 108	ASN	-	0.99Å ND2 with D 427 SER O	OUTLIER (0.1%) chi angles: 147.9,32.6	-	-	0.171
A 517	ARG	-	0.61Å HG2 with A 517 ARG HH11	OUTLIER (0%) chi angles: 203,115.8,211.8 ,307.6	-	-	0.170
B 460	LYS	-	0.74Å HE2 with I 46 ARG HD2	OUTLIER (0%) chi angles: 64.4,177,172,35 5.5	-	OUTLIER(S) worst is N-CA-C: 5.8 σ	0.250
B 461	MET	-	0.47Å HE2 with B 460 LYS HE2	-	-	OUTLIER(S) worst is N-CA-C: 4.7 σ	0.295
G 419	ASN	-	0.66Å O with G 420 VAL HG22	OUTLIER (0.1%) chi angles: 235.2,92.8	-	-	0.175
E 45	HIS	-	0.45Å HB2 with E 41 LEU HB3	-	-	-	0.251
E 471	HIS	-	0.79Å O with E 475 LEU HD13	-	-	-	0.290
G 57	ASN	-	-	-	-	-	0.118
L 8	ASN	-	0.50Å HA with L 15 THR HA	-	-	-	0.239
D 760	ARG	-	1.52Å HD3 with D 762 MET CE	-	-	-	0.219
D 762	MET	-	1.52Å CE with D 760 ARG HD3	-	-	-	0.137
A 378-389							>0.3

Рисунок 2. Карты Рамачандрана для структуры 4ТМА.

Анализ отдельных маргинальных остатков

Для детального анализа были выбраны остатки или группы остатков, перечисленные в **таблице 3**, в ней же перечислены маргинальные свойства, по которым проводился отбор.

Таблица 3. Остатки, отобранные для детального анализа; цветовой код такой же, как и в **таблице 2**.

Позиция остатка	Остаток	(φ, ψ) (°)	Clash > 0.4Å	Rotamer	Bond angles	RSR
D 760	ARG	-	1.52Å HD3 with D 762 MET CE	-	-	0.219
D 762	MET	-	1.52Å CE with D 760 ARG HD3	-	-	0.137
A 378-389						>0.3
A 220	ALA	(104.3, - 102.9)	0.45Å O with A 221 ALA HB3	-	-	0.203
B 460	LYS	-	0.74Å HE2 with I 46 ARG HD2	OUTLIER (0%) chi angles: 64.4,177,172,355.5	OUTLIER(S) worst is N-CA-C: 5.8 σ	0.250

1. Анализ трипептида D760-762 (ArgArgMet) (**Рисунок 3а,б**).

Рисунок 3. а. Трипептид с экстремально высоким перекрыванием боковых радикалов 760 Arg и 760 Met. Пунктирами показаны расстояния между атомами. б. Наложение электронной плотности на трипептид (уровень подрезки 0.7)

Видно, что радикалы аргинина и метионина очень сильно сближены (расстояние хорошей водородной связи), хотя гуанидиновая группа аргинина высоко полярна, а терминальный метил метионина – неполярен (**Рисунок 3a**). Такое поведение радикалов сложно объяснить особенностью структуры, видимо, дело в ошибке расшифровки. К тому же, RSR аргинина достаточно высок (0,219), и положение его радикала можно слегка оптимизировать в функции ЭП (**Рисунок 3б**).

2. Область с экстремально высоким RSR (>0,3): А 378-389 (Рисунок 4)

Рисунок 4. Распределение RSR по остаткам цепи А. Оранжевым прямоугольником выделен блок с экстремальными значениями RSR.

в.

Рисунок 5. Участок цепи A с 378 по 389 остатки. а. α-спиральная организация фрагмента, б. ЭП региона, уровень подрезки 1.5, в. ЭП региона, уровень подрезки 0.7

Указанный регион имеет α-спиральную организацию (Рисунок 5а), для которой можно ожидать высокую ЭП вдоль остова, однако, в данном случае, это не так (Рисунок 56). При уровне подрезки

1.5, лишь несколько отрезков участка покрыты ЭП, хотя вокруг можно видеть много «шума», относящегося к соседним участкам структуры.

При уровне подрезки 0.7, ЭП покрывает ось спирали, однако радикалы аминокислотных остатков остаются свободными.

Можно заключить, что данный регион оказался удивительно электронно-дефицитным, и очень плохо разрешает детали структуры, отсюда и высокие значения RSR.

3. Маргинальный по торсионным углам ϕ , ψ аланин А 220 (**Рисунок 6**).

Данный аминокислотный остаток входит в состав β-поворота, чем и объясняются экстремальные значения углов (**Рисунок 6**).

Рисунок 6. β-поворот, в состав которого входит Ala 220, образующий водородную связь с Phe 217.

Следует заключить, что маргинальное положение аланина вызвано особенностями структуры.

4. Маргинальный, по конформации радикала, лизин В 460 (Рисунок 7).

Рисунок 7. Лизин В 460 и его окружение. а. Положение радикала лизина; б. Ближайшее окружение лизина; в. Лизин и его ЭП, уровень подрезки 1.0.

Лизин 460 имеет странно загнутый, как-бы в «цис-конформации», боковой радикал (**Рисунок 7a**). Если выявить всех близко расположенных соседей лизина, то окажется, что он заключен между аргинином I 46 и аспарагином В 452.(**Рисунок 76**). Вероятно, положительно заряженные радикалы аргинина и лизина отталкиваются друг от друга, что и обеспечивает странную конформацию аминокислотного остатка.

Следует отметить, что лизин достаточно хорошо вписывается в ЭП (**Рисунок 7в**), так что данный случай, скорее,- особенность структуры.

Выводы

Позиция	Остаток	(φ, ψ)	Clash >	Rotamer	Bond	RSR	Вывод
остатка		(°)	0.4Å		angles		
D 760	ARG	-	1.52Å	-	-	0.219	Ошибка
			HD3 with D				расшифровки
			762 MET CE				
D 762	MET	-	1.52Å	-	-	0.137	Ошибка
			CE with D				расшифровки
			760 ARG				
			HD3				
A 378-389						>0.3	Плохо
							разрешенный
							участок
A 220	ALA	(104.3, -	0.45Å	-	-	0.203	Особенность
		102.9)	O with A				структуры
			221 ALA				(β-поворот)
			HB3				
B 460	LYS	-	0.74Å	OUTLIER (0%)	OUTLIER(S)	0.250	Особенность
			HE2 with I	chi angles:	worst is N-		структуры –
			46 ARG	64.4,177,172,355.5	CA-C: 5.8 σ		соселний Ага
			HD2	, , , ,			соссдания лав

В двух случаях, на мой взгляд, были допущены неточности при расшифровке. Также два случая удалось объяснить особенностями структуры. Оставшийся участок, который был подвергнут анализу, отличается в целом очень плохим разрешением (визуально хуже, чем в среднем по структуре) и сложно сказать, с чем это связано.

Можно заключить, что структура имеет много изъянов, поскольку достаточно сложна и обладает средним разрешением (3.3 Å).

Список литературы

- 1. Vos, S. M. *et al.* Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. *Genes Dev.* **28**, 1485–97 (2014).
- 2. Gubaev, A. & Klostermeier, D. Reprint of 'The mechanism of negative DNA supercoiling: A cascade of DNA-induced conformational changes prepares gyrase for strand passage'. *DNA Repair (Amst).* **20**, 130–141 (2014).
- 3. Collin, F., Karkare, S. & Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. *Appl. Microbiol. Biotechnol.* **92**, 479–497 (2011).
- 4. Chen, V. B. *et al. MolProbity* : all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**, 12–21 (2010).
- 5. Kleywegt, G. J. *et al.* The Uppsala Electron-Density Server. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **60**, 2240–2249 (2004).